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Real algebraic geometry studies real algebraic sets, i.e., real-number solutions to
algebraic equations with real-number coefficients, and mappings between them (in
particular, real polynomial mappings).

The history of real algebraic geometry goes back to ancient Greece. In the third
century BCE, Archimedes and Apollonius systematically studied problems on conic
sections [I7], and also introduced the use of coordinates [§].

During the last two hundred years the real algebraic geometry developed into
a rich discipline with deep and sometimes surprising connections to semialgebraic
geometry, real algebra, logics (especially, o-minimality theory and model theory),
real analytic geometry, the theory of moment problems, convex optimization, the
theory of quadratic forms, valuation theory, and other subjects.

One of the first results in real algebra is the famous Hilbert’s theorem [13] on
ternary quartics that claims that any real positive degree four polynomial in three
variables is a sum of three squares. The 17th Hilbert problem asks if any positive
rational function is represented by a sum of squares. The problem was solved
by Artin [6] in 1927. The further development of real algebra and real algebraic
geometry is associated with names of Tarski (whose famous quantifier elimination
result [29] connects real algebraic geometry and formal logic), Pdlya (his theorem on
positive polynomials on a simplex [26]), Motzkin (his example of positive polynomial
that is not a sum of squares of polynomials [22]), and others.

One of the central problems of the real algebraic geometry is the topology of the
set of real solutions.

In 1876 Harnack [I2] proved that a genus g real planar algebraic curve has at
most g + 1 ovals. (This bound on the number of components was later extended
to all Betti numbers of all real algebraic sets [21L25|30], and all semialgebraic sets
[7.) A curve with the maximal possible number of ovals is called an M-curve.
The first part of the 16th Hilbert problem asks about the mutual positions of
ovals of M-curves. Several years later V. Ragsdale formulated a conjecture on the
oval arrangement for an M-curve [27]. Efforts to prove the Ragsdale conjecture
stimulated works by V. Arnold [5], D. Gudkov and G. Utkin [I1], O. Viro [32H35],
V. Kharlamov [16], and others until it was disproved in 1970s by I. Itenberg [15].

Real algebraic varieties with given topological properties were studied in pa-
pers by Nash, Tognolli, Akbulut, King, Finashin, Mikhalkin, Kollar, Lojasiewicz,
Hironaka (see, e.g., [TH4[T41[I8H20,24129,[3T]), and others.

In particular, when the number of equations coincides with the number of vari-
ables, the solution is a collection of points and the only nontrivial topological char-
acteristics is the number of real points.
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The estimates of the number of real solutions (the upper and lower bounds),
enumerative real algebraic geometry, and examples of systems of polynomial equa-
tions (having the origin in enumerative algebraic geometry) with only real solutions
are the subjects of the book by F. Sottile.

Let a system of n polynomial equations in n variables with real coefficients be
given:

Fi(z1,...,2,)=0,i=1,...,n.

Here, Fi(x1,...,2,) = > ;alal is a real polynomial in n variables z1,...,2,,
al € R, where I € Z2, is a multiindex.

Even the existence of a real solution is often hard to abjudicate. The situation
is much simpler if we consider complex solutions in C". Then, at least we can
guarantee the existence of a solution for a generic system. Sometimes even the
number of complex solutions can be estimated.

As a trivial example we can recall that the fundamental theorem of algebra
claims that a polynomial in one variable of degree d has exactly d complex solu-
tions counting multiplicities. Moreover, the famous Bezout theorem states that two
algebraically independent polynomials of two variables z and y of degrees d; and
ds have didy roots counting multiplicities and roots at infinity. To the contrary,
the real quadratic polynomial 22 — 1 = 0 has two real roots while 2 + 1 = 0 has
none.

In middle school we learned the method of finding the number of real roots of a
real quadratic polynomial R(x) = 22 + pz + q. The recipe is known from the time
of classical Greece, ancient India, and Babylon. Equation R(x) = 0 has real roots
if and only if the discriminant D = p? — 4¢ > 0. If the discriminant is zero, the
solution is real and unique; otherwise, there are no real solutions (two roots form a
complex conjugated pair).

This provides a complete characterization of the number of solutions in terms of
the coefficients of polynomial. This is a dream of mathematicians studying bounds
of the number of real solutions. For one univariate polynomial of higher degree, the
upper bound for the number of positive roots can be obtained by Descartes’ rule of
signs and a more precise answer by Sturm theorems [28].

The case of systems of n polynomial equations in n variables does not allow,
in general, such a nice answer. The number of complex solutions is described by
Kushnirenko’s theorem (n!- Volume(A), where A is the Newton polytope of the
system). Note that Kushnirenko’s theorem gives an exact number of roots for
generic polynomial systems and an upper bound for other cases.

The number of real solutions is estimated roughly not by the degrees of poly-
nomials in a system but rather by the number of nontrivial monomials in their
expressions. The most general result is the famous Khovanskii’s fewnomial bound:

Theorem 1. A system of n real polynomials in n variables involving 1 + £ +

t4n
n distinct monomials has fewer than 2("2") . (n 4+ 1) nondegenerate positive
solutions.

This bound is far from being sharp. Despite the amazing results obtained by
the fewnomial method, its limitations are characterized by the classical Maxwell
conjecture: the electrostatic field in R? generated by three fixed unit charges has
only four or two equilibria. It is easy to check that the system of polynomial
equations with roots at equillibria has much larger number of complex solutions.



BOOK REVIEWS 677

However, no more than four solutions are real. This innocent looking conjecture is
still out of reach by modern methods. The best upper bound 12 is obtained in [I0].

The lower bounds are interesting because they demonstrate the existence of
solutions. The existence is especially interesting for problems of enumerative real
algebraic geometry, such as, for instance, computing the number of real planar
algebraic curves of degree d passing through 3d — 1 generic real points. It is clear
that the answer depends on the configuration of points. Therefore it is interesting
to find out if such curve exists for any configuration. The Welschinger invariant [36]
gives a nontrivial lower bound for the minimal number of such curves. In particular,
the nonzero Welschinger invariant demonstrates that such a real curve exists.

Recalling the notion of M-curves, we ask the following question: “What can we
say about the configuration of points such that all corresponding curves are real?”
A similar question was asked in the 1980s by W. Fulton about Schubert calculus.

Grassmannian (or Grassmann space) G (n) is the set of all k-dimensional vector
subspaces of n-dimensional vector space. A k-subspace (or Grassmann element) is
called real if it is invariant with respect to complex conjugation.

This set has a structure of projective algebraic manifold. The standard embed-
ding into a projective space is given by Pliicker coordinates. Namely, choose a
standard basis in C". Choose k independent vectors and write them as rows of a
k x n matrix. The determinant of the minor of maximal size k formed by columns
i1 < i < --- < i of the matrix is called the Pliicker coordinate x;,, . ;. Note that
other choices of basis or collection of vectors lead to the simultaneous multiplication
of all Pliicker coordinates by the same constant. Therefore, all Pliicker coordnates
define the embedding of G (n) in projective space. There is a standard cell decom-
position of Gi(n) into Schubert cells defined as follows. Its closure, called Schu-
bert variety, is a certain subvariety of Grassmannian, usually with singular points,
which consists of the k-dimensional subspaces V' such that dim(V N F?%) > j for
7 =1,2... k, where F* = {F1 CF?’c.---cF" :(C"} is a certain flag of sub-
spaces in C", dim F7 = j, and 0 < a1 < ag < --- < ai < n. Schubert varieties
form an integer basis in homologies of the Grassmannian. Schubert calculus ex-
presses homological intersection of Schubert cycles as a linear combination of other
Schubert cycles.

Intersection of Schubert cycles of codimensions cy, ..., ¢y, such that ¢; + - +
¢n = dimGg(n) = k x (n — k) is a zero-dimensional cycle, i.e., is a collection
of points. Each Schubert cycle can be realized as a concrete algebraic subvariety
after a choice of a complete reference flag F'*. Then the homology class of the
intersection of corresponding Schubert cycles is represented by a concrete set of
points. The following question was originally asked by W. Fulton: Is it possible
to find a collection of real Schubert varieties (i.e., the corresponding reference flags
are real) such that all intersection points are real too?

The conjecture formulated about 1985 by B. Shapiro and the author of this
review claims that if one takes the real rational normal curve and chooses m os-
cullating flags as reference flags, then all intersection points of the corresponding
Schubert cycles are real.

This conjecture was recently proved by E. Mukhin, V. Tarasov, and A. Varchenko
[23]. The proof uses the theory of polynomial sla-representation theory and Bethe
ansatz.
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CONTENT OF THE BOOK

Frank Sottile is one of the leading experts in the field of real algebraic geometry,
intersection theory, and Schubert calculus. He created a school of experimental
mathematics checking numerically many conjectures in real enumerative geometry.
This requires not only a deep knowledge of algebraic geometry but also the skills
and ingenuity to develop sophisticated numerical computational algorithms. The
observations obtained by the experimental data were generalized to many more
conjectures (in particular, the secant conjecture and the monotone conjecture).

His book brings us to the frontier of the research in this area. It discusses in
depth the estimates for the number of real solutions of a system of polynomial
equations and a totally real intersection of Schubert cycles in a Grassmannian.

In the introductory part of the book, Sottile formulates classical rules for count-
ing real zeroes of univariate polynomials, such as Descartes’s rule of signs and the
Sturm theorem. Then he gives accounts of more modern theories, such as Kush-
nirenko’s theorem computing the number of complex zeros of the system in terms of
the volume of the Newton polytopes. An upper bound is obtained in the theory of
fewnomials in a series of works by Khovansky and coauthors. The rest of the intro-
duction is devoted to the Shapiros’ conjecture formulated in terms of the number of
zeros of Wronsky map. The Wronskian of univariate polynomials fi(t),..., fm(t)
is the determinant

Wi(f1, o fon) o= det ((%) fj(t)>

The Wronski map,
Wr : Gr(m, Cpqp—1[t]) = P(Cpppt]) PP,

where Gr(m,C,,4p—1[t]) is the Grasmannian of m-dimensional subspaces of the
linear space C,,4p—1[t] of complex polynomials of degree m + p — 1 in the variable
t, and P(C,,,[t]) is the projective space of complex polynomials of degree at most
mp, which has dimension mp, equal to the dimension of the Grassmannian. The
Wronski map is surjective, and the general polynomial & € P™? has

121 (m — 1)!(mp)!
m!(m+ 1) (m+p—1)!
preimages under the Wronski map.

The Shapiros’ conjecture can be reformulated as follows: If the polynomial ® €
P™P has only real zeros, then every preimage in Wr_l(q)) is real. Moreover, if ®
has mp simple real zeros, then there are fi,,,, real points in WrH(®).

In the first part, the book gives a detailed account on the upper and lower
bounds.

The second part of the book describes the proof of the Shapiros’ conjecture.

Despite its simple formulation, the proof of this conjecture took more than twenty
years. The particular case of Gr(2,n) (or Gr(n —2,n)) was proved by A. Gabrielov
and A. Eremenko [9] in 2002 in the following form: any degree n rational function
P(z)/Q(z) with only real critical points can be made real by the corresponding
Mobius transform. The proof of this statement is based on the beautiful theory of
nets in the disk.

The complete proof was published by E. Mukhin, V. Tarasov, and A. Varchenko
[23] in 2009.

i,j=1,....m

ﬁmp =
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The last section of the book is devoted to generalizations of the Shapiros’ con-

jecture and open problems, such as the monotone conjecture, the secant conjecture,
and analogues of the Shapiros’ conjecture for orthogonal Grassmannians and La-
grangian Grassmannians.
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