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1. Equidistribution

The story of equidistribution in number theory began about a hundred years ago
with H. Weyl’s paper [18] concerning the distribution of sequences of real numbers
modulo 1, and more generally that of points in euclidean space modulo a lattice.
The theme of equidistribution has since become one of the most important unifying
viewpoints in number theory. Equidistribution statements exist in many areas of
number theory, which would otherwise seem to be very distant, and lead to some-
times surprising connections and applications (as can be seen, for instance, with
the quantum unique ergodicity conjecture [15], expander graphs, especially Cayley
graphs [13], ergodic theory of large groups [2], or the Sato-Tate conjecture [14],
to give only examples taken from recent articles or reviews in the Bulletin of the
AMS ). Because equidistribution is a twin of the probabilistic idea of convergence
in law, it also introduces strong links between arithmetic and fields, such as prob-
ability theory or ergodic theory. In addition to applications, one might add that
equidistribution theorems are often by themselves extremely beautiful.

In this review, we will work with the following definition, which is sufficient:
given a compact topological space X and a Borel probability measure μ on X (i.e.,
a Borel measure such that μ(X) = 1), and given a sequence (Yn) of (nonempty)
finite sets1 together with maps

θn : Yn −→ X,

one says that (Yn, θn) becomes equidistributed in X with respect to μ if, for any
continuous function f : X −→ C, we have

(1.1)

∫
X

f(x)dμ(x) = lim
n→+∞

1

|Yn|
∑
y∈Yn

f(θn(y)).

It is not very difficult to derive an equivalent form of this definition which clarifies
the terminology: we have equidistribution if and only if, for any Borel subset A ⊂ X

2010 Mathematics Subject Classification. Primary 11Txx, 20Gxx, 14Fxx.
1 We use n as parameter, but this does not always range over positive integers; in Theorem 2.1,

for instance, the parameter will be a finite field of size growing to infinity.
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such that the boundary ∂(A) = Ā− Å satisfies μ(∂(A)) = 0, we have

(1.2) μ(A) = lim
n→+∞

|{y ∈ Yn | θn(y) ∈ A}|
|Yn|

,

or in other words, if the “right” proportion (according to μ) of the θn(y) lies in the
set A.

The original case considered by H. Weyl is that of X = R/Z, where the measure
μ is given by the Lebesgue measure, and one considers a sequence (xj)j�1 and takes
Yn = {1, . . . , n} and

θn(j) = xj (modZ), for 1 � j � n.

If there is equidistribution for such a choice, one says that (xn) is equidistributed
modulo 1. Weyl’s first important insight is that one can find another equivalent
formulation by selecting a convenient family of “test functions” f for which one
should check (1.1). He immediately proves the first case of what is now known as
theWeyl criterion for equidistribution: a sequence (Yn, θn) becomes equidistributed
inX = R/Z with respect to Lebesgue measure if and only if, for any nonzero integer
h ∈ Z, we have

(1.3) lim
n→+∞

1

|Yn|
∑
y∈Yn

e(hθn(y)) = 0,

where e(z) = e2iπz. The point is that the functions

(1.4) fh : x �→ e(hx)

for h ∈ Z are continuous functions whose linear combinations span a dense subset
of the space of continuous functions on R/Z, and furthermore that for h = 0, the
relation (1.1) is automatically satisfied, while for h �= 0, the integral of fh that
appears on the right-hand side of (1.1) is zero. In the examples to be discussed in
this review, it is by means of a suitable form of this criterion that equidistribution
will be obtained.

Example 1.1. The standard example (indeed, the first in [18]) is that of the
sequence xj = jα, where α ∈ R −Q is a fixed irrational number. Checking (1.3)
is a simple matter of summing a finite geometric sequence whereas proving (1.2)
directly is by no means easy, even more so when dealing with the analogue question
for the equidistribution of the sequence xi = (iα1, . . . , iαk) in a higher-dimensional
torus (R/Z)k, whereas the Weyl criterion extends very simply.

Remark 1.2. The reader may enjoy viewing the recent Minerva lecture of J.-P.
Serre [16], which discuss equidistribution and topics related to it, in a context close
to what we consider here.

2. Deligne’s equidistribution theorem

The specific equidistribution result which leads to the heart of the matter for this
review is Deligne’s equidistribution theorem [1, Th. 2.1.12] (see also the versions
of Katz [6, Ch. 3] and Katz and Sarnak [10, §9.2]). A full statement of this very
general result involves necessarily many deep notions in algebraic geometry, but it
has direct connections with the classical Chebotarev density theorem of algebraic
number theory and is motivated by extremely concrete examples. We present one
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here before giving an overview of the strategy of the proof, which depends crucially
on Deligne’s most general version of the Riemann Hypothesis over finite fields.

Let p be a prime number, and let k be a finite field of characteristic p. We denote
by trk/Fp

the trace map from k to the subfield Fp. For a ∈ k×, let

(2.1) S(a; k) =
∑
x∈k×

e
( trk/Fp

(ax+ x−1)

p

)
,

a sum which is a real number known as a Kloosterman sum. It was proved by
A. Weil, as a consequence of the Riemann Hypothesis for curves over finite fields,
that

|S(a; k)| � 2
√
|k|,

for all a ∈ k×, and it was already known to Kloosterman that the exponent 1/2 of
|k| in this bound cannot be replaced by any smaller constant. However, in view of
the many applications of Kloosterman sums to analytic number theory, it is natural
to ask for more precise information concerning the distribution of S(a; k), or of the

normalized sum S(a;k)√
|k|

. This question (and more!) was answered by Katz [6], using

Deligne’s equidistribution theorem:

Theorem 2.1 (Katz). Let X = [−2, 2], and let μ be the Sato-Tate measure on X,
defined by

dμ(x) =
1

π

√
1− x2

4
dx.

For a finite field k, let Yk = k×, θk(a) = S(a; k)/
√
|k|. Then, as the size of k goes

to infinity, along any sequence of finite fields, the (Yk, θk) become equidistributed in
X with respect to μ.

We emphasize that this applies equally when taking a sequence of finite fields of
order pn for some fixed prime p, with n → +∞, or for the sequence of fields Fp as
p tends to infinity.

A high-level description of the proof is the following:

Step 1 (Geometric interpretation of Kloosterman sums). Another rather deep result
of Deligne gives an algebraic/geometric interpretation of the function a �→ S(a; k)
as the trace of Frobenius automorphisms acting on stalks of a lisse étale sheaf on
the multiplicative group over Fp. Concretely, this means that there exists a certain
group, which we denote ΠFp

(it is the étale fundamental group of the multiplicative
group over Fp, and can be seen as the subgroup of the Galois group of the function
field Fp(T ) parameterizing finite separable extensions unramified outside 0 and ∞),
and there exists a group homomorphism

(2.2) � : ΠFp
−→ GL2(C)

and special conjugacy classes Fra,k ⊂ Πk defined for any finite extension k/Fp and
a ∈ k×, such that

tr(�(Fra,k)) = −S(a; k)√
|k|

for all a ∈ k×. These classes are called the geometric Frobenius conjugacy classes
at a. Furthermore, for each a, the element �(Fra,k) is conjugate to a unique unitary
matrix θa,k in SU2(C) (note in passing that the existence of � with such properties
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already immediately implies the Weil bound for Kloosterman sums). Theorem 2.1
is then obtained from a more abstract statement:

Theorem 2.2 (Sato-Tate law for families of Kloosterman sums). For any sequence
of finite fields with |k| → +∞, the conjugacy classes θa,k for a ∈ k× become equidis-
tributed in the space X of conjugacy classes in SU2(C) with respect to the image of
the probability Haar measure ν on SU2(C).

Indeed, it is an elementary exercise to check that X can be identified with the
interval [−2, 2] via the trace of matrices in SU2(C), in such a way that the image
of ν to [−2, 2] becomes the Sato-Tate measure of Theorem 2.1; since tr(θa,k) =

−S(a; k)/
√
|k| (and ν is symmetric), Theorem 2.1 follows.

Step 2 (Finding the space). Deligne’s equidistribution theorem generalizes Theo-
rem 2.2 and applies to the distribution of the image of Frobenius conjugacy classes
of very general algebraic varieties U/k0 defined over a finite field k0, under certain
homomorphisms of their fundamental groups

τ : π1(U, η̄) −→ GLr(C), r � 1

(see [10, Ch. 9]). Under suitable conditions, Deligne shows that, as k/k0 runs
over finite extensions with increasing degree, there is always some equidistribution
statement for the images θx,k of the Frobenius conjugacy classes for x ∈ U(k)
(or, more precisely, for the semisimple parts of τ (Frx,k) in the sense of Jordan
decomposition). The corresponding space X (and the measure μ) are determined
as being, in some sense, the simplest possible compatible with the data. Namely, the
set of all images under τ of the Frobenius conjugacy classes Frx,k, relative to all
finite extensions k of k0 and to all points x ∈ U(k), is dense with respect to the
Zariski topology in some linear algebraic group G, which is called the monodromy
group of τ , and which turns out to be semisimple.2 Then, part of the unstated
assumptions shows that all the conjugacy classes θx,k intersect a fixed maximal

compact subgroup K ⊂ G, and that the corresponding conjugacy class θ̃x,k of K
is well defined. The space K� of conjugacy classes of K is the space in which
equidistribution will happen, and the corresponding measure is the image μK of
the probability Haar measure of K under the quotient map K −→ K�.

Step 3 (Proving equidistribution). So, Deligne proves that, as k runs over extensions

of k0, the classes θ̃x,k for x ∈ U(k) become equidistributed in K� with respect to
μK . The argument is in principle straightforward: there is a natural Weyl criterion
for equidistribution in this setting, where the functions (1.4) are replaced by the
characters

χ(g) = tr(π(g)), g ∈ K�

of the nontrivial irreducible unitary finite-dimensional continuous representations

π : K −→ Um(C)

of K (although these characters do not suffice to describe all functions on the group
K, they suffice for conjugacy-invariant functions, i.e., for functions on the space X).
One must therefore prove that

1

|U(k)|
∑

x∈U(k)

tr(π ◦ τ )(Frx,k) −→ 0

2 Examples of groups of this type are SLn, SOn, Sp2g, and finite products of them.
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as [k : k0] → +∞. The “Weyl sums” in this limit can be considered as (far-reaching)
analogues of exponential sums over finite fields. Applying his very general version
of the Riemann Hypothesis to estimate these sums, Deligne proves that, for any
nontrivial irreducible representation π of K and any extension k of k0, we have

1

|U(k)|

∣∣∣ ∑
x∈U(k)

tr(π ◦ τ )(Frx,k)
∣∣∣ � C(π, k0)|k|−1/2,

for some constant C(π, k0), concluding the proof of the Weyl criterion.

Thus, in the situation of Deligne’s theorem, once the technical assumptions we
have hidden have been checked (and this is often easy), the problem of determining
the distribution properties of the corresponding Frobenius conjugacy classes (and
their often diophantinally concrete invariants, such as their traces) is immediately
reduced to that of determining the corresponding monodromy group G, which then
determines the compact subgroup K and its Haar measure.

This is not an easy problem, as the reader may suspect. It is similar in spirit
with the problem of finding the Galois group of a field extension defined by some
polynomial equation. Over the years, many tools have been developed to compute
the monodromy group (most notably by N. Katz, see for instance [6, 8–10]), and
thus many concrete cases can now be settled. For Kloosterman sums, the answer
is that for all finite base fields k0, the monodromy group is G = SL2, with maximal
compact subgroup SU2(C), and so one obtains Theorem 2.2.

Remark 2.3. (1) The argument we have sketched does not deal with sequences of
finite fields where the characteristic changes, e.g., to the fields Fp as p → +∞.
This type of question is indeed very delicate (see [7] for a discussion by Katz) but
the constant C(π, k0) can sometimes be estimated explicitly enough (for instance,
it may be bounded independently of p, see in particular [10, §9.6]).

(2) Concretely, once we know—or guess—that the relevant group here is G =
SL2, it is not very difficult to check that the Weyl sums above are of the form

Wm(k) =
1

|k| − 1

∑
a∈k×

Um

(S(a; k)√
|k|

)
,

where m � 1 and Um ∈ Z[X] is the mth Chebychev polynomial determined by

Um(2 cos θ) =
sin((m+ 1)θ)

sin(θ)

for θ ∈ [0, π]. It is a pleasant exercise to prove directly that Wm(k) → 0 as
|k| → +∞ for 1 � i � 4, and to ponder some further cases (see, e.g., [4, §4.4]).

3. Mellin transforms over finite fields

The theory described briefly in the previous section deserves maybe to be called
“classical” by now. It has been used to great effect for many purposes, in particular
by Katz and Sarnak [10] in their study of function-field analogues of the conjectured
relationships between random matrices and zeros of the zeta function and other
L-functions. But curiosity (or the demand of applications) did not stop at the
situation encoded in Deligne’s theorem, where one considers equidistribution of
families parameterized by an algebraic variety.

Around mid-2003, both Z. Rudnick (motivated by applications to his work with
Kurlberg [11] and Rosenzweig on the so-called quantum cat map [12]) and R. Evans
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asked N. Katz about sums which do not fit this framework. In a nutshell, whereas
the Kloosterman sums (2.1) for a fixed k/Fp can be seen as the discrete Fourier
transform of the function ϕ on k defined by

ϕ(x) =

⎧⎨
⎩
e
(

trk/Fp (x
−1)

p

)
if x �= 0,

0 if x = 0,

one might also wish (or need) to consider discrete Mellin transforms, parameterized
by multiplicative characters χ of k×. In other words, for some given function ϕ
defined on k×, one wishes to understand the function

χ �→ Mϕ(χ) =
1√
|k|

∑
x∈k×

ϕ(x)χ(x),

where χ runs over the set X(k) of complex-valued multiplicative characters
χ : k× −→ C×. Rudnick’s question to Katz concerned R(χ; k) = Mαk

(χ), where
k is a finite extension of Fp and

(3.1) αk(x) = e
( trk/Fp

((x+ 1)/(x− 1))

p

)
, for x �= 1, αk(1) = 0.

The R(χ; k) are real numbers and satisfy |R(χ; k)| � 2 if χ is not the trivial
character. Rudnick asked about the distribution of θk(χ) = R(χ; k) as the size of
k gets large and χ runs over X(k)− {1}. One can perform numerical experiments,
which suggest strongly once more that these sums become equidistributed with
respect to the Sato-Tate measure. The question raised by Rudnick was:

Can one prove this equidistribution statement, despite the fact that
we are not in the context of Deligne’s equidistribution theorem?

We have here a very new setting for equidistribution questions. It is extremely
remarkable that N. Katz succeeded in finding an algebraic framework in which
this result can be established, as a special case of a very general equidistribution
theorem for the Mellin transforms of functions ϕ “of algebraic origin”. The book
of N. Katz under review explains this surprising achievement.

To be more precise, given a finite field k0, one begins with an “input object” on
the multiplicative group Gm/k0, given typically by a representation

(3.2) τ : Πk0
−→ GLm(C),

where Πk0
is the étale fundamental group of the multiplicative group over k0.

For any finite extension k/k0, Katz considers the Mellin transforms of the func-
tions given by the trace of Frobenius conjugacy classes; i.e., he considers

(3.3) χ �→ Mϕk
(χ), where ϕk(x) = tr τ (Frx,k).

For k0 = Fp, some basic formalism shows that the functions αk in (3.1) are of
this type for a suitable τ taking values in GL2(C), which is independent of k. Thus
an equidistribution statement for this type of Mellin transforms will answer the
question of Rudnick.

4. Katz’s equidistribution theorem

As in Deligne’s theorem, there are two relatively distinct parts of the work of
Katz. The first general theorem shows that (for suitable input objects) there is
always some equidistribution theorem, and that this happens again in some space



BOOK REVIEWS 147

of conjugacy classes in a maximal compact subgroup of a certain linear algebraic
group G̃, with respect to Haar measure. Then, in any given concrete case (such

as Rudnick’s), what remains to be done is to compute the group G̃ to know what
shape the equidistribution theorem takes. An important difference with Deligne’s
theorem is that the group G̃ is not necessarily semisimple, but merely reductive
(so, for instance, it may be that G̃ = GLn, which is not semisimple).

The first step contains the essential difference with Deligne’s theorem. Indeed,
in Section 2, the monodromy group G is almost immediately visible from the data
of the representation (2.2), as the Zariski-closure of the image of the Frobenius
conjugacy classes. But for the Mellin transform, there is no such data that suggests
a definition of G̃.

Instead, Katz constructs the group in a striking way using the theory of Tan-
nakian categories. Roughly speaking, this theory shows that one can recognize a
linear algebraic group G over an algebraically closed field (say C, for simplicity)
from the category RepG of its finite-dimensional C-linear representations, provided
one sees the latter as equipped with the additional structure of direct sums, contra-
gredient, tensor product, and various compatibility relations between these, where
the most fundamental structures are that of the tensor product and the operation
of forgetting the group action, associating to a representation the underlying vector
space (this is a so-called fiber functor).

This very abstract principle means not only that groups with the “same represen-
tation theory” are isomorphic, but more importantly that given any category Cat
endowed with abstract versions of these extra data, there is a linear algebraic group
G over C for which Cat “is” the category RepG of representations of G (see [17]
for a very readable account that puts this type of result in a natural perspective
starting from classical Galois theory).

What Katz does, for an input object τ , as described at the end of the previous
section, is to define a priori a Tannakian category Catτ for which the associated
group G̃ is the one he requires. Although the technical details are rather daunting
(crucial use is made of ideas of Gabber and Loeser [3] and of a fiber functor defined
by Deligne), one ingredient has a concrete incarnation: the objects of Catτ are
themselves of the same flavor as the representation τ , and hence have associated
trace functions ϕk defined for extension fields k/k0, and the abstract tensor product
on Catτ is provided by a convolution operation which, at the level of the trace
functions corresponds to the operation

(ϕ1 � ϕ2)(x) = − 1√
|k|

∑
y∈k×

ϕ1(y)ϕ2(xy
−1)

of multiplicative convolution of functions on k×.
The outcome of the Tannakian formalism is the construction of a group G̃ asso-

ciated to an input object (3.2), together with a natural injection

G̃ ⊂ GLr(C)

for some r � 1. Morever, for every finite extension k/k0 and multiplicative character
χ ∈ X(k), this formalism provides a well-defined conjugacy class θχ;k in a maximal

compact subgroup K̃ of G̃ such that

Mϕk
(χ) = tr(θχ;k).
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Katz shows that an equidistribution theorem follows from these facts by another
argument involving the Weyl criterion (using characters of representations of K̃)
and Deligne’s form of the Riemann Hypothesis over finite fields.

Remark 4.1. An enlightening example is to take the Mellin transform of a nontrivial
additive character, i.e., for a prime p and a finite extension k/Fp, to take

ϕk(x) = e
( trk/Fp

(x)

p

)
.

The Mellin transforms of these functions are just the normalized Gauss sums of
the multiplicative characters χ of k, and it a well-known fact that these are complex
numbers of modulus 1 for χ �= 1. In that case, the group G̃ is simply the group
GL1 = C× (note that this is not a semisimple group), and its maximal compact
subgroup is the circle S1. The theorem of Katz thus recovers the fact (see [6]) that
the Gauss sums of nontrivial characters of a finite extension k/Fp with |k| → +∞
become equidistributed on the unit circle with respect to the Haar measure. The
reader is invited to write down what the original Weyl criterion entails in this
situation and to see how the result reduces to estimates for certain character sums
in many variables (see, e.g., [5, Th. 21.6]).

5. About the book

There are roughly three different parts in the book of Katz which explains this
theory and its applications. The introduction and the first overview chapter recall
the context and explain at a high level the Tannakian strategy and how it implies the
equidistribution theorem using Deligne’s version of the Riemann Hypothesis. The
main abstract theorem is then proved, and further formalism is established in the
second part, up to Chapter 13 (in particular with respect to some basic knowledge

of properties of G̃ such as the existence of a G̃-invariant nondegenerate bilinear
form). There follow numerous examples of computation of G̃, which involve often
very ingenious arguments concerning linear algebraic groups, and a few chapters
concerning the problem of extending the equidistribution to sequences of finite fields
with increasing characteristic as in Remark 2.3 (instead of extensions of a fixed k0).

Although the motivation is, as explained, extremely concrete, it is a fact that
the arguments involved in the proof are among the deepest in algebraic geometry
(for instance, as Katz explains, in order to establish the existence of the necessary
Tannakian categories and the associated convolution operation, one must necessar-
ily work in the context of a certain category of perverse sheaves). The reviewer
can attest that a study of the underlying structures of algebraic geometry, even at
a relatively modest level, can be repayed very richly. Once a certain basic under-
standing is reached, this book, like the others written by N. Katz, reveals itself to
be very precisely and sharply written, and to be full of riches. And finally, this
theory shows spectacularly how some of the most abstract ideas of algebra and
algebraic geometry may be essential to solving extremely concrete problems.
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