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The study of dynamical systems has its origins in the classical mechanics of
Newton and his successors. That theory concerns the behavior of solutions of
certain differential equations on manifolds. The modern theory has flourished in
many directions that are best described by focusing on different features of the
classical systems. For example, keeping only the topological structure led to the
development of topological dynamics as set out in the foundational monograph of by
W. Gottschalk and G. Hedlund [GH], while focusing on the smooth structures gave
rise to what is called smooth dynamics. The seminal ergodic theorems of J. von
Neumann and G. D. Birkhoff involved only the measure structure and pointed
the way to the development of ergodic theory which can be viewed as the study
of transformations of measure spaces. In classical mechanics the acting group is
the real line or the integers, and many of these theories were developed in that
context. However, already in the papers in which Murray and von Neumann created
the theory of what are now called von Neumann algebras, general groups were
considered, and many of the recent developments in ergodic theory take place in
the setting of quite general acting groups. Indeed many of the remarkable successes
of ergodic theoretic methods in solving number theory problems involve actions of
Lie groups and their discrete subgroups.

For the most part, the measure spaces studied in ergodic theory are isomorphic
to the unit interval equipped with Lebesgue measure λ. These are called stan-
dard measure spaces. Recall that a measure space is a triple (X,B, μ), where X
is a space, B is a collection of subsets of X that is closed under countable unions
and complements, and μ is a countably additive probability measure defined on
B. An isomorphism between such a measure space and the unit interval with
Lebesgue measure is a measurable function θ from X to [0, 1] that is invertible al-
most everywhere, maps B to the Lebesgue measurable sets, and for all such sets A,
μ(θ−1(A)) = λ(A). The main characters are the measure preserving transforma-
tions. These are measurable mappings, T , of X that preserve the measure μ. More
formally for B ∈ B, we have that T−1(B) ∈ B and μ(T−1(B)) = μ(B). Examples
of these transformations are rotations of the circle, interval exchanges—in which
the unit interval is partitioned into a finite number of intervals and these are per-
muted by translating each subinterval by a different number, toral automorphisms
in which the measure space is the torus Td—which is easily seen to be a standard
measure space.

Basic properties of such transformations are: (i) ergodicity, which means that in-
variant sets must have measure equal to zero or one; (ii) strong mixing, which means
that successive images of any measurable set A are asymptotically independent of
any fixed set B, i.e.,

lim
n→∞

λ(Tn(A) ∩B) = λ(A)λ(B);
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and (iii) weak mixing, which replaces ordinary convergence in the above by Cesaro
convergence. Irrational rotations of the circle are ergodic—but not weakly mixing—
while a toral automorphism whose spectrum does not contain any root of unity is
strongly mixing and possesses even stronger randomness properties.

While classical ergodic theory focused mainly on the asymptotic properties of
individual measurable invertible transformations, already in the early years some
attention was given to the group MPT, consisting of all measurable transformations
T of the unit interval that preserves Lebesgue measure. This group has a natural
topology induced by a metric which gives it the structure of a complete separable
metric space (i.e., a Polish space) in which the group operation is continuous. Such
topological groups are called Polish groups. In 1944 [H] P. Halmos proved that
generically (in the topological sense, which means that the property in question
holds for a dense Gδ) a transformation is weakly mixing and in particular it is er-
godic. Several years later, V. Rokhlin [R] showed that generically a transformation
is not strongly mixing. However, explicit examples of weakly mixing transforma-
tions that are not strongly mixing are not so easy to construct. These are the first
results in what can be described as the global aspects of group actions. Here the
group in question is of course Z, the integers, and the action is identified with its
generator, which is a single transformation.

Some of the more recent developments in this area involve some basic ideas from
descriptive set theory, and we recall now some of these briefly. If we begin with a
Polish space, we can start with the open sets and, by applying complements, unions,
and intersections of countable families, build up the σ-algebra of Borel sets. These
sets can be graded in terms of their complexity—countable intersections of open sets
are the Gδ’s, their complements are the Fσ’s, countable unions Gδ’s are the Gδσ’s
etc. If B is a Borel set in some Polish space X and f is a continuous map from X
to another Polish space Y , then f(B) may not be a Borel set, contrary to a famous
erroneous assertion of Lebesgue. Nonetheless, these sets, which are called analytic
sets, do have some nice properties. For example they are measurable with respect
to any regular Borel measure. The co-analytic sets are simply the complements of
analytic sets.

A basic theorem of Suslin asserts that if a set is both analytic and co-analytic,
then it is a Borel set. For both notions there is a complete object. For example,
a complete analytic set C is an analytic subset of a Polish space X such that for
any analytic set A ⊂ Y there is a Borel measurable map f : Y → X such that
A = f−1(C). These notions make it possible to ask more detailed questions about
various collections of group actions.

Here is one of the first results in this circle of ideas. In topological dynamics,
which studies continuous actions on compact spaces, there is a simple notion of
distality, which is defined as follows. A homeomorphism T of a compact metric
space (X,D) is said to be distal if for any two distinct points x, y ∈ X there is
a positive number c such that for all n the distance d(Tnx, Tny) ≥ c. There is
a detailed structure theorem for these transformations which was discovered by
H. Furstenberg [F] fifty years ago. A measure theoretic analogue of this notion
called measure distal was first introduced by W. Parry, and a structure theorem for
them was given by H. Furstenberg and R. Zimmer. The definition is more technical
and we do not give it here. F. Beleznay and M. Foreman [BF] showed that the
class of measure distal transformations in MPT is a complete co-analytic set and
in particular is not Borel measurable.
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In addition to studying classes of actions, one can also ask about the complexity
of relations. In his pioneering paper [vN] J. von Neumann formulated the isomor-
phism problem for measure preserving transformations which can be also formulated
as the conjugacy problem in MPT, namely when are two elements T and S conju-
gate, i.e., when is there a third R ∈ MPT such that S = RTR−1. B. O. Koopman
introduced the unitary operator UT associated to a T ∈ MPT as the operator on
L2 defined by UT f(x) = f(Tx). Conjugate elements of MPT give rise to unitary
operators that are unitarily equivalent, and this was the first invariant to be discov-
ered for the conjugacy relation. For ergodic T , whose associated unitary operator
has pure point spectrum, J. von Neumann showed that unitary equivalence implies
conjugacy. This fails to be true for more general transformations and even for pure
point spectrum in the nonergodic case. Work on the conjugacy problem motivated
many of the developments in ergodic theory, such as entropy, but further discussion
of this would lead us astray at this point. The descriptive set theory perspective
sets the problem of how complex is the conjugacy relation itself as a subset of
MPT × MPT. It is clearly an analytic set as the projection of the closed set of
triples (R,S, T ) such that S = RTR−1.

G. Hjorth showed that it is a complete analytic set by using, in an essential way,
nonergodic elements. Since the ergodic elements of MPT are easily seen to be a Gδ,
they have the structure of a Polish space, and the question can be formulated for
ergodic transformations. In joint work with M. Foreman and the late Dan Rudolph
[FRW] it was shown that this too is a complete analytic set.

Ergodic theory for a countable group G studies the imbeddings of G into MPT.
Each such imbedding is called an action of G, and naturally MPT acts by conju-
gation on the space of imbeddings which can be easily given a natural Polish space
topology. Two such actions are isomorphic if they are conjugate as subgroups of
MPT. In this way one can set the more general problem of the complexity of the
isomorphism for general groups in the context of the complexity of the orbit equiv-
alence relation of a Polish group action. A notion weaker than that of isomorphism
arose in the theory of von Neumann algebras, and is called orbit equivalence. If
φ(g) and ψ(g) are two actions of G, they are said to be orbit equivalent if there
is a element R ∈ MPT such that for almost every x ∈ [0, 1] the set R(φ(G)(x))
equals ψ(G)(R(x)). Here what is essential is that the orbit equivalence relation,
defined by the action and the transformation R, sends equivalences classes defined
by the φ action to the equivalence classes defined by the ψ action. H. Dye proved
the remarkable result that when G is abelian, any two ergodic actions are orbit
equivalent, and in fact they are also orbit equivalent to an ergodic Z action.

Another remarkable result of Dye’s is the following. A countable measurable
equivalence relation on (X,B, μ) is a measurable subset E of the product space
which is an equivalence relation with countable classes such that measurable trans-
formations of X whose graphs are subsets of E preserve the measure μ. Any
measure preserving action of a countable group G defines such an E by its orbits.
The full group of a countable measurable equivalence relation E is the subgroup of
MPT of all transformations that map equivalent points to equivalent points almost
everywhere. If E1 and E2 are two such measurable equivalence relations, then they
are isomorphic if there is an element of MPT which sends the classes of E1 to the
classes of E2. Dye proved that any abstract group isomorphism between the asso-
ciated full groups of two countable measurable equivalence relations is induced by
a measure preserving transformation.
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Dye’s theorem on orbit equivalence of ergodic Z actions was later extended to
amenable groups by D. Ornstein and me. However, for nonamenable groups recent
work has shown that there are many nonorbit equivalent ergodic actions. In fact,
in some situations one finds the phenomenon of rigidity in which orbit equivalence
implies isomorphism.

We turn now to the subject of our review Global aspects of ergodic group actions
by Alexander Kechris. This is a very well written survey of many of the recent
developments in the ergodic theory of countable groups, including many results
of the author himself and his collaborators. The book consists of three chapters
and nine appendices. The first chapter is devoted to the actions themselves. It
gives a detailed, somewhat novel treatment of the results described above on orbit
equivalence and much more. One of the sections of this chapter is devoted to
showing that the conjugacy relation, when thought of as the action of MPT on
the space of actions of Z, is turbulent. This notion, which was introduced by G.
Hjorth, is a property of the continuous action of a Polish group G on a Polish space
Z and is defined as follows. The action is turbulent if all orbits of G are dense
and meager, and, in addition for any two points x, y in Z and open sets V ⊂ Z
containing x and U ⊂ G containing the identity, there are points xi in V and gi
in U such that x0 = x, Xi+1 = gixi, and for some subsequence in, the points xin

converge to a point in the orbit of y. Hjorth showed that if an action is turbulent,
then countable structures cannot be complete invariants for the orbit relation. Thus
no countable collection of invariants, such as the entropy of an action, which is a
numerical conjugacy invariant introduced by A. Kolmogorov to distinguish between
different kinds of Bernoulli shifts or the point spectrum of the associated unitary
operator, can be complete.

Another topic discussed in this chapter is the cost of an equivalence relation, a
numerical invariant which was introduced by G. Levitt and further developed by
D. Gaboriau. Using it, Gaboriau showed that the equivalence relations induced
by Bernoulli actions of free groups of unequal rank are not orbit equivalent. The
full group of a countable measure preserving equivalence relation can be easily
topologized so as to become a Polish group. A finite set topologically generates a
topological group if the abstract group it generates is dense. Thus the minimum
number of topological generators is an invariant of the group. Kechris discusses
the relation between the cost of an equivalence relation and this minimal number
of topological genreators. While writing this review, I was informed that Francois
Le Maitre, a student of Gaboriau, has given optimal bounds relating these two
invariants. In particular, the minimal number of topological generators for the full
group defined by any free ergodic action of the free group of rank n is n+ 1.

The second chapter, entitled “The space of actions”, is devoted to a more global
discussion of the space of measure preserving actions of a countable group Γ. Using
the same topology that turned MPT into a Polish group, this becomes a Polish
space, and the group MPT acts on it by conjugation and one can study its dynamical
properties. These are the main objects of study in this chapter, and here is a small
sampling of some of the results that are given a thorough treatment. First, a
result that holds for all countable groups Γ, namely that the conjugacy action is
topologically transitive, or in other words there is a dense conjugacy class. Certain
classes of groups, such as groups with Kazhdan’s property T and groups with
the Haagerup Approximation property, can be characterized via properties of the
space of actions. Turbulency of the action of MPT, which we mentioned earlier in



BOOK REVIEWS 167

connection with the classical situation of Z actions, is also given a detailed treatment
here for more general groups. It is in this chapter that Kechris describes the latest
results on the rich variety of nonorbit equivalent actions of nonamenable groups.
Not only are there uncountably many orbit equivalence classes, but they cannot be
classified by countable structures.

The main characters in the third chapter are cocycles and cohomology, which
we have not yet introduced but which would take us quite far afield. Our review of
this will be correspondingly quite brief but should serve at least to give a taste of
this wonderland.

First a bit of history. The abstract study of cocycles and cohomology of mea-
surable equivalence relations was first extensively developed by J. Feldman and
C. Moore. Their motivation came from the theory of von Neumann algebras and
ergodic theory.

The 1-cocycles arise naturally in several contexts in ergodic theory and are easily
defined as follows. If φ is an action of Γ on a space X and G is any group, then
a G-valued cocycle (here and in the sequel we drop the “1”, since we will not be
discussing the higher order cohomology) for this action is a measurable mapping u
from Γ×X to G that satisfies the identity

u(γδ, x) = u(γ, φ(δ)(x)))u(δ, x).

If the cocycle is independent of x, then it is simply a homomorphism from the group
Γ to the group G.

Two cocycles u and v are said to be cohomologous if there is a measurable
function F from X to the group G such that

u(γ, x) = F (φ(γ)(x))v(γ, x)F (x)−1.

Cocycles that are cohomologous to the identity mapping are called coboundaries.
Specifically, a cocycle u is a coboundary if there is a measurable function F such that
u(γ, x) = F (φ(γ)(x))F (x)−1. The space of 1-cocycles modulo the cohomologous
relation is called the 1-cohomolgy.

An orbit equivalence between two free Γ actions gives rise in a natural fashion
to a cocycle with values in Γ, and this is one of the ways in which they arise. In
fact the 1-comology depends only on the equivalence relation and not on the action,
which is one of the reasons for their importance. They are also among the main
characters in the generalizations of R. Zimmer of the famous superrigidity theory of
G. Margulis. Here it is important that the acting group be far from amenable—in
fact it should have property T .

Rather than trying to describe the wealth of results about this cohomology that
are expertly surveyed in this part of the book, we will try to whet the readers
appetite by explaining one striking consequence that has been proved using some
of these ideas and much more by S. Popa. First of all we owe the reader who has
come this far an example of a measure preserving action of a general group Γ. For
this we start with an arbitrary probability space which, for simplicity, we take to
be finite, thus we have a finite set A and a probability distribution p = {pa} on
A. Now let X be the space AΓ with product measure pΓ. The group acts on this
space of functions from Γ to A in a natural way by multiplication in the argument.
In fact there are two actions, a left action and a right action. These actions are
called Bernoulli since the coordinate functions are independent and Bernoulli was
the first to prove a law of large numbers for independent random variables. In the
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classical situation of Z, A. Kolmogorov showed that if two Bernoulli shifts were
isomorphic, then the Shannon entropy of their underlying probability distribution
H(p) must be the same. D. Ornstein proved the converse, and in the course of doing
so introduced many new ideas and techniques which led to a deep understanding of
the ergodic theory of actions of amenable groups. One of his fundamental results
was that a factor of a Bernoulli shift is isomorphic to a Bernoulli shift.

In a stark contrast to this, several years ago S. Popa [P] showed that for a large
class of groups, including those with property T , a Bernoulli shift can have an
uncountable family of factors that are mutually not orbit equivalent and none of
them are orbit equivalent to a Bernoulli shift.

The appendices contain a concise presentation of some of the prerequisites for
the book and include a discussion of Gaussian probability spaces, the Wiener chaos
decomposition, some aspects of the theory of unitary representations of locally
compact groups, and much more. Naturally the reader is expected to have a good
background in ergodic theory, but it is to be regretted that some of the newer
concepts, such as turbulence and cost, are not defined explicitly.

All in all, this is an important survey of many of the latest results in a newly
developing branch of ergodic theory, well organized and clearly presented. It should
serve as a basic reference for many years to come.

References

[BF] Ferenc Beleznay and Matthew Foreman, The collection of distal flows is not Borel, Amer.
J. Math. 117 (1995), no. 1, 203–239, DOI 10.2307/2375041. MR1314463 (96e:54032)

[FRW] Matthew Foreman, Daniel J. Rudolph, and Benjamin Weiss, The conjugacy problem
in ergodic theory, Ann. of Math. (2) 173 (2011), no. 3, 1529–1586, DOI 10.4007/an-
nals.2011.173.3.7. MR2800720 (2012k:37006)

[F] H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477–515.
MR0157368 (28 #602)

[GH] Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics, American

Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society,
Providence, R. I., 1955. MR0074810 (17,650e)

[H] Paul R. Halmos, In general a measure preserving transformation is mixing, Ann. of Math.
(2) 45 (1944), 786–792. MR0011173 (6,131d)

[P] Sorin Popa, Some computations of 1-cohomology groups and construction of non-
orbit-equivalent actions, J. Inst. Math. Jussieu 5 (2006), no. 2, 309–332, DOI
10.1017/S1474748006000016. MR2225044 (2007b:37008)

[R] V. Rohlin, A “general” measure-preserving transformation is not mixing, Doklady Akad.
Nauk SSSR (N.S.) 60 (1948), 349–351 (Russian). MR0024503 (9,504d)

[vN] J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. (2)
33 (1932), no. 3, 587–642, DOI 10.2307/1968537 (German). MR1503078

Benjamin Weiss

Institute of Mathematics, Hebrew University of Jerusalem

E-mail address: weiss@math.huji.ac.il

http://www.ams.org/mathscinet-getitem?mr=1314463
http://www.ams.org/mathscinet-getitem?mr=1314463
http://www.ams.org/mathscinet-getitem?mr=2800720
http://www.ams.org/mathscinet-getitem?mr=2800720
http://www.ams.org/mathscinet-getitem?mr=0157368
http://www.ams.org/mathscinet-getitem?mr=0157368
http://www.ams.org/mathscinet-getitem?mr=0074810
http://www.ams.org/mathscinet-getitem?mr=0074810
http://www.ams.org/mathscinet-getitem?mr=0011173
http://www.ams.org/mathscinet-getitem?mr=0011173
http://www.ams.org/mathscinet-getitem?mr=2225044
http://www.ams.org/mathscinet-getitem?mr=2225044
http://www.ams.org/mathscinet-getitem?mr=0024503
http://www.ams.org/mathscinet-getitem?mr=0024503
http://www.ams.org/mathscinet-getitem?mr=1503078

	References

