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The book by Audrey Terras, under review, has the lovely subtitle A stroll through
the garden. 1 will follow its style in strolling through the world of zeta functions,
and begin, like her, with their ancestors from geometry and number theory. Only
later will we arrive at zeta functions of graphs, the main focus of the book.

1. WHAT IS A ZETA FUNCTION?

There has been, throughout mathematics, a wealth of functions masquerading as
“zeta functions”—to the point that Atle Selberg (more on him later) is said to have
called for a Comprehensive Test Ban treaty to halt their further proliferation. We
will attempt, in this section, to determine wherefrom in its pedigree a mathematical
object may honestly claim to be a zeta function.

1.1. Euler. Zeta functions are particular kinds of convergent Dirichlet series (see
below), but they nevertheless predate them. Leonhard Euler (1707-1783) was prob-
ably the first to realize their power. He computed the sum

71-2

14+ 1/44+1/9+ - +1/n*+-- = 5
by doing formal manipulations on the series
C(S):1+2*5+...+n*5+...
and deriving the value ((2). (He actually computed the {(2n) for all n € N, using
Bernoulli numbers; the values at odd numbers are still a mystery.) Using the
uniqueness of prime factorization, he obtained the formula
1
C(S) = —s —s —s —s :
(1=27)1=3)(1=57*)---(1—p=)--
We arrive at the first two properties of zeta functions: 1. They must be a series
which converges at interesting points, with interesting special values; and 2. They
must also admit interesting factorizations as products.

1.2. Dirichlet. A sequence of numbers ay,as,... gives rise to a Dirichlet series
f(s) =>_,>1 ann™*°. This is but a method of encoding the infinitely many numbers
(ay) into a single mathematical object f. If the numbers a,, grow at most poly-
nomially, then f will actually be an analytic function on a half-plane {R(s) > A};
and the abscissa of convergence \ is related to the growth of the sequence in that
a; +---+a, 3 n*. Much finer asymptotic information on the sequence (e.g., in
the form of an approximation a, oc n®(logn)?) can be obtained by finer analytic
properties of f. This goes under the headline of Abelian and Tauberian theorems.

Gustav Lejeune Dirichlet (1805-1859) did much more than get his name at-
tributed to a general form of formal series; he considered expressions of the form
Y ns1 x(n)n~* for a multiplicative character x of Z/NZ. Such expressions are
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called L-functions. They are used, e.g., to deduce the infinity of primes in arith-
metic progressions.

1.3. Riemann. The analytical aspects of ((s) were further studied by Bernhard
Riemann (1826-1866). He showed in 1859 that Euler’s function ((s) fulfills the
functional equation

C(s) = 2°7° Lsin(ws/2)T(1 — 5)¢C(1 — s),

which allows ((s) to be analytically continued beyond its domain of convergence
{R(s) > 1}. Furthermore, he noted that if the zeroes of ((s) were located on the
line {R(s) = 1/2}, this would explain the apparent randomness of primes: the fact
that they behave very much as if the probability that n is prime were of the order
1/logn, and they were independent of the probabilities that other numbers were
prime. We see here two more features of zeta functions: 3. They should admit a
functional equation; and 4. They should admit an analytic continuation which tells
us something about the original sequence they come from.

The so-called Riemann hypothesis, namely that all zeroes of ((s) are on the line
{R(s) = 1/2}, is one of the outstanding open problems in mathematics.

1.4. Dedekind. Richard Dedekind (1831-1916) generalized the now-called Rie-
mann zeta function ¢(s) to a wider range of algebraic structures. If K is a number
field (a finite-dimensional field extension of Q) and O is its ring of integers (elements
of K that are roots of monic polynomials over Z), one defines

(1) Ge(s) = 3 #(0/a) ™

a0
the sum ranges over all nonzero ideals in O. Thus (g is the original zeta function.
The quantity #(O/a) is known as the norm of the ideal a.

Extending previous considerations by Dirichlet, Dedekind noted that the nature
of (k(s) about its pole at s = 1 encodes important algebraic properties of K; for
example, the class number formula expresses the residue of (x(s) at s = 1 as
2" (2m)"2hg Rg /wg /| Dk| in terms of numbers of real and complex imbeddings,
class number, regulator, number of roots of unity, and discriminant, respectively.

1.5. Artin, Hasse, Weil. In 1924, Emil Artin (1898-1962) extended Dedekind’s
definition to fields K of positive characteristic such as F,(z) and its finite extensions.
Such a field admits as “integers” the subring O of zeroes of monic polynomials over
F,[z]; ideals again have finite index, so one may form the zeta function of K as

in ().

As an example, Artin considered K = F,(z)[y]/(y? — 2® 4+ ). He noted that (x
encodes the number of points on the elliptic curve & : y?> = 2 — z in characteristic
p; more precisely, for a power ¢ = p¥ of p, we write

Ny =#E(Fy) = #{(x:y:2) € P*(F,): v’z = 2° — 22°}
=1+#{(z,y) €Fg: y* =a° —}

and

pfks
) Gols)=exp [ N
k>1
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then
Ck(s) = (1 =p~*)Ce(s).

Based on Artin’s computations, Helmut Hasse (1898-1979) viewed the zeta func-
tion of the curve as the fundamental object of study, by means of which the curve
could be grasped. He proved that (g(s) is a degree-2 rational function of p~* and
that, in analogue to the Riemann hypothesis, its zeroes lie on the axis {R(s) = 1/2}:

1—(p+1-Np)p~*+p'=
Cg(s) = — 1= .
(1=p=)A=p'~?)

André Weil (1906-1998) deduced then, during the Second World War, a general
expression for the zeta function counting points on a curve of higher genus; it is
still a rational function of p~°, and its degree is twice the genus of the curve. This
gives the concrete following estimate: on a projective curve of genus g over the field
F,, there are between ¢ + 1 — 2g,/q and q + 1 + 2g,/q points.

The Weil conjectures make analogous claims for all projective algebraic varieties:
let 2" be an n-dimensional, nonsingular algebraic variety over F,. Define N, and
(9 as above, then the conjectures claim in particular a factorization

Pi(q %) Pap_1(q*®
(ot = LT
Po(q=*)Pan(q™)
with Py (T) a polynomial over Z whose zeroes have absolute value ¢"/2, so that the

zeroes (g (s) lie on vertical lines {f(s) € {i/2,...,n — 1/2}}. There is a functional
equation

Cor(n—s) = £¢5 =X F( o (s).

Moreover, the polynomial Py has a cohomological interpretation as the character-
istic polynomial of the action of the Frobenius endomorphism @ : (x1,...,zx) —
(z9,...,2%) on the [f-adic] cohomology of 27; and if 2" is a “good reduction mod
p” of a nonsingular projective variety ¢  defined over a number field, then the de-
gree of Py is also the dimension of H*(#'(C),Z). In particular, Py = 1 — T and
Py, =1—¢g"T.

The conjectures were eventually proven by Deligne in 1973, following work of
Grothendieck.

1.6. Borevich, Shafarevich, Igusa. The field F,, is the base of the tower of fields
F,x. It is also the base of the tower of rings Z/p*Z. The first tower leads to the
ring of power series in [F,, and to rational functions [F,,(z), while the second tower
leads to the p-adic ring Z, and to Q.

Let f(x1,...,2,) be a polynomial with integral coefficients, and define

No(f) =#{(z1,...,2n) € (Z/qZ)": f(z1,...,2,) =0 (mod q)}.

Zenon Borevich (1922-1995) and Igor Shafarevich (1923- ) proposed to encode this
information in a local zeta function; using the variable T' = p~°, they wrote

Cra(T) =D Ny (N)TF
k>1
and conjectured that it is a rational function of 7. This was proven by Jun-
Ichi Tgusa (1924- ), using Hironaka’s resolution of singularities. He conjectured,
additionally, a striking relationship between the hypersurface {f = 0} over Z, and
C: roughly said, if « is a pole of (yp, then exp(2miR(a)) is an eigenvalue of the
monodromy around a singularity of the complex hypersurface {f = 0}.
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1.7. Lefschetz, Artin (2), Mazur, Ruelle. The zeta function (2] and its coho-
mological interpretation may be viewed as dynamical statements. Consider now a
topological space £, and a continuous self-map f : 2" — % . Solomon Lefschetz
(1884-1972) considered in 1926 the invariant

A(f) = (1) * trace(f.|Hp(2,Q))

k>0

as an algebraic refinement to the set of fixed points of f: it may be expressed as a
sum, over the fixed points of f, of local indices. It gives rise to the Lefschetz zeta
function

Tk
(3) CH(IT) =exp | YA

k>1

Michael Artin (1934-, son of Emil Artin) and Barry Mazur (1937- ), on the other
hand, considered the zeta function counting fixed points

k
GM(T) =exp | Y #{ze 2 fk(;g)::g}%

k>1

Both are special cases of a zeta function due to David Ruelle (1935- ), which takes
as ingredient a matrix-valued function ¢ on £, and is defined as

k—1 k
(o) =exp > Y trace ( 11 ¢(fk(x))) T?

k>1lzeZ: frk(z)=z Jj=0

The number-theoretical zeta functions of the previous subsection are related
to the dynamical ones by the following simple observation: if 2 be an algebraic
variety defined over F,, then the points over F,x are the fixed points of ok with
® the Frobenius endomorphism of Z°. Thus, the Weil conjectures translate to
a statement about the singularities of 2 and the local indices of the Frobenius
endomorphism.

1.8. Selberg, Ihara. Consider now 2 a Riemannian manifold. Call a closed
geodesic on 2" primitive if it is not a proper power; parameterizing the geodesic
with unit speed as 7 : [0, L] — 27, this means that there is no k& > 1 with 7|[07%] =
cee= 7|[W’L]. Atle Selberg (1917-2007) considered the zeta function

Co(s)="JI TI (1—exp(—(s+ k)length(7))),

7 primitive k>0

and expressed it in terms of the Laplace operator on 2 —viewing closed geodesics
as periodic points of the geodesic flow on 2.

He studied it in particular in the case when 2 is a Riemann orbisurface H? /T,
for a discrete subgroup T' of PSLy(R), such as PSLy(Z). A primitive geodesic on
Z vyields a hyperbolic transformation of H? of which it is the axis; the length of
the geodesic 7 is the translation length of the corresponding v € T'; if 7% be the
eigenvalues of 7, then exp(length(¥)) = |7|?> =: N (7). The element + is only defined
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up to conjugation and is primitive in the sense that it generates its own centralizer;

thus
Car(s) = H H (1-N(y)~*7").
~T primitive conjugacy class k>0

Selberg showed, in the case 2~ = H?/PSLy(Z), that whenever the Riemann zeta
function has a zero at s, there is a corresponding zero of (2 at s/2.

Yasutaka Thara (1938— ) studied the p-adic analogue of these Riemann surfaces.
Consider a finite extension K of either Q, or F,((z)), its ring of integers O, the
group G = PGL3(K), the upper half-plane

(4) H =G/ PGLy(0),

and a torsion-free discrete subgroup I' of G. For v € I" with eigenvalues 1, 7o put
N(v) = | ord(71/72)]|, the valuation of the quotient of the eigenvalues. Thara defined

then
o (T) = II (1-TN0)™
~I' primitive conjugacy class
He noted that it was, in idea, an adaptation of Selberg’s zeta function to the p-adic
and positive-characteristic cases and, in form, a parent of Dedekind’s congruence
zeta functions, in which primitive conjugacy classes play the role of primes.

He also showed how (r can effectively be computed. Let ¢ denote the order of
the residue field O/M for the maximal ideal M of O, and set h = #(I'\H). Let
x1,...,2p € G be a set of double coset representatives, let G be the subgroup of G
consisting of scalar multiples of matrices v = (%) with a,b,¢,d € O, (a,b,¢,d) =
O, and let ord(ad — bc) = 1. Construct then the & x h matrix A = (a;;) by

Qi = #(l‘i—lall‘j n F),

and note that A = (¢+ 1) ® Ap for a (h — 1) x (h — 1) matrix Ao.
Set g = (¢ —1)h/2 + 1. Then T is isomorphic to the free group of rank g, and

r(T) =1 -=T)1—qT)(1 = T*9  det(1 — AgT + ¢T?)~ L.

1.9. Grunewald, Segal, Witten. An altogether different class of zeta functions
were considered by Fritz Grunewald (1949-2010) and Dan Segal (1947 ). Let I'
be a group, and define
Go(s) = S0 H]
H<T

with the sum ranging over finite-index subgroups of I'. In particular, if I' = Z, one
recovers the Riemann zeta function ((s). For example, a simple calculation using
partitions gives (za(s) = ((s)---((s+ d —1). These functions have been studied
more deeply for I' nilpotent; indeed, every finite-index nilpotent subgroup is in a
unique manner an intersection of prime-power-index subgroups, from which one
gets (r(s) =[], prime Cr.p(8) for “local factors” (r ,(s) counting subgroups of index
a power of p.

One may then hope, in analogy with the number-theoretical results, that (r ,(s)
be a rational function of p~*. This is true, e.g., for free nilpotent groups of ar-
bitrary rank and class. Better, Grunewald and du Sautoy conjecture that the
Cr,p behave “uniformly” with respect to p, in that there is a rational function
F(X,Y) € Q(X,Y) such that ¢p,(s) = F(p,p~*) holds for almost all p. This is
still open in general, but is known to hold if either the rank or the class is at most
2.
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These local factors are also known, in some cases, to satisfy functional equa-
tions. For example, let " be the free 3-generated class-2 nilpotent group, and write
(rp(s) = F(p,p*) as above. Then F(p~!,p=%) = —p!5=6F(p,p~°).

It seems, however, that the counting problems on nilpotent groups are in general
not quite as well behaved as those in algebraic varieties over finite fields. Here is
a hint to a link: consider the “normal subgroup” zeta function Cf{p(s) counting
normal subgroups of p-power index in I, for I' the class-2 nilpotent group

Y1,Y2,Y3 [$1>y2] =2 [3?373/2] = Zz3

r1,T2,T3 [$1,y1} =23 [$2,y1] =22 [x37y1] =21
I'= ,
21,22, 23 [96172/3} = Z2 [$27y3] =2z1

all other commutators being trivial. Then the elliptic curve & : y? = 23 — z makes

a surprising reappearance: there exist polynomials Py, P, € Q(X,Y’) such that, for
almost all primes p,

G p(s) = Pi(p,p™*) + #E(Fp) Pa(p,p ).

The zeta function (r(s) counts finite-index subgroups or, equivalently, transi-
tive actions on finite sets. Edward Witten (1951- ) considered the corresponding
counting problem for linear representations. For a group G, he set

(a(s) = > (dim V) ~*.

p:G—GL(V) irreducible

For the classical group G = SLy(C), one recovers the Riemann zeta function. Alex
Lubotzky (1956 ) considered (s for lattices G in semisimple Lie groups, and derived
functional equations as well as a description of the abscissa of convergence in terms
of fundamental parameters of the ambient Lie group.

2. ZETA FUNCTIONS OF GRAPHS

Jean-Pierre Serre (1926— ) remarked that Thara’s zeta function from §I.8 may be
interpreted purely in terms of graphs. Indeed, the homogeneous space H from ()
is a (¢ + 1)-regular tree, which can be constructed as follows. Recall some notation
from I8 we have G = PGL2(K), U = PGL2(0O), and note [G; : U] = ¢+ 1.
Choose left coset representatives m,...,m; € G such as, if M = 7O, the matrices
(79) and (} %) for representatives x of O/.#. Finally, connect in H the vertices
~U and vUr; by an edge, for all yU € H and all 7 € {0,...,q}.

The group G then acts on the tree H by graph isometries, with U the stabilizer
of a vertex and G the stabilizer of an edge. The quotient I'\G is then a finite
graph, and the matrix A = (a;;) is its adjacency matrix.

We then arrive at a purely graph-theoretical definition of the Thara zeta function:
Let ¢ be a graph, consisting of vertices and edges. A cycle is a cyclically ordered
sequence of oriented edges such that no edge backtracks on its predecessor; a closed
path is a cycle with a marked starting point. More formally, one has ¥4 = (V| E),
two sets of vertices, and oriented edges, respectively, and maps E > e — et € V,
E>erse” €V and E 3 e €€ E satisfying € = ¢ and €7 = ¢~. Then a cycle
is a sequence v = (e, €1,...,e, = €g) considered up to cyclic permutation, with
e;r =e;,, and & # e;11. The cycle’s length is |y| = n. It is primitive if it is not a
proper power of a cycle, that is, there does not exist a subcycle (e, ..., e, = €p)



BOOK REVIEWS 183

with m|n and e, 4, = ey for all j € {0,...,m/n}, k € {0,...,m}. The Ihara zeta
function is

(5) o= [ a-1hh

~ primitive cycle

Following Serre’s observation, the zeta function of the discrete subgroup I is
then nothing but the Thara zeta function of the graph I'\G/U.

In fact, Ruelle’s zeta function from Section .7 may also, sometimes, be expressed
in terms of graphs. For instance, let ¥ be a finite set, and let F' C ¥* be a finite
set of “forbidden” words. The subshift of finite type is the dynamical system

A ={o € %% no word in F occurs as a subword of o},

on which Z acts naturally by the shift map. Assume without loss of generality that
no words of F' are proper subwords of one another. Construct the graph whose
vertex set V' is the set of all proper prefixes of words in F'; and put for all o; € X
an edge from oy ...0, to 02...0,0,41 labeled 0,11 whenever both belong to V.
Then A is in bijection with biinfinite paths in this graph, and periodic orbits of
period n under the shift map are in bijection with cycles of length n (there is no
notion of backtracking). A formal manipulation with exponentials and logarithms
shows that Ruelle’s zeta function is then exactly as in formula (B).

For now, there is just one graph zeta function that we may compute readily:
that of the n-gon graph %,, which has two primitive cycles of length n, whence
(z,(T) = (1 —T™)~2. Graphs with more than one cycle contain infinitely many
primitive cycles, and it is not even clear that (B converges anywhere—our first
requirement for a function to be called a zeta function.

There are two remarkable determinantal formulas that show for any finite graph
¢ that (« is the inverse of a polynomial. Consider first the two E x E matrices B
and J called, respectively, edge adjacency and inversion matrices, defined by

Be,f:{l if et = £, Je,fz{l ife = f,

0 otherwise, 0 otherwise.

Consider next the two V x V matrices A and D called, respectively, vertex adjacency
and wvalency matrices, defined by

Apw=#{e € E:e” =v and et = w},
_ {#{eeE: e~ =v} fT=w,

o otherwise.

VW

Then one has the following identities, due to Hyman Bass (1932- ) and Ki-ichiro
Hashimoto (1950- ):

o il det(1 — (B — J)T)

= (1 = TH)#E=#V det(1 — AT + (D — 1)T?).

For example, the graph zeta function of the complete graph J#; is

1
Cta(T) = (1—T22(1 =T)(1 = 2T)(1 + T + 2T2)3

Note that the exponent #F — #V is the Euler characteristic of ¢.
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2.1. Functional equation. Let us move to our second criterion—a functional
equation. Nothing should be expected from general graphs, but regular graphs
do satisfy such a functional equation. Let ¢ be a graph in which every vertex has
valency ¢ + 1. Then

T2 HE—#V
) (T)*Y o (T),

1—
1/qT) = | *T? ——=
otiam) = (2T
as follows from a simple manipulation of (). Note that there is no issue of analytic
continuation, since (¢ is a rational function.

2.2. The Riemann hypothesis? There cannot be, strictly speaking, any equiv-
alent of the Riemann hypothesis, because (» has no finite zeroes. However, the
location of the poles of (¢ has a particular meaning.

The spectrum of a graph is the multiset of eigenvalues of its adjacency matrix
A. If the graph ¢ is (¢ + 1)-regular, then ¢ + 1 is an eigenvalue of A, correspond-
ing to the constant eigenvector on V. If ¢ is bipartite, then —(q + 1) is also an
eigenvalue. If ¢4 is connected, then these are the unique largest eigenvalues. The
Alon—Boppana theorem asserts that, as #V increases, all the other eigenvalues tend
to be constrained in [-2,/q,2,/q]. A (¢ + 1)-regular graph ¢ is called Ramanujan
if all its eigenvalues lie in this interval, except possibly £(g + 1). It is so-called be-
cause the first infinite family of examples (due to Lubotzky, Phillips, and Sarnak)
was constructed using the Ramanujan Conjecture on coefficients of the Dedekind
n-function—which by the way follows from the Weil conjectures. Their graphs are
Cayley graphs of PSLy(FF,) for appropriate generating sets.

Now, again using (@), we see that the spectrum of A is intimately connected to
the poles of (v, and in fact 4 is Ramanujan if and only if the poles of (¢ (¢™*)
occur only on {f(s) = /2} and at {0,1}.

2.3. Special values. The pole of {¢(T') at T' = 1 has a special significance. At
least if ¢ is connected and nonbipartite, the order of the pole is precisely #FE — #V,
and the corresponding coefficient

-1
(1) K(¥)=-— (Tli)r?_(#E — H#V)2#EH#VEL( T)#E_#V+1(g(T)) ,

called the complexity of ¢, is the number of maximal subtrees of ¥.

2.4. Infinite graphs. Simple power series manipulations let one rewrite (¢ (7T) in
a form closer to (3):

(8) Ga(T) = exp | Y- T

k>1

with ¢ equal to the number of closed paths without backtracking (even between the
beginning and the end). If furthermore the graph ¢ is admits a vertex-transitive
group of automorphisms, then there are as many closed paths starting from each
vertex, and so ¢ is divisible by #V. Fix a vertex * € V. Then the perhaps more
familiar power series >, <, (ck/#V)T*, with ¢ = #V, counts the number of loops
without backtracking based at x, and is sometimes known as the Green function
for the backtracking-free random walk on ¥.
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Serre considered sequences of finite graphs (¥,,), and called such a sequence
equidistributed if the spectrum of 4, viewed as an atomic measure on [—(g + 1),
(g + 1)], converges weakly. He showed that this happens if and only if the power
series (g, (T)/#V» converges in R[[T)], and equivalently if and only if the coefficients
c1(9,)/#V,, converge for every k > 0.

If 4 is an infinite graph with basepoint * and with vertex-transitive automor-
phism group, or more generally a graph that looks “sufficiently the same” about
every vertex, then the coefficients ¢y /#V still make sense, as the number of loops
based at * of length k and without backtracking. Therefore, the expression

T\Y/#V — Ck Tk
Gz (T) exp /;#Vk

makes sense and defines the normalized zeta function of the infinite graph ¢. If there
be an exhaustion of ¢ by finite subgraphs ¥,, whose boundary in ¢ is asymptotically
vanishing with respect to their number of vertices, then the functions (g, (T)Y/#V»
converge to (o (T)YV/#V.

3. GRAPHS AND ALGEBRAIC OBJECTS

In this brief review, we have not covered more of the exciting topics linking
graph theory with other parts of mathematics; in particular, random matrices,
various notions of chaos, and deeper analogies such as, for instance, the Picard
group of a graph; this extends the numerical connection between the complexity
k(%) of a graph (see () with the class number of a number field, in the form of a
Riemann—Roch theorem for graphs.

Another strand that we have not followed is the generalization of the zeta func-
tions to L-functions. In the case of a number field, one weighs the zeta function
with respect to an additive character on the ring of integers; in the case of a Rie-
mann surface, or of a graph, one considers a cover and a representation of its deck
transformation group, and weighs closed geodesics in the base according to the
trace of their monodromy action on the cover.

The book by Audrey Terras presents the reader with a delightful stroll through
a wealth of diverse mathematical topics. The text’s numerous illustrations and
colour graphics provide the reader with welcome distractions. In contrast with this
survey, the book focuses mainly on zeta functions of graphs, and almost half of the
book is devoted to the study of finite graph coverings and the relations they entail
on respective zeta and L-functions.

One generally thinks of algebraic number theory as living in a very pure and
abstract universe, in high contrast with the more murky world of combinatorics.
The various links we exhibited testify on the contrary to the unity of mathematics.

LAURENT BARTHOLDI
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