
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
S 0273-0979(2013)01433-2
Article electronically published on September 18, 2013

HOW MANY RATIONAL POINTS

DOES A RANDOM CURVE HAVE?

WEI HO

Abstract. A large part of modern arithmetic geometry is dedicated to or
motivated by the study of rational points on varieties. For an elliptic curve
over Q, the set of rational points forms a finitely generated abelian group. The
ranks of these groups, when ranging over all elliptic curves, are conjectured
to be evenly distributed between rank 0 and rank 1, with higher ranks being
negligible. We will describe these conjectures and discuss some results on
bounds for average rank, highlighting recent work of Bhargava and Shankar.

1. Introduction

The past decade has seen a resurgence of classical techniques such as invariant
theory and Minkowski’s geometry of numbers applied to problems in number theory.
In particular, the newly coined phrase arithmetic invariant theory loosely refers
to studying the orbits of representations of groups over rings or nonalgebraically
closed fields, especially the integers Z or the rational numbers Q. Combining such
ideas with improved geometry-of-numbers methods has proved fruitful for some
questions in arithmetic statistics (another neologism!), the subject of which con-
cerns the distribution of arithmetic quantities in families.

Perhaps the earliest example of this phenomenon is well known to many number
theorists: using Gauss’s study of the relationship between equivalence classes of
binary quadratic forms and ideal classes for quadratic rings [Gau01], Mertens and
Siegel determined the asymptotic behavior of ideal class groups for quadratic fields
[Mer74, Sie44]. In other words, Gauss found an arithmetic interpretation for the
orbits of the group GL2(Z) acting on the space Sym2(Z2) of integer binary quadratic
forms. Then Mertens’s and Siegel’s results use the geometry of numbers to “count”
those orbits, thereby counting the arithmetic objects parametrized.

Obtaining similar results for binary cubic forms took many more years. Delone
and Faddeev found that equivalence classes of integer binary cubic forms are in
correspondence with isomorphism classes of cubic rings [DF64], and then Davenport
and Heilbronn used the geometry of numbers to compute asymptotics for cubic
rings and for cubic fields [DH69]. For example, they proved that the number of
isomorphism classes of cubic fields with discriminant between −X and X is

1

3ζ(3)
X + o(X),

where ζ(s) is the Riemann zeta function. Since class field theory relates certain
cubic fields with 3-torsion ideal classes of quadratic fields, Davenport and Heilbronn
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also applied a sieve to obtain the average size of the 3-part of the ideal class group
of quadratic fields. In fact, for many years, this was the only proved case of the
Cohen–Lenstra heuristics for how ideal class groups are distributed [CL84].

The next major step in arithmetic invariant theory was the program started
by Wright and Yukie, who showed that for many representations with a simple
invariant-theoretic property, the orbits over a field correspond to field extensions
[WY92,KY97,Yuk97]. Their approach to the resulting statistical questions was to
study properties of these representations’ zeta functions, as defined by Sato and
Shintani [SS74]. While asymptotic results related to some of the representations
have been successfully obtained by this method (see, e.g., [DW88, KY02, Tan08,
TT11]), these zeta functions are quite complicated and difficult to analyze in general
[Yuk93].

More recently, Bhargava has made vast progress on both sides of this picture,
first with a series of papers [Bha04a,Bha04b,Bha04c,Bha08] that gave many more
examples of parametrizations by integer orbits of representations, including those
from Wright and Yukie’s work. He also improved the geometry-of-numbers tech-
niques in order to obtain asymptotics for quartic and quintic rings, as well as
another case of the (generalized) Cohen–Lenstra heuristics [Bha05,Bha10]. These
results have even led to surprising corollaries, such as the fact that quartic fields
whose Galois group is the dihedral group D4 make up a positive proportion of all
quartic fields when ordered by discriminant.1

The heart of this article describes how this strategy—of combining arithmetic
invariant theory and the geometry of numbers to study statistical questions—is
successfully applied by Bhargava and Shankar in [BS10a] to the case of binary
quartic forms, leading to results about the distribution of ranks of elliptic curves.

We start, in Section 2, with background material about rational points on curves,
especially elliptic curves; this section may be safely skipped by experts, of course.
Section 3 discusses precise conjectures related to the distribution of ranks of elliptic
curves; for someone not familiar with arithmetic statistics, this section should give
a flavor of some types of questions asked—as well as the complications that arise—
in the subject. The nucleus of the article is Section 4, where we sketch the main
ideas behind the theorems of Bhargava and Shankar from [BS10a]. Finally, Section
5 explains other related developments from the last few years, including interesting
corollaries and generalizations, e.g., to higher genus curves.

2. Rational points on varieties

Finding solutions to polynomial equations is one of the oldest problems in math-
ematics. Over the last few centuries, mathematicians have formalized the questions
and established rigorous language to discuss different variations of this simple idea.
While we have made tremendous strides in understanding the structure of these
solutions in the last few decades, there remain many fundamental open questions,
which lie at the forefront of modern arithmetic geometry.

For the simplest case, let f(x1, . . . , xn) be a polynomial with coefficients in Q.
We may ask for rational solutions to f = 0, i.e., numbers a1, . . . , an ∈ Q such
that f(a1, . . . , an) = 0. To phrase the question more geometrically, let X be the

1In contrast, when ordering algebraic numbers of degree 4 by the size of the coefficients of
the monic minimal polynomials, Hilbert’s irreducibility theorem implies that those that generate
fields with Galois group S4 have density 1.
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variety associated to f , which may be viewed geometrically as the zero locus of
f , or solutions to f = 0, in Cn. Then X will be (n − 1)-dimensional, if f is not
a constant. Our problem may be restated as finding rational points on X, the
set of which is denoted X(Q). More specifically, we may ask questions such as the
following:

• Does there exist a single rational point on X?
• Can we describe all rational points on X?
• If there are only finitely many rational points, can we enumerate them?
• If X(Q) is an infinite set, what structure does X(Q) have?

If we instead use any finite number of polynomials f1, . . . , fm ∈ Q[x1, . . . , xn],
we define the analogous variety X to be the common zero locus in Cn of all of the
polynomials fi. For general choices of fi, the dimension of X will be n − m, if
nonnegative, and 0 otherwise; the rule of thumb is that each polynomial condition
imposed should reduce the dimension of X by 1.

Remark 2.1. While we restrict our attention to varieties defined over Q, i.e., defined
by polynomials with coefficients in Q, many of the results that we will discuss have
analogues over other number fields.

Even when X is one-dimensional, mathematicians have not yet fully understood
how many rational points are on X! In this article, we focus on this case, where X
is a curve.

2.1. Genus and the trichotomy. The arithmetic and the geometry of algebraic
curves rely heavily on an invariant called the genus. The genus of a curve may be
defined in many ways, but the most intuitive definition is topological. A smooth
curve X as defined above may be thought of as a Riemann surface2 with finitely
many punctures; after taking an appropriate compactification by filling these punc-
tures, the resulting compact Riemann surface has a topological genus, which is
essentially the number of “holes” or “handles”. For example, a complex curve that
is homeomorphic to a sphere (after compactification) has genus 0, while a genus 1
curve looks like the surface of a donut (see Figure 1).

For simplicity, we assume in the sequel that our curves X are compact,3 have no
singularities,4 and are connected.

Figure 1. From left to right: curves of genus 0, 1, and 2.

2The complex points of a smooth curve form a two-dimensional real manifold.
3In other words, we always implicitly work with projective curves.
4Intuitively, a singularity on a curve is a point where it is not smooth, like a node or a cusp.

More precisely, it is a point with more than one tangent direction along the curve.



4 WEI HO

Table 1

genus 0 genus 1 genus ≥ 2

curvature positive zero negative
canonical bundle anti-ample trivial ample
Kodaira dimension κ = −∞ κ = 0 κ = 1
automorphism group 3-dimensional 1-dimensional finite

rational points Hasse principle finitely generated finitely many

Many properties of curves are heavily influenced by whether a curve has genus
0, genus 1, or genus ≥ 2. Table 1 gives a glimpse of how this trichotomy ap-
pears in different areas of mathematics, e.g., ranging from differential geometry to
arithmetic.

We will now discuss the last row of this table in more detail.

Curves of genus 0. For genus 0 curves, there are either no rational points at all or
infinitely many. It is fairly easy to determine which case applies to any given curve
by the Hasse principle or local-to-global principle: a genus 0 curve X has a
rational point if and only if it has a point everywhere locally, which means that
the equations defining X have a solution over the real numbers R and the p-adic
numbers Qp for all primes p. The nonexistence of a Qp-point is always due to an
obstruction modulo a power of the prime p.

Example 2.2. Let X be the curve given by the vanishing of the polynomial f =
x2 + y2 − 3. If there exists a rational solution to f = 0, by clearing denominators,
there are relatively prime integers r, s, and t such that r2 + s2 = 3t2. Because
squares of integers are congruent to 0 or 1 modulo 4, reducing the equation modulo
4 shows that r2 and s2 are both congruent to 0 modulo 4. This in turn implies
that all three integers are even, which is a contradiction. Therefore, the equation
f = 0 has an obstruction modulo 4, implying that X has no point over the 2-adic
integers Z2 or even over Q2, and thus no rational point.

In fact, checking for local obstructions may be completed in a finite number of
steps. Any curve of genus 0 over Q is isomorphic to a (compactified) plane conic
defined by the vanishing of a polynomial of the form

(1) ax2 + by2 + c,

where a, b, and c are squarefree, pairwise relatively prime integers. A theorem of
Legendre implies that (1) has a rational solution if and only if a, b, and c do not
all have the same sign, and −ab is a square modulo c, −bc is a square modulo a,
and −ac is a square modulo b.

�1 1

�1

1

P

slope rIf there is a single rational point P on a conic, then
all other rational points come from intersecting the
conic with a line of rational slope through P .

Example 2.3. If X is given by x2 + y2 − 2 = 0, then
by inspection, the point (x, y) = (1, 1) lies on X. All
other points are parametrized by drawing lines of ra-
tional (or infinite) slope r through (1, 1), and a simple
computation shows that X(Q) is the union of the point
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(1,−1) and the points (
r2 − 2r − 1

r2 + 1
,
−r2 − 2r + 1

r2 + 1

)

for all r ∈ Q.

There are also fast algorithms implemented in computer algebra software to find
all solutions (see, e.g., [CR03]).

Curves of genus at least 2. Mordell’s 1922 conjecture [Mor22] predicted that there
could only be finitely many rational points on a curve of genus ≥ 2; it was proved
by Faltings [Fal83] (as a corollary to an even more powerful theorem):

Theorem 2.4 (Faltings 1983). Let X be a curve of genus at least 2 over Q. Then
the set X(Q) of rational points is finite.

The original proof uses deep ideas from the theory of p-divisible groups, Arakelov
theory, and moduli theory, and later proofs and improvements by Vojta [Voj91],
Faltings [Fal91], Bombieri [Bom90], and others use Diophantine approximation
methods. None of the proofs, however, are effective in the sense of giving a list of the
points in X(Q). In practice, a combination of techniques—including Chabauty’s
method, Brauer–Manin obstructions, and descent—often are enough to produce the
points in X(Q). In §5.3, we will outline recent progress on bounding the number
of rational points on curves of genus ≥ 2.

Curves of genus 1. The case of genus 1 curves is the richest arithmetically, the
most complicated, and the most mysterious to this day. A genus 1 curve defined
over Q may have no rational points at all, finitely many, or infinitely many—and it
is generally difficult to determine which! Techniques for other genera, such as the
Hasse principle, no longer apply, e.g., there are plenty of genus 1 curves which have
points everywhere locally but no global rational point.

Genus 1 curves over Q with a given rational point are known as elliptic curves.
Section 2.2 will describe the structure of rational points on elliptic curves in more
detail.

2.2. Rational points on elliptic curves. An elliptic curve over Q is isomorphic
to the projective closure of the zero locus of a Weierstrass equation

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with all ai ∈ Q. When defining a nonsingular curve, equation (2) may be trans-
formed (over Q) into short Weierstrass form

(3) y2 = x3 +Ax+B

for A,B ∈ Q with nonzero discriminant Δ = −16(4A3+27B2); the nonvanishing of
the discriminant ensures that the curve is nonsingular. There is a marked rational
point “at infinity”, which is denoted O. We say that the elliptic curve given by (3)
has height

ht(E) := max(4|A|3, 27B2).

Many such equations define isomorphic elliptic curves. In particular, for t ∈ Q×,
scaling x and y by t−2 and t−3, respectively, in equation (3) gives the new equation

y2 = x3 + t4Ax+ t6B.
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Figure 2. The real points of the elliptic curves y2 = x3 − x + 1
(left) and y2 = x3 − x (right).

In other words, the group Q× acts on the space of all equations of the form (3)
with nonzero discriminant. To choose one representative equation from each Q×-
orbit, we define minimal Weierstrass equations to be those of the form (3), with
A,B ∈ Z and the condition that there is no prime p such that p4 divides A and p6

divides B. Each elliptic curve over Q has a unique minimal Weierstrass model, and
we will call its discriminant the minimal discriminant of the elliptic curve.

For a Weierstrass equation, the solutions lying in a given field have a rich struc-
ture. The complex points of an elliptic curve make up a one-holed torus, as discussed
earlier. The real points are smooth curves in R2 with one or two components; see
Figure 2.

Group Law. A beautiful and incredibly useful fact is that the set of solutions in a
given field forms a group! An even more powerful statement for rational points is
given by a theorem of Mordell [Mor22]:

Theorem 2.5 (Mordell 1922). The set E(Q) of rational points of an elliptic curve
E defined over Q forms a finitely generated abelian group, i.e.,

(4) E(Q) = Zr ⊕ E(Q)tors

for some nonnegative integer r and finite abelian group E(Q)tors.

The group structure on the points of an elliptic curve uses the point O at infinity
as the identity element, and it is most easily described geometrically. For the graph
of an elliptic curve in short Weierstrass form, as seen in Figure 3, the line L through
any two points P1 and P2 will intersect a third point P3 by Bezout’s theorem or
by direct calculation. The vertical line through P3 intersects another point on the
elliptic curve, which is the composition P1 + P2 of P1 and P2.

In other words, the three (not necessarily distinct) intersection points P1, P2,
and P3 of any line L with the elliptic curve sum to the identity in the group law.
The identity point O may be one of these points, e.g., a vertical line intersects O,
a point P , and its negative. Moreover, if P1 and P2 are rational points, then the
line L has rational slope, so P1 + P2 is also a rational point.

For an elliptic curve E over Q, the torsion subgroup E(Q)tors of E(Q) is fairly
well understood, by the following deep theorem of Mazur [Maz77].

Theorem 2.6 (Mazur 1977). For an elliptic curve E defined over Q, the torsion
subgroup E(Q)tors is one of the following groups:

Z/dZ for 1 ≤ d ≤ 10 or d = 12,

Z/2Z× Z/2dZ for 1 ≤ d ≤ 4.
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Figure 3. The group law on an elliptic curve.

By Theorem 2.6 and Hilbert’s irreducibility theorem, almost all5 elliptic curves
have a trivial torsion subgroup. Moreover, there are explicit methods to quickly
compute the torsion subgroup for any given elliptic curve. For example, the rational
2-torsion points of an elliptic curve in short Weierstrass form are determined by
factoring the right-hand side cubic polynomial of (3) over Q.

Example 2.7. The elliptic curve y2 = x(x − 1)(x − 2) has rational 2-torsion
subgroup Z/2Z× Z/2Z, consisting of the points (0, 0), (1, 0), (2, 0), and O (as the
identity). The elliptic curve y2 = x(x2 + x + 1) has only the rational 2-torsion
points (0, 0) and O.

In contrast, the rank of E(Q), denoted r in (4), is much more mysterious! It
is not even known if the rank can be arbitrarily large; the current record (due to
Elkies [Elk07]) is an elliptic curve of rank at least 28. It is quite difficult in general
to rigorously prove that a given elliptic curve has a certain rank, though L-function
computations often give conjectural answers, as we describe very briefly below.

Analytic rank. The L-function L(E, s) of an elliptic curve E over Q is a Dirichlet
series given by an Euler product formula involving the number Np of Fp-points on
the reduction of E over Fp, for all primes p:

L(E, s) :=
∏

good p

1

1− app−s + p1−2s

∏
bad p

1

1− app−s
=

∑
n≥1

ann
−s,

where ap = 1 + p − Np for “good” primes p and ap = −1, 0, or 1 for a finite
set of “bad” primes p. By the work of Wiles and others [Wil95,TW95,BCDT01],
the L-function extends to an entire function on the complex plane, and Λ(E, s) :=
cond(E)s/2(2π)−sΓ(s)L(E, s) satisfies a functional equation

Λ(E, s) = uEΛ(E, 2− s),

where cond(E) is an invariant of E called the conductor. The root number uE

is either +1 or −1.
The order of vanishing of this L-function L(E, s) at s = 1 is the analytic rank

of E. The Birch and Swinnerton-Dyer (BSD) conjecture [BSD63, BSD65] claims
that the analytic rank of E is equal to the rank of E defined earlier. A more

5Here, “almost all” means that the density of curves, as defined in §3.1, with trivial torsion
subgroup is 1, when ordered by height.
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refined version in fact gives a formula for the coefficient of the leading term in the
Taylor expansion at s = 1 in terms of arithmetic invariants of E, including the
Tate–Shafarevich group X(E), which will be discussed in §3.3.

Thus, assuming the BSD, one may study the rank of an elliptic curve by under-
standing its analytic rank, e.g., by computing the apparent order of vanishing of
L(E, s) at s = 1.

3. Ranks of elliptic curves

Most of the remainder of this article is devoted to conjectures and results on
the distribution of ranks for elliptic curves. In other words, if we choose a random
elliptic curve, what do we expect its rank to be?

3.1. Densities and averages. In order to formulate our question rigorously, we
need to specify what is meant by “random” in this setting. We first need an ordering
for the (infinite) set of elliptic curves, usually by some sort of invariant; possibilities
include ordering elliptic curves up to isomorphism by conductor or by minimal
discriminant, or ordering short Weierstrass equations by height or discriminant.

In all these cases, there are only finitely many objects (elliptic curves up to
isomorphism or short Weierstrass equations with integral coefficients, for example)
with the absolute value of that invariant bounded by any positive number X. When
the invariant is the discriminant or the conductor, this finiteness is due to Siegel’s
classical theorem on the finiteness of S-integral points on elliptic curves [Sie66]. We
may thus define quotients like the following:

P(invariant, X, rk = i) :=
# {elliptic curves E with invariant ≤ X and rank i}

# {elliptic curves E with invariant ≤ X} ,

where the invariant could be the conductor, absolute value of the discriminant, or
the height, for example. Then we might ask whether this quantity converges as X
tends to infinity, and if so, we may consider the limit

P(invariant, rk = i) := lim
X→∞

P(invariant, X, rk(E) = i)

as the density of elliptic curves, ordered by that invariant, with rank i (or equiva-
lently, the probability an elliptic curve has rank i). We may define a lower density
or upper density by instead using lim inf or lim sup, respectively.

We then define the average rank for elliptic curves, ordered by an invariant, as

lim
X→∞

∑
i≥0

i · P(invariant, X, rk = i) = lim
X→∞

∑
invariant(E)≤X

rk(E)

∑
invariant(E)≤X

1

if this limit exists. Again, a lower average or an upper average is defined using
lim inf or lim sup, respectively; we will sometimes call these the lim sup and the
lim inf of the average rank.

We may also define averages or higher moments for distributions of other quan-
tities associated to elliptic curves in an analogous way.
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3.2. The Minimalist Conjecture. The basic conjecture for the distribution of
ranks of elliptic curves is based on the philosophy that elliptic curves should not
have any more points than they must.

The widely believed Parity Conjecture, which is a consequence of a weak form
of the BSD, asserts that the parity of the rank of an elliptic curve is equal to
the parity of the analytic rank, which is even exactly when uE = +1. It is also
strongly expected that the root numbers uE have probability 1/2 of being +1, and
probability 1/2 of being −1. We are therefore led to the following:

Minimalist Conjecture. The densities of elliptic curves having rank 0 and having
rank 1 are both exactly 1/2.

Although no ordering is specified in the statement above, it is conjectured for any
reasonable ordering, such as the examples given in §3.1. Note that the Minimalist
Conjecture implies that the density of rank i elliptic curves, for i ≥ 2, is 0.

The first version of the conjecture was stated in the 1979 work of Goldfeld [Gol79]
for quadratic twist families of elliptic curves. Given an elliptic curve E in short
Weierstrass form (3), define its quadratic twist Ed by a nonzero squarefree integer
d as the elliptic curve y2 = x3 + d2Ax + d3B. Then Goldfeld’s conjecture [Gol79]
asserts that for a fixed elliptic curve E, the average rank of the elliptic curves Ed

is 1/2, when ordered by |d|, that is,

lim
X→∞

∑
|d|≤X rk(Ed)∑

|d|≤X 1
=

1

2
,

where the sums are over nonzero squarefree integers d. Much work has been done
towards this conjecture for quadratic twist families; see Silverberg’s survey [Sil07].

The Minimalist Conjecture for all elliptic curves and for quadratic twist families
is also supported by the philosophy of Katz and Sarnak [KS99] and later random
matrix theory computations and heuristics of Keating and Snaith [KS00], Conrey,
Keating, Rubinstein, and Snaith [CKRS02], Watkins [Wat08], and others. See
[BMSW07,Poo12] for excellent surveys of many aspects of this conjecture.

At various points since Goldfeld’s work, the conjecture has been disbelieved,
mostly because computations have not seemed to support it. For example, in
[KS99], the data of Kramarz and Zagier [ZK87] (extended later by Watkins [Wat07])
for a special family of elliptic curves is noted to have a large number of higher rank
elliptic curves, with the suggestion that computational capabilities were not yet
powerful enough to reflect the true distribution.

The more general computations for the family of all elliptic curves ordered by
conductor, by Brumer and McGuinness [BM90], Stein and Watkins [SW02], Cre-
mona [Cre06], and Bektemirov, Mazur, Stein, and Watkins [BMSW07], also display
a surprisingly large percentage of higher rank elliptic curves. As a result, their data
imply asymptotics for average ranks that appear significantly higher than 1/2; see
Figure 4. It has been suggested that when restricted to these computational ranges,
the data shows the strong effects of secondary terms for the asymptotic number of
curves of given rank up to conductor X.

Theoretical work on this conjecture is perhaps more optimistic. Brumer [Bru92]
showed that, assuming the generalized Riemann hypothesis (GRH), the lim sup of
the average analytic rank of all elliptic curves ordered by height is bounded above by
2.3. Thus, also assuming the BSD, Brumer’s result implies that the lim sup of the
average rank is bounded above by 2.3. This bound was improved by Heath-Brown
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Figure 4. Average rank of elliptic curves in the Stein–Watkins
database, up to conductor e18. Data and graph by Bektemirov,
Mazur, Stein, and Watkins [BMSW07].

[HB04] to 2, and then by Young [You06] to 25/14, still assuming the BSD and
the GRH. Young’s bound was the first theoretical result implying that a positive
proportion of elliptic curves have rank 0 or 1, assuming the BSD and the GRH.

Finally, the recent work of Bhargava and Shankar [BS10a] gives an unconditional
upper bound:

Theorem 3.1 (Bhargava and Shankar 2010). The lim sup of the average rank of
elliptic curves over Q, ordered by height, is bounded above by 3/2.

They consider elliptic curves in short Weierstrass form with integral coefficients,
and the theorem holds both for all such Weierstrass equations and for only minimal
ones. Much of the remainder of this article will focus on this theorem, as well as
generalizations and corollaries; see also Poonen’s Bourbaki exposé [Poo12] for an
excellent detailed exposition of [BS10a].

3.3. Selmer groups. Studying the Selmer group of an elliptic curve is one of
the only currently known methods to establish an upper bound on its rank. This
method is used for both computations for individual curves (e.g., Cremona’s mwrank
program [Cre12]) and results for all curves together (as in Theorem 3.1).

The utility of Selmer groups comes from two facts: first, they are finite and often
computable; and second, the size of the Selmer group of an elliptic curve gives
an upper bound for its rank. More precisely, for a prime p, the p-Selmer group
Selp(E) of an elliptic curve E is an elementary abelian p-group, i.e., isomorphic to
the product of a nonnegative number of Z/pZ’s, and its p-rank rkp(Selp(E)) is the
number of factors of Z/pZ. Then

(5) rkp(Selp(E)) ≥ rk(E).

Bhargava and Shankar [BS10a] prove Theorem 3.1 by combining (5) for p = 2 and
the following stronger result:

Theorem 3.2 (Bhargava and Shankar 2010). The average number of elements of
the 2-Selmer group for elliptic curves over Q, ordered by height, is 3.
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Definitions. The content of this subsection may be found in most introductory
textbooks on elliptic curves, such as [Sil92, §X.4]. This subsection may be safely
skipped at a first reading; it is more important to understand how to access elements
of the p-Selmer group, as described in the next subsection.

We define the p-Selmer group for an elliptic curve E over Q and a prime p. One
of the motivating ideas behind the definition is that local computations are often
much more feasible than global ones; we also saw this idea in action in §2.1 during
the discussion of genus zero curves.

Because the points of E over any field form a group, there is a multiplication-by-p

map E(Q̄)
p−→ E(Q̄), which is surjective and whose kernel is the p-torsion subgroup

E(Q̄)[p] of E(Q̄). The Galois group Gal(Q̄/Q) acts on each of these groups, so the
short exact sequence

0 → E(Q̄)[p] → E(Q̄) → E(Q̄) → 0

of Gal(Q̄/Q)-modules induces a long exact sequence of Galois cohomology, from
which we extract the first row of the commutative diagram (6) below.

(6) 0 �� E(Q)/pE(Q) ��

��

H1(Q, E[p])
α ��

∏
Resν

��

β

���
������
H1(Q, E)[p] ��

∏
Resν

��

0

0 ��
∏
ν

E(Qν)/pE(Qν) ��
∏
ν

H1(Qν , E[p]) ��
∏
ν

H1(Qν , E)[p] �� 0

The analogous procedure over each local completion Qν for primes ν (including
Qν := R for ν = ∞) gives the second row of (6). The left-most vertical map is
given by the inclusions of E(Q) into each E(Qν), and the latter two vertical maps
are products over all primes ν of the usual restriction maps Resν : H1(Q, A) →
H1(Qν , A) for A = E[p] and A = E. Then we make the following definitions:

(i) The p-Selmer group Selp(E) of E is the kernel of the map β in (6).
(ii) The Tate–Shafarevich group X(E) is the kernel of the map∏

ν

Resν : H1(Q, E) →
∏
ν

H1(Qν , E).

Applying the Snake Lemma to a variant of (6) gives the key exact sequence

(7) 0 → E(Q)/pE(Q) → Selp(E) → X(E)[p] → 0,

which leads to the inequality (5).

Visualizing elements of Selmer groups. Elements of the Tate–Shafarevich group
X(E) and the p-Selmer group Selp(E) of an elliptic curve E over Q may be con-
cretely realized using genus one curves and their Jacobians.

The Jacobian Jac(C) of a genus 1 curve C is the connected component of its
automorphism group.6 It is also a curve of genus 1, and if C has a rational point,
then the Jacobian of C is in fact isomorphic to C over Q. As any automorphism
group of course has a group structure, including an identity element, the Jacobian of
C is an elliptic curve! We call a genus 1 curve C a torsor, or principal homogeneous

6This definition only works for curves of genus 1. More generally, the Jacobian is defined to
be the dual of the moduli space of degree 0 line bundles.
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space, for Jac(C). In other words, a torsor for an elliptic curve E is a genus 1 curve
with an action of E that is simply transitive over Q̄.

The elements of H1(Q, E) may be thought of as isomorphism classes of torsors
for E, that is, genus 1 curves C over Q with an isomorphism of Jac(C) with E. A
trivial torsor is isomorphic to E itself, meaning that it has a rational point, and
similarly, a torsor C that maps to 0 under Resν has a point in Qν .

Therefore, the elements of the Tate–Shafarevich group X(E) are exactly those
torsors, up to isomorphism, that have points over every local completion Qν , also
known as locally soluble. The nonzero elements of X(E) are locally soluble
torsors without a global rational point, implying that they fail the Hasse principle.

Elements of the p-Selmer group may be represented as locally soluble torsors C
for E, along with a degree p line bundle on C (or equivalently, a rational degree
p divisor7 on C). This degree p line bundle on C is equivalent to remembering an
algebraic map from C to (p− 1)-dimensional projective space. As we will describe
in more detail in later sections, this description of p-Selmer elements may be made
yet more explicit for small values of p.

Table 2 summarizes these interpretations of the groups for an elliptic curve E
over Q.

Heuristics and other work. In the last several years, several heuristics have been
developed for the distributions for the Tate–Shafarevich group and p-Selmer groups
for elliptic curves over Q (and over other number fields).

Delaunay’s heuristics [Del01, Del07] for the distribution of Tate–Shafarevich
groups generalizes the ideas behind the Cohen–Lenstra–Martinet heuristics for class
groups of number fields [CL84, CM87]. The main idea is that Tate–Shafarevich
groups appear as random finite abelian groups with nondegenerate alternating bi-
linear pairings, weighted by the inverse of the size of the automorphism group.

The work of Poonen and Rains [PR12] models p-Selmer groups as intersections
of random maximal isotropic subspaces in an infinite-dimensional quadratic space
over Fp. They obtain conjectural distributions for p-Selmer groups of elliptic curves
(and abelian varieties). All of the currently known theoretical results on average
sizes of Selmer groups, such as Theorem 3.2, agree with their heuristics. Moreover,
the predictions of Poonen and Rains are consistent with the combination of the
Minimalist Conjecture and Delaunay’s heuristics (using (7) to relate Selmer groups,
ranks, and Tate–Shafarevich groups).

Table 2

Group Elements (up to isomorphism)

H1(Q, E) torsors C for E
X(E) locally soluble torsors C for E
Selp(E) pairs (C,L): locally soluble torsors C for E

with degree p line bundles L on C

E(Q)/pE(Q) pairs (C,L): trivial(ized) torsors C for E
with degree p line bundles L on C

7A rational degree p divisor on C is equivalent to a formal sum of p points of C(Q̄) which are
together defined over Q.
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More recently, Bhargava, Kane, Lenstra, Poonen, and Rains [BKL+13] have
extended these heuristics to model both Selmer groups and Tate–Shafarevich groups
simultaneously, by studying the distribution of the exact sequence that is the direct
limit over n of (7) with p replaced by pn.

There has also been recent progress in studying distributions of 2-Selmer groups
for quadratic twist families, including work of Heath-Brown, Swinnerton-Dyer,
Kane, Yu, Mazur, Rubin, and Klagsbrun, among many others [HB93,HB94,SD08,
Kan12,Yu06,Yu05,MR10,KMR11].

Finally, a common theme in arithmetic geometry is to replace a number field by
a function field, since geometry often helps in the latter case. Here, if Q is replaced
by the function field Fq(t), de Jong [dJ02] gives an upper bound for the average
size of 3-Selmer groups of elliptic curves over Fq(t). His methods for parametrizing
elements of the Selmer group are similar to those described in §4.1 for Theorem 3.2
(and analogous results for Theorem 5.2).

4. The average size of 2-Selmer groups

We now explain the main ideas behind Theorem 3.2 and the following stronger
statement from [BS10a]:

Theorem 4.1 (Bhargava and Shankar 2010). Let F be any family of elliptic curves
E : y2 = x3+Ax+B defined by finitely many congruence conditions on the integral
coefficients A and B. Then the average size of Sel2(E) for elliptic curves E in F ,
ordered by height, is 3.

The key observations are that binary quartic forms are closely related to elements
of 2-Selmer groups of elliptic curves, and that it is possible to “count” integral
binary quartic forms using techniques from the geometry of numbers.

More precisely, we will see in §4.1 that binary quartic forms with rational coef-
ficients, up to standard transformations, with certain local properties correspond
exactly to 2-Selmer elements of elliptic curves. The classical invariant theory of
binary quartic forms plays a crucial role in this relationship; in particular, it gives
the vertical map in diagram (8) below.

(8)

{
2-Selmer elements
of elliptic curves E

}
� � local

conditions
��

fiber over E = Sel2(E)
������

����
����

����
����

����
����

��

{
binary quartic forms
up to equivalence

}

invariant theory

��
{elliptic curves E}

In §4.2, we explain how suitably enhanced techniques from the geometry of num-
bers are used to count the number of binary quartic forms with bounded height.8

Incorporating the local conditions by using sieve methods (see §4.3) produces a
count of 2-Selmer elements for elliptic curves up to a given height. Because the
fiber of the squiggly arrow in diagram (8) above an elliptic curve E is exactly
Sel2(E), dividing this count by the number of elliptic curves up to the same height,
and then taking the limit of that quotient as the height tends to infinity, gives the
average we seek.

8The height of a binary quartic form is the same height, up to a constant, as for its associated
elliptic curve.
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This method is not known to work if the elliptic curves are ordered by dis-
criminant or by conductor, instead of by height; the asymptotic number of elliptic
curves with discriminant or conductor less than X, as X tends to infinity, is not
even known.

4.1. Binary quartic forms and elliptic curves. In the classical work [BSD63]
of Birch and Swinnerton-Dyer that inspired the BSD conjecture, they study and
use the relationship between binary quartic forms and 2-Selmer elements of elliptic
curves.

A binary quartic form over Q is a homogeneous polynomial of degree 4 in two
variables with rational coefficients, i.e.,

(9) f(x1, x2) := ax4
1 + bx3

1x2 + cx2
1x

2
2 + dx1x

3
2 + ex4

2

with a, b, c, d, e ∈ Q. The set of all binary quartic forms over Q is a five-dimensional
Q-vector space V , with coordinates given by the coefficients a, b, c, d, and e. The
group GL2(Q) acts on the elements of V via

(10) g · f(x1, x2) = (det g)−2f((x1, x2) · g)

for all g ∈ GL2(Q); since scalar matrices act trivially, this action induces an action
of PGL2(Q). We call two binary quartic forms f and f ′ equivalent if there exists
g ∈ PGL2(Q) and λ ∈ GL1(Q) = Q× such that f ′ = λ2(g · f). In other words,
the space V is a certain representation of the group PGL2(Q)×GL1(Q), and two
binary quartic forms are equivalent if they are in the same orbit of the group.

Under the action (10) of GL2(Q), or equivalently, under the induced action
of PGL2(Q), the invariants of a binary quartic form (9) form a polynomial ring
generated by two invariants:

I(f) := 12ae− 3bd+ c2,

J(f) := 72ace+ 9bcd− 27ad2 − 27b2e− 2c3.

The discriminantΔ(f) := 4I(f)3−J(f)2 is nonzero if f has four distinct solutions,
up to scaling, over Q̄. The height of f is ht(f) := max(|I(f)3|, J(f)2/4).

Genus 1 curves from binary quartic forms. Given a binary quartic form f(x1, x2)
with nonzero discriminant, one may construct a genus 1 curve C(f) explicitly as
the smooth compactification of the affine curve

y2 = f(x1, x2).

This genus 1 curve is the double cover of the projective line ramified at exactly
the roots of f (which may not be individually defined over Q). It therefore comes
equipped with a degree 2 line bundle L(f), namely the pullback of the line bundle
O(1) from P1; equivalently, a rational degree 2 divisor on C(f) is given by the
formal sum of the two points in the preimage of any rational point on P1 under this
double cover.

If f ′ is an equivalent binary quartic form, then C(f ′) and C(f) are isomorphic,
and the line bundles for each also correspond to one another under this isomorphism.
In fact, binary quartic forms with nonzero discriminant up to equivalence are exactly
in one-to-one correspondence with isomorphism classes of genus 1 curves with degree
2 line bundles!
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Moreover, the Jacobian E(f) of C(f) depends only on the two invariants I(f)
and J(f); it may be written in short Weierstrass form as

(11) E(f) : y2 = x3 − I(f)

3
x− J(f)

27
.

Therefore, from our visualization of 2-Selmer elements described in §3.3, we see
that for a binary quartic form f , if C(f) is locally soluble, then the pair (C(f), L(f))
(with the action of E(f) on C(f)) corresponds to an element of Sel2(E(f)). More
precisely, let V (Q)ls be the subset of locally soluble binary quartic forms f(x1, x2)
over Q with Δ(f) �= 0, i.e., those for which y2 = f(x1, x2) has a Qν-solution for all
primes ν (including Q∞ = R). Note that V (Q)ls is preserved under the action of
GL2(Q)×Q×.

The equivalence classes of V (Q)ls are in correspondence with 2-Selmer elements
of elliptic curves; that is, we have the bijection

PGL2(Q)×Q× ∖
V (Q)ls

1−1←→
{
(E, ζ) :

E elliptic curve
ζ ∈ Sel2(E)

}
/ ∼= .

For any specific elliptic curve EAB : y2 = x3 + Ax + B, we may specialize to the
correspondence

PGL2(Q)
∖
VAB(Q)ls

1−1←→ Sel2(EAB),

where VAB(Q)ls consists of binary quartic forms f with invariants I(f) = −3A and
J(f) = −27B.

Finding binary quartic forms with specified invariants is the best known way
to explicitly compute the 2-Selmer group (and often, the rank) for a given elliptic
curve; see, e.g., Cremona’s mwrank program [Cre12].

Example 4.2. The only rational binary quartic forms, up to the action of PGL2(Q),
with invariants I = 48 and J = −432 are f0 = x4

1 − 6x2
1x

2
2 + 4x1x

3
2 + x4

2 and
f1 = x4

1 + 4x1x
3
2 + 4x4

2. They each have Jacobian isomorphic to the elliptic curve
E given by y2 = x3 − 16x+ 16. Thus,

Sel2(E) ∼= Z/2Z,

with f0 representing the identity element. In this case, because E has at least one
rational point (x, y) = (0, 4) and E(Q)tors is trivial, the sequence (7) implies that
rk(E) = 1 and X(E)[2] = 0.

In order to find the average size of the 2-Selmer group, the goal is therefore to
count the number of equivalence classes in V (Q)ls up to bounded height. The first
step is to simply count the number of PGL2(Z)-equivalence classes of binary quartic
forms with integral coefficients.

4.2. Counting binary quartic forms using the geometry of numbers. Meth-
ods from the geometry of numbers have been previously successful in similar count-
ing questions, such as determining the number of equivalence classes of binary
quadratic and binary cubic forms [Mer74, Sie44, Dav51b, Dav51c]. Bhargava and
Shankar give an asymptotic count of the number of irreducible integral binary
quartic forms, up to equivalence, of bounded height:
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Theorem 4.3 ([BS10a]). For 0 ≤ i ≤ 2, let N (i)(X) be the number of PGL2(Z)-
equivalence classes of irreducible integral binary quartic forms having 4 − 2i real
roots and height less than X. Then

N (0)(X) =
4

135
ζ(2)X5/6 +O(X3/4+ε),

N (1)(X) =
32

135
ζ(2)X5/6 +O(X3/4+ε),

and

N (2)(X) =
8

135
ζ(2)X5/6 +O(X3/4+ε).

One may also impose finitely many congruence conditions on the coefficients a,
b, c, d, and e of the binary quartic forms, e.g., requiring a to be 0 modulo p for
a prime p. Then the number of equivalence classes of such integral binary quartic
forms with height bounded by X is the total number of equivalence classes (the
appropriate N (i)(X) from Theorem 4.3) multiplied by the p-adic density of each
congruence condition imposed, with the same error term of O(X3/4+ε). This p-adic
density is an easily computable fraction depending on p.

Remark 4.4. Although the exact statement of Theorem 4.3 is not strictly necessary
for the proof of Theorem 4.1, the ideas and results used in the proof of Theorem
4.3 are essentially a subset of those needed for the average Selmer result.

The main idea in proving Theorem 4.3 is to reduce the question to counting
lattice points in a nicely shaped domain, in which case the number of lattice points
is approximately the volume of the domain. The major complication arises when
the domain has cusps, which may be visualized as thin regions going off to infinity.
A priori, these cuspidal regions may contain many or few integral points; see Figure
5. A clever “averaging” technique—first introduced by Bhargava in [Bha05,Bha10]
for asymptotic counts of quartic and quintic rings—helps control exactly which
points lie in the cusps.

Let V (i) denote the subset of V corresponding to binary quartic forms with 4−2i
roots. For the remainder of this section, we will focus on the case where the binary
quartic forms have four real roots (that is, when i = 0); the other two cases are
similar.

Reduction theory and fundamental domains. A fundamental domain or set for
a group acting on a space is a set of elements in the space containing exactly one
representative for each orbit. To count PGL2(Z)-orbits of the space V (Z) of integral
binary quartic forms, we may try to count lattice (integral) points in a fundamental

Figure 5. A domain with many lattice points in the cusp (left),
and a domain with few lattice points in the cusp (right).
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domain for the action of PGL2(Z) on V (R). It is easier to break up this latter action
into two intermediate ones, splitting the problem into two steps:

(i) find a fundamental set for the action of PGL2(R)× R× on V (R), and
(ii) find a fundamental domain for the action of PGL2(Z) on PGL2(R)× R×.

For (i), such a fundamental set is easy to explicitly construct. One checks that
a binary quartic form with all real roots and invariants I and J defines a unique
PGL2(R)-orbit in V (R) with those invariants. Thus, a fundamental set L consists
of real binary quartic forms whose invariants range over all I and J , up to scaling
(because of the action of R×). Note that for any h ∈ PGL2(R)×R×, the set hL is
also a fundamental set. It is crucial that we may choose L such that hL is always
a compact set.

Example 4.5. In fact, we may choose representatives for a fundamental set with
height 1. One fundamental set for V (0)(R) is

L =

{
ft(x1, x2) = x3

1x2 −
1

3
x1x

3
2 −

t

27
x4
2 : −2 ≤ t ≤ 2

}
,

where I(ft) = 1, J(ft) = t, and discriminant Δ(ft) = 4− t2 > 0.

For (ii), there is a standard decomposition, due to Gauss, of a fundamental
domain F for PGL2(Z) \PGL2(R) × R×. This description also gives explicit coor-
dinates for F.

Combining (i) and (ii) shows that the set FhL, for any h ∈ PGL2(R) × R×,
contains a representative from each PGL2(Z)-orbit of V

(0)(R). In fact, when viewed
as a multiset, FhL overcounts each orbit—by the size of the stabilizer in PGL2(R)
of the binary quartic divided by the size of its stabilizer in PGL2(Z). For binary
quartics in V (0)(R), this quotient is 4/1 = 4 almost always (in a sense that may
be made precise), so it suffices to assume that each orbit is counted four times. In
other words, the set FhL is (almost) a union of four fundamental domains for the
action of PGL2(Z) on V (0)(R).

We are now interested in counting the number of integer points in FhL of
bounded height (and dividing by 4).

Averaging and volumes. As alluded to earlier, the number of lattice points in a
domain like FhL is essentially the volume of the domain, by ideas of Minkowski
and refinements by Davenport [Dav51a,Dav64], but one needs to control the points
in the cusp of this domain.

In order to thicken the cusp for better control, we take not just a single domain
FhL, but a small ball’s worth of such domains by letting the element h vary in a
compact set. To obtain the final answer, the number of lattice points in the union
of these domains FhL, counted with multiplicity, must be divided by the volume
of this compact set.

This larger domain with a thicker cusp may be split into two parts, the main
body and the cusp; a clever choice of where to exactly separate the two will give the
desired estimates. In particular, let the cusp be the part of the fundamental domain
containing the binary quartic forms f(x1, x2) from (9) for which the absolute value
of the coefficient a of x4

1 is strictly less than 1. Then any integral binary quartic
form in the cusp has a equal to 0 and hence is reducible!
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The volume of the main body then approximates the number of lattice points
in it, and one may show that it contains a negligible number of reducible binary
quartic forms.

Remark 4.6. Theorem 4.3 only concerns irreducible binary quartic forms, but when
we return in §4.3 to counting binary quartic forms corresponding to 2-Selmer ele-
ments, we will include the reducible binary quartic forms found in the cusp.

The final step is to compute the volume of this main body, which may be done
explicitly. A critical lemma in this computation involves changing from the standard
Euclidean measure on the space V (R) to the product of the Haar measure on the
group PGL2(R) and the measures given by the invariants I and J . This Jacobian
computation mirrors the intuitive idea that V (R) is roughly a product of PGL2(R)
and the quotient PGL2(R) \V (R) .

4.3. Sieves and uniformity estimates. For Theorems 3.2 and 4.1, the relevant
count is for rational equivalence classes of binary quartic forms corresponding to
locally soluble genus 1 curves. Thus, we need to add several steps to the ideas from
§4.2:

(a) As mentioned in Remark 4.6, the reducible binary quartic forms in the cusp
must be incorporated.

(b) Find an integral representative for each PGL2(Q)×Q×-orbit of V (Q)ls with
integral9 invariants (and determine exactly how many each rational orbit
contains).

(c) Impose the necessary local conditions—via sieve methods—to restrict to
the space V (Q)ls of locally soluble binary quartic forms.

Part (a) is important but straightforward. As mentioned earlier, the cusp region
contains binary quartic forms that have a linear factor; these exactly correspond to
the identity elements in the 2-Selmer groups! As these and other reducible forms do
not appear often in the main body, the main body counts only irreducible binary
quartic forms, corresponding to nonidentity elements of the Selmer groups.

The first part of (b) is a standard fact in this case [BSD63,CFS10]; it is essentially
a local computation. That is, given a rational binary quartic form f in V (Q)ls with
integral invariants, then for all primes p, there exists an element gp ∈ PGL2(Qp)
such that the binary quartic form gp · f has coefficients in Zp. Then we may use
the idea of weak approximation to “glue” together all of these gp’s into an element
g ∈ PGL2(Q), as PGL2 has class number one; the binary quartic form g · f then
has integral coefficients.

In general, however, the orbit of such an f ∈ V (Q)ls may contain many PGL2(Z)-
orbits, so we need to weight each integral orbit by 1/n, where n is the number of
integral orbits for that rational orbit. This weighting may in fact be incorporated
into the sieve for part (c). Again using the fact that the group PGL2 has class
number one, this last step is a local computation; the global weight is a product of
local weights, which are related to the size of the stabilizers of the binary quartic
forms in PGL2(Qp).

This “geometric sieve”, originating in work of Ekedahl [Eke91] and extended by
Poonen [Poo03, Poo04] and Bhargava [Bha11], is the final step. Imposing finitely
many congruence conditions on the binary quartic forms translates into multiplying

9For simplicity, we are ignoring some factors of 2 and 3 throughout the discussion of this part.
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the original count by the local densities for each condition, as mentioned after
Theorem 4.3. However, we now need to impose a condition for every prime p, so to
obtain an actual limit (as opposed to only a lim sup), a certain uniformity estimate
is needed.10 In particular, one shows that the binary quartic forms that are “bad”
at a prime p are rare as p approaches infinity, so they may be safely ignored.

In the end, the product of all these local factors simplifies11 to be an invariant
of the group PGL2, called the Tamagawa number τ (PGL2). In other words,
the limit as X → ∞ of the weighted number of irreducible integral binary quartic
forms in V (Z)ls with height < X, divided by the number of elliptic curves of height
< X, is τ (PGL2) = 2. For the average for a family F of elliptic curves defined by
finitely many congruence conditions, the local factors would affect the numerator
and denominator equally, so the (limit of the) quotient would not change.

Finally, adding in the cusp contribution (for the identity elements in the 2-Selmer
groups) implies the average size of the 2-Selmer group is

2 + 1 = 3.

5. Generalizations and corollaries

We now outline generalizations of Theorem 3.2 and the methods discussed in
§4 to other p-Selmer groups, other families of elliptic curves, and even families of
higher genus curves. In §5.2, we also explain some corollaries for densities of low
rank elliptic curves.

The strategy for proving Theorem 3.2 presented in §4 relies heavily on a descrip-
tion of 2-Selmer elements as equivalence classes of binary quartic forms with certain
local properties. The geometry-of-numbers techniques apply to the situation after
reducing the question to counting lattice points in a fundamental domain for the
action of a group on a vector space.

Generalizing these methods thus depends on relating elements of Selmer groups
to the orbits of a vector space V under the action of a group G; these orbits may
then be counted as before. We modify diagram (8) to reflect the more general goal:

(12)

{
p-Selmer elements
for family F

}
� � local

conditions
��

fiber = Selp
������

����
����

����
����

����
����

����

{
G(Q)-orbits of V (Q)
counted via geometry of numbers

}

invariant theory

��{
family F of curves
ordered by invariants

}

The family F for Theorem 3.2 consists of elliptic curves in short Weierstrass
form. More generally, one may choose F to be other families of elliptic curves
or even higher genus curves, whose Jacobians have analogously defined p-Selmer
groups.

Finding appropriate groups G and vector spaces V related to the Selmer elements
is still a relatively ad hoc process. For elliptic curves, we generally use the geometric

10In the original paper [BS10a], obtaining this uniformity estimate is the most difficult and
technical part, but the refined geometric sieve in [Bha11] significantly simplifies the computation
needed here.

11See also [Poo12] for an explanation of this fact by computing an adelic volume instead.
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description of elements of p-Selmer groups—as locally soluble torsors with degree
p line bundles—to find such G and V .

Remark 5.1. The method summarized in diagram (12) was also previously used
by Davenport and Heilbronn [DH69] and Bhargava [Bha05] to prove two of the
only known cases of the Cohen–Lenstra–Martinet heuristics on distributions of
ideal class groups of number fields. In those cases, the family F is replaced by
a family of number fields (quadratic fields and cubic fields, respectively, ordered
by discriminant), and the p-torsion of the ideal class group is the analogue of the
p-Selmer group.

5.1. Other Selmer groups for elliptic curves. We survey recent results on
average sizes of Selmer groups for elliptic curves; the methods behind these theorems
all arise from the ideas highlighted in diagram (12).

In [BS10b], Bhargava and Shankar extend their methods from [BS10a] to 3-
Selmer groups, by using the classical description of 3-Selmer elements as locally
soluble curves cut out by ternary cubic forms, up to equivalence.

Theorem 5.2 (Bhargava and Shankar 2010). The average size of the 3-Selmer
group for elliptic curves over Q, ordered by height, is 4.

The average for 3-Selmer groups gives an improved upper bound of 7/6 for the
lim sup of the average rank of elliptic curves.

In fact, Bhargava and Shankar have work in progress, using similar methods, to
show that the average size of the 4- and 5-Selmer groups for elliptic curves, ordered
by height, is 7 and 6, respectively. With some additional work, they are able to
use these averages to show that the lim sup of the average rank is in fact bounded
above by 0.89.

In joint work with Bhargava [BH12], we find the average sizes of 2- and/or 3-
Selmer groups for various families of elliptic curves, such as the family

(13) F1 :=
{
y2 + a3y = x3 + a2x

2 + a4x : a2, a3, a4 ∈ Z,Δ �= 0
}

of elliptic curves with one marked point, ordered by analogous notions of height.
These averages rely on explicit descriptions of Selmer elements for these families as
orbits of certain representations [BH13]. Upper bounds on average ranks of elliptic
curves in these families are also obtained in the same way.

For all the families considered in [BH12], we find that the marked points on
the elliptic curves essentially act independently. For example, for the family F1,
independence would imply that the single marked point should increase the p-rank
of the p-Selmer group by 1, and indeed, the 2- and 3-Selmer groups have average
sizes 3 · 2 = 6 and 4 · 3 = 12, respectively.

5.2. Lots of rank 0 and rank 1 curves. Using the average size of 3-Selmer
groups, one may deduce the existence of many elliptic curves with rank 0 and as a
result, many for which the BSD is true!

Dokchitser and Dokchitser [DD10] prove the p-parity conjecture over Q, which
states that the root number of an elliptic curve over Q is determined by the parity
of its p-Selmer rank. By using congruence conditions to construct a positive-density
family of elliptic curves with equidistributed root number, Bhargava and Shankar
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combine the p-parity conjecture with Theorem 5.2 to show that a positive density12

of all elliptic curves, when ordered by height, have rank exactly 0.
In addition, applying Skinner and Urban’s results [SU06, SU10] on the main

conjecture of Iwasawa theory for GL2 shows that a positive proportion of elliptic
curves have analytic rank exactly 0. Since the BSD is known for curves of analytic
rank 0 by Kolyvagin’s work [Kol88], Bhargava and Shankar conclude that a positive
proportion of elliptic curves over Q satisfy the BSD.

Moreover, with the assumption that X(E) for any elliptic curve E is finite (or
the weaker assumption that the 3-torsion subgroup X(E)[3] is always a square),
they find a positive density of elliptic curves with rank 1.

5.3. Higher genus curves. As mentioned in §2.1, while curves of genus at least
2 have finitely many rational points, determining the number of rational points is
still quite difficult. Given an ordering of curves in a particular family, one may ask
similar questions as for elliptic curves; e.g., for any finite number N , what is the
density of curves with N points? What is the average number of rational points, if
finite?

The techniques discussed in §4, surprisingly, give some results towards these
questions, at least for hyperelliptic curves. Bhargava and Gross [BG12] first find
a description of the 2-Selmer elements for hyperelliptic curves with rational Weier-
strass points, using rational orbits of a certain representation of odd orthogonal
groups (see also the work of Thorne [Tho12] for more such parametrizations for
higher genus curves using Lie theory). They then compute the average size of the
2-Selmer group:

Theorem 5.3 (Bhargava and Gross 2012). Fix g ≥ 1. Then the average size of the
2-Selmer group for Jacobians of genus g hyperelliptic curves over Q with a rational
Weierstrass point, ordered by height, is 3.

Not only does this give an upper bound of 3/2 for the lim sup of the average
Mordell–Weil rank of the Jacobians of such curves, but it also may be used—along
with the methods of Chabauty and Coleman [Cha41,Col85]—to show that there are
many curves with very few points. Poonen and Stoll [PS] have recently improved
upon the results from [BG12] of this type:

Corollary 5.4 (Poonen and Stoll 2012). Fix g ≥ 3. Then a positive proportion of
genus g hyperelliptic curves over Q with a rational Weierstrass point have no other
rational points, and a majority of such curves have at most seven rational points.

In fact, Poonen and Stoll show that as the genus g tends to infinity, the lower
density of these curves for which the given Weierstrass point is the only rational
point tends to 1. Shankar and Wang have obtained similar results for genus g
hyperelliptic curves with a marked rational non-Weierstrass point [SW13]; they
prove an analogue of Theorem 5.3 and apply Poonen and Stoll’s techniques to
conclude that as g tends to infinity, the lower density of these curves having exactly
two rational points (the marked point and its hyperelliptic conjugate) tends to 1.

12All of these statements on having a positive density or proportion of curves with a given
property are, more precisely, about the lower density of such curves being positive.
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Finally, Bhargava [Bha13] has very recently shown that “most” hyperelliptic
curves (not necessarily with a rational point) over Q have no rational points what-
soever! More precisely, as the genus g tends to infinity, the lower density of hyper-
elliptic curves over Q with no rational point tends to 1.
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à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885 (French). MR0004484 (3,14d)

[CL84] H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Num-
ber theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math.,
vol. 1068, Springer, Berlin, 1984, pp. 33–62, DOI 10.1007/BFb0099440. MR756082
(85j:11144)

[CM87] H. Cohen and J. Martinet, Class groups of number fields: numerical heuristics, Math.
Comp. 48 (1987), no. 177, 123–137, DOI 10.2307/2007878. MR866103 (88e:11112)

[Col85] Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770,
DOI 10.1215/S0012-7094-85-05240-8. MR808103 (87f:11043)

[CKRS02] J. B. Conrey, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, On the frequency of
vanishing of quadratic twists of modular L-functions, Number Theory for the Millen-
nium, I (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 301–315. MR1956231
(2003m:11141)

[Cre06] John Cremona, The elliptic curve database for conductors to 130000, Algorithmic
number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006,
pp. 11–29, DOI 10.1007/11792086 2. MR2282912 (2007k:11087)

[Cre12] John Cremona, mwrank program, 2012, http://homepages.warwick.ac.uk/~masgaj/
mwrank/.

[CR03] J. E. Cremona and D. Rusin, Efficient solution of rational conics, Math. Comp.
72 (2003), no. 243, 1417–1441 (electronic), DOI 10.1090/S0025-5718-02-01480-1.
MR1972744 (2004a:11137)

[CFS10] John E. Cremona, Tom A. Fisher, and Michael Stoll, Minimisation and reduction of
2-, 3- and 4-coverings of elliptic curves, Algebra Number Theory 4 (2010), no. 6,
763–820, DOI 10.2140/ant.2010.4.763. MR2728489 (2012c:11120)

[DW88] Boris Datskovsky and David J. Wright, Density of discriminants of cubic exten-
sions, J. Reine Angew. Math. 386 (1988), 116–138, DOI 10.1515/crll.1988.386.116.
MR936994 (90b:11112)

[Dav51a] H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179–183.

MR0043821 (13,323d)
[Dav51b] H. Davenport, On the class-number of binary cubic forms. I, J. London Math. Soc.

26 (1951), 183–192. MR0043822 (13,323e)
[Dav51c] H. Davenport, On the class-number of binary cubic forms. II, J. London Math. Soc.

26 (1951), 192–198. MR0043823 (13,323f)

http://arxiv.org/abs/1006.1002
http://arxiv.org/abs/1006.1002
http://arxiv.org/abs/1007.0052
http://arxiv.org/abs/1304.3971
http://www.ams.org/mathscinet-getitem?mr=0146143
http://www.ams.org/mathscinet-getitem?mr=0146143
http://www.ams.org/mathscinet-getitem?mr=0179168
http://www.ams.org/mathscinet-getitem?mr=0179168
http://www.ams.org/mathscinet-getitem?mr=1093712
http://www.ams.org/mathscinet-getitem?mr=1093712
http://www.ams.org/mathscinet-getitem?mr=1839918
http://www.ams.org/mathscinet-getitem?mr=1839918
http://www.ams.org/mathscinet-getitem?mr=1176198
http://www.ams.org/mathscinet-getitem?mr=1176198
http://www.ams.org/mathscinet-getitem?mr=1044170
http://www.ams.org/mathscinet-getitem?mr=1044170
http://www.ams.org/mathscinet-getitem?mr=0004484
http://www.ams.org/mathscinet-getitem?mr=0004484
http://www.ams.org/mathscinet-getitem?mr=756082
http://www.ams.org/mathscinet-getitem?mr=756082
http://www.ams.org/mathscinet-getitem?mr=866103
http://www.ams.org/mathscinet-getitem?mr=866103
http://www.ams.org/mathscinet-getitem?mr=808103
http://www.ams.org/mathscinet-getitem?mr=808103
http://www.ams.org/mathscinet-getitem?mr=1956231
http://www.ams.org/mathscinet-getitem?mr=1956231
http://www.ams.org/mathscinet-getitem?mr=2282912
http://www.ams.org/mathscinet-getitem?mr=2282912
http://homepages.warwick.ac.uk/~masgaj/mwrank/
http://homepages.warwick.ac.uk/~masgaj/mwrank/
http://www.ams.org/mathscinet-getitem?mr=1972744
http://www.ams.org/mathscinet-getitem?mr=1972744
http://www.ams.org/mathscinet-getitem?mr=2728489
http://www.ams.org/mathscinet-getitem?mr=2728489
http://www.ams.org/mathscinet-getitem?mr=936994
http://www.ams.org/mathscinet-getitem?mr=936994
http://www.ams.org/mathscinet-getitem?mr=0043821
http://www.ams.org/mathscinet-getitem?mr=0043821
http://www.ams.org/mathscinet-getitem?mr=0043822
http://www.ams.org/mathscinet-getitem?mr=0043822
http://www.ams.org/mathscinet-getitem?mr=0043823
http://www.ams.org/mathscinet-getitem?mr=0043823


24 WEI HO

[Dav64] H. Davenport, Corrigendum: “On a principle of Lipschitz”, J. London Math. Soc. 39
(1964), 580. MR0166155 (29 #3433)

[DH69] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, Bull.
London Math. Soc. 1 (1969), 345–348. MR0254010 (40 #7223)

[Del01] Christophe Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined
over Q, Experiment. Math. 10 (2001), no. 2, 191–196. MR1837670 (2003a:11065)

[Del07] Christophe Delaunay, Heuristics on class groups and on Tate-Shafarevich groups:

the magic of the Cohen-Lenstra heuristics, Ranks of Elliptic Curves and Random
Matrix Theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ.
Press, Cambridge, 2007, pp. 323–340.

[DF64] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree,
Translations of Mathematical Monographs, Vol. 10, American Mathematical Society,
Providence, R.I., 1964. MR0160744 (28 #3955)

[DD10] Tim Dokchitser and Vladimir Dokchitser, On the Birch–Swinnerton-Dyer quotients
modulo squares, Ann. of Math. (2) 172 (2010), no. 1, 567–596, DOI 10.4007/an-
nals.2010.172.567. MR2680426 (2011h:11069)

[Eke91] Torsten Ekedahl, An infinite version of the Chinese remainder theorem, Comment.
Math. Univ. St. Paul. 40 (1991), no. 1, 53–59. MR1104780 (92h:11027)

[Elk07] Noam Elkies, Three lectures on elliptic surfaces and curves of high rank, 2007, http://
arxiv.org/abs/0709.2908.

[Fal83] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent.
Math. 73 (1983), no. 3, 349–366, DOI 10.1007/BF01388432 (German). MR718935
(85g:11026a)

[Fal91] Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2)
133 (1991), no. 3, 549–576, DOI 10.2307/2944319. MR1109353 (93d:11066)

[Gau01] Carl Friedrich Gauss, Disquisitiones arithmeticae, 1801.
[Gol79] Dorian Goldfeld, Conjectures on elliptic curves over quadratic fields, Number theory,

Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale,
Ill., 1979), Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 108–118.
MR564926 (81i:12014)

[HB93] D. R. Heath-Brown, The size of Selmer groups for the congruent number problem,
Invent. Math. 111 (1993), no. 1, 171–195, DOI 10.1007/BF01231285. MR1193603
(93j:11038)

[HB94] D. R. Heath-Brown, The size of Selmer groups for the congruent number problem.
II, Invent. Math. 118 (1994), no. 2, 331–370, DOI 10.1007/BF01231536. With an
appendix by P. Monsky. MR1292115 (95h:11064)

[HB04] D. R. Heath-Brown, The average analytic rank of elliptic curves, Duke Math.
J. 122 (2004), no. 3, 591–623, DOI 10.1215/S0012-7094-04-12235-3. MR2057019
(2004m:11084)

[dJ02] A. J. de Jong, Counting elliptic surfaces over finite fields, Mosc. Math. J. 2 (2002),
no. 2, 281–311. Dedicated to Yuri I. Manin on the occasion of his 65th birthday.
MR1944508 (2003m:11080)

[KY97] Anthony C. Kable and Akihiko Yukie, Prehomogeneous vector spaces and field ex-
tensions. II, Invent. Math. 130 (1997), no. 2, 315–344, DOI 10.1007/s002220050187.
MR1474160 (99c:12005)

[KY02] Anthony C. Kable and Akihiko Yukie, The mean value of the product of class num-
bers of paired quadratic fields. I, Tohoku Math. J. (2) 54 (2002), no. 4, 513–565.
MR1936267 (2003h:11150)

[Kan12] Daniel M. Kane, On the ranks of the 2-Selmer groups of twists of a given elliptic
curve, 2012, http://arxiv.org/abs/1009.1365.

[KS99] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and
monodromy, American Mathematical Society Colloquium Publications, vol. 45, Amer-
ican Mathematical Society, Providence, RI, 1999. MR1659828 (2000b:11070)

[KS00] J. P. Keating and N. C. Snaith, Random matrix theory and ζ(1/2 + it), Comm.
Math. Phys. 214 (2000), no. 1, 57–89, DOI 10.1007/s002200000261. MR1794265
(2002c:11107)

[KMR11] Zev Klagsbrun, Barry Mazur, and Karl Rubin, Selmer ranks of quadratic twists of
elliptic curves, 2011, http://arxiv.org/abs/1111.2321.

http://www.ams.org/mathscinet-getitem?mr=0166155
http://www.ams.org/mathscinet-getitem?mr=0166155
http://www.ams.org/mathscinet-getitem?mr=0254010
http://www.ams.org/mathscinet-getitem?mr=0254010
http://www.ams.org/mathscinet-getitem?mr=1837670
http://www.ams.org/mathscinet-getitem?mr=1837670
http://www.ams.org/mathscinet-getitem?mr=0160744
http://www.ams.org/mathscinet-getitem?mr=0160744
http://www.ams.org/mathscinet-getitem?mr=2680426
http://www.ams.org/mathscinet-getitem?mr=2680426
http://www.ams.org/mathscinet-getitem?mr=1104780
http://www.ams.org/mathscinet-getitem?mr=1104780
http://arxiv.org/abs/0709.2908
http://arxiv.org/abs/0709.2908
http://www.ams.org/mathscinet-getitem?mr=718935
http://www.ams.org/mathscinet-getitem?mr=718935
http://www.ams.org/mathscinet-getitem?mr=1109353
http://www.ams.org/mathscinet-getitem?mr=1109353
http://www.ams.org/mathscinet-getitem?mr=564926
http://www.ams.org/mathscinet-getitem?mr=564926
http://www.ams.org/mathscinet-getitem?mr=1193603
http://www.ams.org/mathscinet-getitem?mr=1193603
http://www.ams.org/mathscinet-getitem?mr=1292115
http://www.ams.org/mathscinet-getitem?mr=1292115
http://www.ams.org/mathscinet-getitem?mr=2057019
http://www.ams.org/mathscinet-getitem?mr=2057019
http://www.ams.org/mathscinet-getitem?mr=1944508
http://www.ams.org/mathscinet-getitem?mr=1944508
http://www.ams.org/mathscinet-getitem?mr=1474160
http://www.ams.org/mathscinet-getitem?mr=1474160
http://www.ams.org/mathscinet-getitem?mr=1936267
http://www.ams.org/mathscinet-getitem?mr=1936267
http://arxiv.org/abs/1009.1365
http://www.ams.org/mathscinet-getitem?mr=1659828
http://www.ams.org/mathscinet-getitem?mr=1659828
http://www.ams.org/mathscinet-getitem?mr=1794265
http://www.ams.org/mathscinet-getitem?mr=1794265
http://arxiv.org/abs/1111.2321


HOW MANY RATIONAL POINTS DOES A RANDOM CURVE HAVE 25

[Kol88] V. A. Kolyvagin, Finiteness of E(Q) and X(E,Q) for a subclass of Weil curves, Izv.
Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671 (Russian); English
transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR954295 (89m:11056)

[Maz77] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ.
Math. 47 (1977), 33–186 (1978). MR488287 (80c:14015)

[MR10] B. Mazur and K. Rubin, Ranks of twists of elliptic curves and Hilbert’s tenth prob-
lem, Invent. Math. 181 (2010), no. 3, 541–575, DOI 10.1007/s00222-010-0252-0.
MR2660452 (2012a:11069)

[Mer74] F. Mertens, Ueber einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew.
Math. 77 (1874), 289–338.

[Mor22] Louis J. Mordell, On the rational solutions of the indeterminate equation of the third
and fourth degrees, Proc. Cambridge Philos. Soc. 21 (1922), 179–192.

[Poo03] Bjorn Poonen, Squarefree values of multivariable polynomials, Duke Math. J.
118 (2003), no. 2, 353–373, DOI 10.1215/S0012-7094-03-11826-8. MR1980998
(2004d:11094)

[Poo04] Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3,

1099–1127, DOI 10.4007/annals.2004.160.1099. MR2144974 (2006a:14035)
[Poo12] Bjorn Poonen, Average rank of elliptic curves, Séminaire Bourbaki, 2011-2012, 64ème
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