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1. Cellular automata on Z

The theory of cellular automata is, at its very root, a simplification gone won-
derfully wrong.

Let us consider a function f : R → A. We think of the domain as a space (we
even call it, grandiosely, the universe) and the function f as a configuration on the
space described by the values in A at every point of the space. The configuration
values in A are considered somewhat abstractly, their nature is not important to us,
they may be quantitative (temperature, electrical conductivity, etc.) or qualitative
(name of a geographic region, prevalent voting preference in the region, etc.) The
set of all configurations AR = {f | R → A} is called the space of configurations (on
R over A). Of course, the same configuration looks different from a different point
of view. Thus, for each point a ∈ R in the space, we introduce a shift operator
σa : AR → AR, to account for the “change of coordinates”. More precisely, for a
configuration f ∈ AR, the shifted configuration σa(f) is defined by

(1) (σa(f))(x) = f(a+ x),

for x ∈ R. In addition to the shifts σa, a ∈ R, which relate configurations over
the space, one may consider relations between configurations over time (say, under
ideal conditions, each temperature configuration on the line at the present moment
uniquely determines the temperature configurations at any future moment of time).
Thus, for each future point t ∈ R

+ in time, we introduce a time operator τt : A
R →

AR relating the configurations at time 0 to the configurations at time t (in particular,
we are assuming that, for all t, s ∈ R

+, τt ◦ τs = τt+s and τ0 = id).
We attempt to simplify and model the above setup by making everything dis-

crete, homogeneous, and local. Thus, we replace the space R by its discrete approx-
imation Z, and we consider only finite sets A (for instance, we group all possible
values into finitely many levels). The elements of the finite set A are called states
(or symbols) and A is called the state set (or the alphabet). It is common to re-
quire |A| ≥ 2 in order to avoid the irrelevant, yet pesky, exceptions that accompany
the trivial case. The space shift operator σ1 uniquely determines all other shifts
(σn = (σ1)

n, for n ∈ Z) and we denote it by σ. Thus, the configuration space is
AZ, the space of bi-infinite sequences over some finite set A, with |A| ≥ 2, and the
shift operator σ : AZ → AZ is given by (σ(f))(x) = f(1+x), for f ∈ AZ and x ∈ Z.

We also replace the nonnegative time semiaxis R+ by its discrete approximation
N. The time operator τ1 uniquely determines all other time operators (τn = (τ1)

n

for n ∈ N) and we denote it by τ . Moreover, we assume a certain homogeneity and
localness (finite propagation) property of the time operator, which says that there
exists a nonnegative integer m such that, for every point x, only the states of the
configuration f within distance m from x affect the state (τ (f))(x) of the updated
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configuration τ (f) at x. The homogeneity (independence of x) and localness (inde-
pendence of states far from x) constitute the defining property of cellular automata.
More precisely, a cellular automaton is a map τ : AZ → AZ for which there exists
a nonnegative integer m such that, for all points x, y ∈ Z and all configurations
f, g ∈ AZ, if f(x+ a) = g(y + a), for a ∈ [−m,m] = {−m,−m+ 1, . . . ,m− 1,m},
then (τ (f))(x) = (τ (g))(y).

An equivalent, and perhaps more intuitive, way of understanding the defining
property of cellular automata is through the notion of a local update rule, which is
a function μ : A[−m,m] → A that associates a single state to each possible pattern
of states defined on the central interval [−m,m] around 0. This local update rule,
by extension, defines a cellular automaton τ : AZ → AZ by

(2) (τ (f))(x) = μ
(
σx(f)|[−m,m]

)
,

for f ∈ AZ and x ∈ Z. It is instructive to ponder the above formula and absorb
what it actually says. In order to update the configuration f at x, we use the shift
σx(f) to look at the given configuration with x as the center of reference, we restrict
our attention to the pattern of states σx(f)|[−m,m] within distance m from x, and
we update the state at x by following the local update rule μ.

Maps τ : AZ → AZ that commute with the shift σ are called Z-equivariant. The
defining property of cellular automata implies that they are Z-equivariant. Indeed,

στ (f)(x) = τ (f)(1 + x)

= μ
(
σ1+x(f)|[−m,m]

)
= μ

(
σx(σ(f))|[−m,m]

)
= τσ(f)(x).

This observation is part of one of the fundamental results in symbolic dynamics,
the Curtis–Hedlund Theorem, characterizing cellular automata as exactly the maps
τ : AZ → AZ that are Z-equivariant and are continuous with respect to the pro-
discrete topology on AZ, i.e., the product topology induced by the discrete topology
on A. Note that the prodiscrete topology turns the configuration space AZ into
a Cantor set (this is one of the instances where |A| ≥ 2 is indeed a necessary
assumption).

As a direct corollary of the Curtis–Hedlund Theorem, the image of every cel-
lular automaton is (topologically) closed and it is invariant under the space shift
σ. A subset of the configuration space that is closed and shift invariant is called
a subshift (the configuration space itself is, confusingly, and perhaps regrettably,
often called shift, or full shift). Subshifts can be characterized as follows. A subset
S of the configuration space AZ is a subshift if and only if there exists a set F of
finite patterns of states that defines it (i.e., S consists exactly of the configurations
in which none of the patterns from F appears anywhere in the configuration; this
is why the patterns in the defining set F are usually called forbidden patterns).
At its core, symbolic dynamics is the study of subshifts, their applications, repre-
sentations, invariants (used to distinguish subshifts up to topological conjugacy),
and surjective, continuous, and Z-equivariant maps between them (generalizing the
concept of cellular automata and called factor maps). Of particular interest, espe-
cially in applications, are the shifts of finite type (subshifts for which the defining
set of finite forbidden patterns is finite) and sofic shifts (images of shifts of finite
type under factor maps).
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2. Cellular automata on Z
d

It is natural to consider universes other than Z and cellular automata associated
to such universes. One of the first universes that naturally comes to mind after
considering the “line” Z is the “plane” Z

2 and, more generally, the d-dimensional
space Z

d, for d ≥ 2. All concepts and results mentioned above are applicable,
mutatis mutandis, in this setting as well (local update rules; the Curtis–Hedlund
Theorem; the notion of a subshift as a closed, space shift invariant subset; the
characterization of subshifts as subsets defined by sets of forbidden patterns; and
so on).

Nevertheless, despite the deep analogies and transfer of concepts and results, the
change of scenery, once everything is considered in Z

d, for d ≥ 2, is so significant
that Douglas Lind famously described it as a “trip through the Swamp of Undecid-
ability” [Lin04]. This we’re-not-in-Kansas-anymore declaration is due to the fact
that even basic questions that one might ask about shifts of finite type on Z

2 are
undecidable, starting from the most fundamental one—Is the shift of finite type
defined by a given set of finitely many finite forbidden patterns empty or not? The
last question is directly related to the problem of Wang tiles.

Cellular automata on Z
2 were studied by von Neumann, who was interested

in their self-replicating capacity. They became very popular, even among non-
mathematicians, with the advent of Conway’s Game of Life, which is a cellular
automaton on Z

2 defined by a very simple local update rule, but with very rich and
interesting behavior (not an uncommon situation among cellular automata, given
that some cellular automata, even over Z, happen to be universal Turing machines).

3. A few historical remarks

The beginnings of symbolic dynamics are usually attributed to the end of the
19th century work of Hadamard. In his study of systems of differential equations,
Hadamard used sequences of symbols, with each symbol representing a region in a
space X, to model the way a point moves around the space under iterations of a self-
map on X (in the particular case, the space was a surface of negative curvature and
the self-map was a discretized version of a geodesic flow). Such sequences are called
symbolic itineraries and were soon used (and are used productively to this day) in
many other situations to model, real or complex, continuous or discrete, dynamical
systems. It is worth mentioning that Hadamard already found it necessary to
consider shifts of finite type (sans the terminology, of course). Namely, he observed
that not every possible sequence of symbols corresponds to the itinerary sequence
of some point, and that the admissible sequences were exactly the sequences in
which certain patterns of two consecutive symbols do not appear.

The “classical period”, represented by the works of Hadamard, Poincaré, Birk-
hoff, Artin, and their contemporaries, ends roughly by the end of 1930s with the
works of Morse and Hedlund [MH38], who were the first to fully break away from
the view of symbolic dynamics as a simplification/modelling tool and its origins in
the continuous/differentiable world and consider it on its own.

About ten years later, the use of shifts of finite type supporting Markov probabil-
ity measures in the seminal work of Shannon [Sha48] on coding and communication
definitely confirmed the “grown up” status of symbolic dynamics as an area of
mathematics that both finds multiple applications and uses techniques from multi-
ple areas of mathematics for its own development.
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The list of areas in which symbolic dynamics nowadays finds applications, in
mathematics as well as outside of it (ranging from physics and computer science
to engineering and medicine), is extremely long and varied, justifying our play-
ful opening reference to the theory of cellular automata as a simplification gone
wonderfully wrong.

4. Cellular automata on arbitrary groups

The jump from cellular automata on Z
d to cellular automata on an arbitrary

group G as a universe is natural and, for the most part, goes smoothly. Indeed,
every group G provides a homogeneous space (it “looks the same” from any point)
on which we may define configurations f : G → A, for some finite state set A.
Further, it comes with naturally defined space shifts operators σg : AG → AG, for
g ∈ G, based on translations within the group (translations within the space), that
relate configurations with respect to different points and are defined, for f ∈ AG

and x ∈ G, by

(3) (σg(f))(x) = f(g−1x).

A keen-eyed reader might notice that the definitions of space shifts (1) and (3)
disagree, since the latter subtracts where the former adds. We may think of this
discrepancy as yet another instance of the eternal dilemma “did our train just move
or it was theirs” or, closer to the context, when we shift a configuration between the
identity e and the element g in G, do we want the new configuration to “look” near
e as the old one near g, or to “look” near g as the old one near e? Definition (3)
is compatible with the latter choice. However, this still does not explain why one
would make the switch from the choice made in (1). One practical reason, dictated
by the historical context of the origins of symbolic dynamics—origins that can be
traced to areas of mathematics in which functions are almost exclusively written
on the left and, accordingly, left group actions are preferred—is that (3) ensures
that the shift action σ : G → Sym(AG), defined by g �→ σg is a left action of G on
the configuration space AG, regardless of whether G is abelian or not.

We again think of cellular automata as maps τ : AG → AG that update every
configuration f at x in G depending only on the pattern of states on a predefined
finite “neighborhood” of x. More precisely, we may define a local update map
μ : AM → A, where M is any finite subset of the universe G, called the memory
set (this set plays the role of the central interval [−m,m]), and we may extend it
to a cellular automaton τ : AZ → AZ by setting

(τ (f))(x) = μ (σx−1(f)|M )

for f ∈ AG and x ∈ G (compare with (2) and notice again the adjustment involving
the inverse, forced by definition (3)).

An analog of the Curtis–Hedlund Theorem holds in the general case and charac-
terizes the cellular automata on a group G over the finite alphabet A as the maps
τ : AG → AG that are continuous with respect to the prodiscrete topology on AG

and are G-equivariant (i.e., τσg = σgτ , for all g ∈ G). Many other classical notions
in symbolic dynamics lift nicely and easily to the general case, as do many results,
but there are notable exceptions, and the book under review builds aptly around
a few of the more involved and interesting situations. Once again, our model goes
wonderfully wrong, fails to stay in Kansas, leads to more than meets the eye, and
provides a few lessons, this time in group theory.
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5. The book, Garden of Eden, and a question of Gottschalk

There are at least two high quality books offering treatments of symbolic dynam-
ics on Z, one by Lind and Marcus [LM95] and one by Kitchens [Kit98]. The choices
are more limited when one is interested in symbolic dynamics on groups other than
Z, especially if one wants to get past Z2, the second most popular choice. One of the
exceptions is the book by Coornaert and Papadopoulos [CP93] in which symbolic
dynamics on Gromov hyperbolic groups is considered.

The book under review is currently the only text of comparable size and level
which devotes its attention to the general case of cellular automata on arbitrary
groups from the very start, rather than as an afterthought. After the first chapter,
in which the basics are established, the authors focus on their main topic of interest,
surjunctivity, and take the reader on an illuminating journey that starts with basic
definitions and ends with presentations of the latest research results in the area.

The notion of surjunctivity was introduced in 1973 by Gottschalk [Got73] and is
the cellular automata version of the property “injective-implies-surjective”, a type
of property that reappears in many settings throughout mathematics. A group G
is called surjunctive if every injective cellular automaton on G is surjective. The
question of Gottschalk [Got73] asking if all groups are surjunctive is still open.

A chapter in the book on residually finite groups is followed by a chapter in
which surjunctivity is proved for locally residually finite groups, then a chapter on
amenable groups is followed by a chapter in which surjunctivity is proved for locally
residually amenable groups, and a chapter on sofic groups, a common generalization
of residually finite and amenable groups, ends with a proof that all sofic groups are
surjunctive (the last result is due to Gromov [Gro99] and Weiss [Wei00]).

The parts of the material in which various classes of groups and their basic
properties are introduced may be used independently from the material focusing
on cellular automata. For instance, the author of this review has used the carefully
written and current presentation of amenable groups, which includes most stan-
dard characterizations, along with complete proofs that these characterizations are
equivalent, in a graduate course that had nothing to do with symbolic dynamics.

A recent characterization of amenability in terms of cellular automata is also pro-
vided, namely, a group G is amenable if and only if every surjective cellular automa-
ton on G is pre-injective (a cellular automaton τ : AG → AG is pre-injective if, for
any two configurations f and g, the equality τ (f) = τ (g) implies that either f = g
or f and g disagree on an infinite subset of G). The forward direction of this charac-
terization is a corollary of the Garden of Eden Theorem, proved in full generality, for
all amenable groups, by Ceccherini-Silberstein, Mach̀ı, and Scarabotti [CSMS99],
extending the classical works of Moore and Myhill (see [Bur70]) concerning Garden
of Eden patterns on Z

2. The converse is due to Bartholdi [Bar10]. Recall that
Garden of Eden pattern for a given cellular automaton is a finite pattern of states
without a predecessor, i.e., a pattern that does not appear in the image of the
automaton.

In the last chapter, the authors add more structure and consider configuration
spaces V G in which the alphabet V is a vector space (not necessarily finite). The
definition of cellular automata τ : V G → V G is adjusted to this setting and, in
addition to the homogeneity and localness, their linearity is required (note that V G

is naturally a vector space). The authors confirm the Kaplansky Stable Finiteness
Conjecture for group algebras of sofic groups (a result previously established by
Elek and Szabó [ES04] by using embeddings in simple continuous von Neumann



366 BOOK REVIEWS

regular rings) in terms of linear cellular automata. Namely, one easily observes
that the group algebra F[G] of a group is stably finite if and only if, for all n > 0,
every injective linear cellular automaton τ : (Fn)G → (Fn)G is surjective, and the
authors prove that this is indeed the case for all sofic groups (this is a linear version
of Gromov–Weiss surjunctivity theorem). The chapter ends with a reformulation of
Kaplansky Zero Divisor Conjecture in terms of linear cellular automata. Namely,
for a torsion free group G and a field F, the group algebra F[G] has no zero divisors
if and only if every nonzero linear cellular automaton τ : FG → F

G is pre-injective.
The book is a great read and a great resource. It is decidedly self-contained,

modulo basic understanding of topology, analysis, and group theory, as well as
readiness to peek into the ten appendices, with topics ranging from nets, filters,
and ultrafilters in topological spaces, to symmetric groups, free groups, to accounts
of Banach–Alaoglu Theorem, Markov–Kakutani Fixed Point Theorem, and Hall
Marriage Theorem (and to its more general finite-to-one version, Hall Harem The-
orem). The basic material is supported by a trove of exercises (over 300) and notes
at the end of each chapter, and the book ends with a selection of 17 open problems.
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