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VAUGHN F. R. JONES, SCOTT MORRISON, AND NOAH SNYDER

MR0000898 (1,146g) 46.3X

v. Neumann, J.

On rings of operators. III.

Annals of Mathematics. Second Series 41 (1940), 94–161.

A factor is a ring of operators M having the property that no element of it,
except constant multiples of the identity, commute with every element of M. By
means of a relative dimension function it has been established that five classes of
factors In, I∞, II1, II∞, III∞ can be distinguished and that the first four classes
are non-empty. [Cf. F. J. Murray and J. v. Neumann: On rings of operators,
Ann. of Math. 37, 116–229 (1936).] In the present work, examples of class III∞
are given. If A is in M, the rank of M is the relative dimension of its range. If
A is of finite rank, it is possible to define the trace of A. Those A’s of M which
are of finite rank form a linear multiplicative set for which Tn(AB∗) is an inner
product. If we complete this linear set with respect to the corresponding norm,
we obtain what is called the Schmidt class. In case In, this set is M; in case I∞,
it corresponds to the operators of finite norm; in case II1, it includes M, while in
case III∞, it consists simply of 0. Now if E1, E2, · · · , En are mutually orthogonal
projections with 1 = E1 + · · · + En, then A1 =

∑n
i=1 EiAEi is of finite norm if A

is. Each Ei in turn can be expressed as a sum of mutually orthogonal projections
Ei = Ei, 1+ · · ·+Ei, r, and for this finer subdivision there is an A2 =

∑
Ei, jAEi, j .

Continuing this process yields a sequence A1, A2, · · · with a limit (A); (A) is of
finite norm if A is. Suppose that the E’s are chosen so that, if F is a projection
and not zero, (F ) is not zero. Then if the Schmidt class is not simply 0, the set of
(A)’s will contain non-zero elements of finite norm. If however no (A) is of finite
norm, then M must be a III∞.

Next the examples of factors given in the previously cited joint paper are reexam-
ined from another point of view. These examples are based on three elements, a set
S, a measure function μ defined for subsets of S, and a group G of transformations
a of S, with certain properties one of which is that, if S′ ⊂ S, then μ(aS′) = μ(S′).
In the present work, this condition is lightened to: μ(S′) �= 0 implies μ(aS′) �= 0.
It is shown that certain of the resulting factors are such that there is no equivalent
invariant measure and that these factors satisfy the condition given above for a
III∞. Two factors M1 and M2 are said to form a factorization if the ring gener-
ated by them is the full set of operators on the space and if their intersection is the
set of multiples of the identity. It is shown here that factorizations occur involving
a case II and a case III, thus completing the proof of the statement that, in a
factorization, any combination of cases may occur except those in which only one
factor is in a case I.

From MathSciNet, December 2013
F. J. Murray
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MR0094722 (20 #1234) 46.00

Dixmier, Jacques

Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von
Neumann). (French)

Cahiers scientifiques, Fascicule XXV.
Gauthier-Villars , Paris , 1957, vi+367 pp.

This book presents a thorough reworking and systematic development of the
theory of weakly-closed ∗-algebras of bounded operators on a Hilbert space, which
the author renames von Neumann algebras. Although only twenty years old, this
has been one of the most active and fruitful areas of modern functional analysis,
as the author’s bibliography of nearly two hundred items attests. The present
exposition divides into three large chapters: the first on the global theory, the
second on the direct integral reduction theory, and a final one presenting those
standard but more technical topics which do not fit into the pattern of development
chosen by the author. A valuable part of the book are the numerous exercises, which
present illuminating examples and sketch additional bits of theory.

The first chapter is probably the most important, since the global theory is
the principal aspect of the general theory to be developed since the original von
Neumann and von Neumann-Murray papers. Its goal is the global decomposition of
a von Neumann algebra according to type and finiteness, and its essential tool is the
theory of traces, upon which the key definitions are based. This procedure avoids
the more difficult global dimension theory of projections (which is here relegated
to the third chapter), but it does not yield the complete classification analysis.

The first two sections of the first chapter give the elementary definitions of the
subject and the standard ways of forming new algebras from old: the reduced alge-
bras generated by projections, direct sums of algebras and tensor products of alge-
bras, in addition to the basic process of forming the commutator algebra A′. The
third section introduces the various topologies found to be useful in studying opera-
tor algebras—uniform, strong, weak, ultra strong and ultra weak—and investigates
the ideas and improvements stemming from the original von Neumann theorem that
the strong closure of a ∗-algebra A of operators is its double commutator algebra
A′′. The author next treats positive linear functionals, the homomorphisms they
induce, and the special functionals (normal, ultra weakly continuous) generated by
elements of the underlying Hilbert space. The central theorem of this section is
the complete answer to the question of to what extent a normal homomorphism
between von Neumann algebras implies a spatial isomorphism of the underlying
Hilbert spaces. Section five develops the elementary theory of Hilbert algebras,
which can be regarded as the abstract presentation of the way in which the left and
right regular representations are treated on locally compact groups. The group sit-
uation is discussed in the exercises. These algebras are of crucial importance to the
present scheme of development because they provide their generated von Neumann
algebras with plenty of traces, upon which, as mentioned above, the classification
theory is made to depend. In section six, probably the major section of the book,
the theory of traces is developed. In particular, the basic connection with Hilbert
algebras is established, and the classification and decomposition according to finite-
ness accomplished. The next two sections effect the global analysis according to
type, and the last section contains examples of the various kinds of factors.
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The course of the second chapter of necessity runs closer to the original von Neu-
mann treatment in its general outline, although there is much change in detail and
improvement in exposition. After a preliminary development of the theory of the
direct integral of a measurable field of Hilbert spaces and the notion of a decom-
posable operator, we have the notion of a diagonalizable operator (a direct integral
of constant operators), and the theorem that a bounded operator is decomposable
if and only if it commutes with the commutative algebra Z of all diagonalizable
operators. The heart of the chapter is the material on decomposable algebras. Ba-
sic are the theorem (§ 3, Theorem 3) that if A and A′ are both decomposable, into
the families A(ζ) and A′(ζ) respectively, then A(ζ) and A′(ζ) commute for almost
all ζ, and are complementary factors if Z is the center of A; the theorem (§ 3,
Lemma 1) that if the base space Z has a countable basis then the measurability of
the field A′(ζ) follows from that of A(ζ)—this is the point in the theory where von
Neumann had to resort to the theory of analytic sets, and the present author still
finds this necessary; and the theorem (§ 6, Theorem 2) that if Z is a commutative
von Neumann algebra such that Z ′ is countably generated over Z, then the under-
lying Hilbert space can be decomposed as a direct integral in such a way that Z
becomes the algebra of all diagonalizable operators. These three theorems together
imply the original von Neumann decomposition theorem, to the effect that a von
Neumann algebra over a separable Hilbert space is (essentially) uniquely express-
ible with respect to its center as a direct integral of factors, and it is curious that
the author does not explicitly state this corollary. The newer material contained in
this chapter is mainly to be found in sections four and five, on the reduction theory
of Hilbert algebras and traces, respectively.

The third, and most technical, chapter begins with the comparison theory of
projections and the associated relative dimension theory, continuing the global
classification theory which was not quite completed in the first chapter. It then
takes up the trace mapping of a von Neumann algebra A into its center Z, and
discusses the factorization of a normal trace functional into one on Z composed
with a trace mapping of A into Z, as well as the existence and uniqueness of the
trace mapping for semi-finite and finite algebras. There follow sections treating the
“approximation theorem”, the coupling operator between a von Neumann algebra
and its commutator algebra, and hyperfinite factors. The chapter concludes with a
demonstration of the equivalence of the trace definition of finiteness with the clas-
sical definition in terms of partial isometries. This proof requires the construction
of a finite trace under the latter hypothesis, and here is found the analogue of the
von Neumann-Murray theorem that the natural trace on a finite factor defined for
self-adjoint T by integrating λ with respect to the dimension of the spectral pro-
jections of T , is additive. The above mentioned material on central mappings and
the approximation theorem are needed for this final step in recovering the classical
classification theory.

The book concludes with five short appendices presenting technical material
needed in the first and second chapters.

From MathSciNet, December 2013
L. H. Loomis
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MR1091619 (92b:57024) 57N10; 17B37, 57M25, 81R50

Reshetikhin, N; Turaev, V. G.

Invariants of 3-manifolds via link polynomials and quantum groups.

Inventiones Mathematicae 103 (1991), no. 3, 547–597.

The authors construct new topological invariants of compact oriented 3-manifolds
and of framed links in such manifolds. The invariant of (a link in) a closed oriented
3-manifold is a sequence of complex numbers parametrized by complex roots of 1.
For a framed link in the three-sphere the terms in the sequence are equal to the
values of a Jones polynomial of the link evaluated in the corresponding roots of
1. Thus, for links in the three-sphere, the invariants in this paper are essentially
equivalent to the Jones polynomial.

In this context the Jones polynomial refers to the original one-variable Jones
polynomial and its relatives obtained from the quantum group SL(2)q. The original
Jones polynomial corresponds to the fundamental representation of the quantum
group. The invariants in the paper are constructed by labelling each component of
the link with a given representation of the quantum group. This gives a particular
Jones polynomial corresponding to the labelling. The authors show that, by using
values of q that are roots of unity, and by summing (with appropriate coefficients)
the Jones polynomials of a link corresponding to such a coloring, an invariant of
framed links is obtained that is also invariant under the Kirby moves. The Kirby
moves are modifications of framed links that give homeomorphic 3-manifolds in the
class of 3-manifolds obtained by surgery on framed links.

In this way, invariants of 3-manifolds are obtained via invariants of knots and
links. Each three-manifold is presented as surgery on a framed link, and the in-
variant of that link, being invariant under Kirby moves, is an invariant of the
3-manifold.

The paper uses a number of techniques and formulations. First of all there is the
notion of a ribbon Hopf algebra (of which the universal enveloping algebra for the
quantum lie algebra for SL(2)q is an example). In another paper [Comm. Math.
Phys. 127 (1990), no. 1, 1–26; MR1036112 (91c:57016)] the authors showed that
ribbon Hopf algebras are an appropriate category of Hopf algebras for formulating
invariants of framed links. In this method the invariant is formulated as a functor
from a category of diagrams (with tangles as morphisms) to a corresponding module
category. The functor takes a closed link diagram to a morphism from the complex
numbers to itself, hence to a number. The core of the algebraic part of the paper
is a careful treatment of the quantum group for SL(2)q at roots of unity, showing
that the representation theory is appropriate for the solution to the problem of
obtaining invariants of the Kirby moves.

This paper is important as the first construction of a nontrivial 3-manifold in-
variant via invariants of framed links and the Kirby moves. It is also important as
an instantiation of the program of invariants of 3-manifolds initiated by E. Witten
[ibid. 121 (1989), no. 3, 351–399; MR0990772 (90h:57009)]. Witten’s program uses
ideas from quantum field theory and conformal field theory. The present paper is
more elementary, but presumably produces the same invariants as the Witten pro-
gram. The relationships between the Reshetikhin-Turaev approach and the Witten
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program will become clear as soon as the relationships between quantum groups
and conformal field theory are more fully understood.

From MathSciNet, December 2013
Louis H. Kauffman

MR1303779 (95j:46063) 46Lxx; 19K56, 22D25, 58B30, 58G12, 81T13, 81V22,

81V70

Connes, Alain

Noncommutative geometry. (English)

Academic Press, Inc., San Diego, CA, 1994, xiv+661 pp., $59.95,
ISBN 0-12-185860-X

Alain Connes received the Fields Medal at the Warsaw Congress in 1983. The
citation, which concentrates on his work on von Neumann algebras, mentions non-
commutative geometry in passing, and states confidently that “the subject will
rapidly develop much further”. This large (over 600 pages), dense, fascinating, and
beautiful book is evidence of the accuracy of this prognosis.

To see what is meant by the phrase “noncommutative geometry”, consider or-
dinary geometry: for example, the geometry of a surface S in three-dimensional
Euclidean space R3. Following Descartes, we study the geometry of S using coor-
dinates. These are just three functions x, y, z on R3, and their restrictions to S
generate, in an appropriate sense, the algebra C(S) of all continuous functions on
S. All the geometry of S is encoded in this algebra C(S); in fact, the points of
S can be recovered simply as the algebra homomorphisms from C(S) to C. In the
language of physics, one might say that the transition from S to C(S) is a transition
from a “particle picture” to a “field picture” of the same physical situation.

One notes that the algebra C(S) appearing here is commutative. It is therefore
natural to suggest that it might be valuable to think of noncommutative algebras in
geometric terms, as the algebras of functions on “noncommutative spaces”. Some
attempts in this direction have been made from algebraic geometry, but Connes’s
program rests on differential geometry and incorporates deep techniques from func-
tional analysis. Motivation for this program comes from a number of sources. One
is physics: quantum mechanics asserts that physical observables such as position
and momentum should be modeled by elements of a noncommutative algebra. An-
other is a series of examples showing that objects such as the space of (unitary)
representations of a group, or the space of leaves of a foliation, may be most appro-
priately modeled as noncommutative spaces. A third comes from the application
of K-theory to operator algebras and the link (in the case of group C∗-algebras)
to the Novikov higher-signature conjecture and surgery theory. All these together
with other motivations and applications are discussed in detail in the book.

Connes’s book guides the reader through the appropriate noncommutative ver-
sions of four successively more refined kinds of geometric structure: measure theory,
topology (including algebraic topology), differential topology (manifold theory),
and differential (Riemannian) geometry. To begin with the coarsest of these, non-
commutative measure theory means the theory of von Neumann algebras. Let H be
a Hilbert space, B(H) the set of bounded linear operators on it. A von Neumann
algebra is an involutive subalgebra A of B(H) which is closed in the weak topology
on B(H). The commutative example to keep in mind is H = L2(X,μ), where
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(X,μ) is a measure space, and A = L∞(X,μ) acting by multiplication; the weak
topology coincides with the topology of pointwise almost everywhere convergence
on bounded sets. This algebra is in a natural sense a “direct integral” of copies of
C, which is a factor—that is, a von Neumann algebra with trivial centre. Already
in the original papers of Murray and von Neumann one finds the classification of
factors into three types: type I, matrix algebras; type II, admitting a “continuous
dimension” function with real values; type III, admitting no dimension function.
Of these, the factors of type III are the most mysterious. Much of Connes’s early
work was devoted to elucidating their structure, and this is described in Chapter V
of the book. This chapter also contains a discussion of the work of Vaughan Jones
on subfactors of factors of type II, which had such remarkable applications to knot
theory.

An example which is significant for many aspects of the book comes from the
theory of foliations. Let (V,F) be a compact foliated manifold. We want to study
the “space of leaves” V/F—initially only as a measure space, but then successively
in the more refined categories mentioned above. If the foliation is ergodic—think
of the irrational-slope flow on a torus—then the quotient measure space in the
usual sense is trivial. But we can form a noncommutative von Neumann algebra
whose elements are measurable families of operators on the L2 spaces of the leaves
of the foliations, and it turns out that this von Neumann algebra is equivalent in
the non-singular case to the one arising from the usual measure-theoretic quotient,
and that it is interesting even in the singular case; for instance, the von Neumann
algebra of the irrational-slope flow is of type II, and its “continuous dimension”
function is given by the unique invariant transverse measure on the foliation. There
are remarkable links between this von Neumann algebra and the more classical
invariants of foliations, for example the result (originally due to Steve Hurder)
that if the Godbillon-Vey class of a foliation is nonzero, then the associated von
Neumann algebra is of type III.

The noncommutative analogue of topology depends on the theory of C∗-algebras.
These are involutive subalgebras of B(H) which are closed for the norm topology:
the standard (in fact, the only) commutative example is the algebra of continuous
functions vanishing at infinity on a locally compact Hausdorff space. The noncom-
mutative quotient construction can be applied in the C∗-algebraic setting also. An
example of particular interest arises by applying the quotient construction to the
trivial action of a discrete group Γ on a point; one obtains the (reduced) group
C∗-algebra C∗

r (Γ), which may be regarded as an analytical completion of the group
algebra CΓ. Connections with geometric topology arise when Γ is the fundamental
group of a manifold.

By the theorem of Gel′fand and Năımark, the study of commutative C∗-algebras
is exactly the same as the study of locally compact Hausdorff spaces. It is natural
therefore to ask whether the tools of algebraic topology extend to the noncommu-
tative C∗-algebraic world. It turns out that topological K-theory and its S-dual
theory, K-homology, have natural extensions to the category of C∗-algebras. More-
over, there is a natural relationship with index theory in the case of C∗-algebras
arising from the noncommutative quotient construction. Recall that Atiyah and
Singer showed that the index of a family of elliptic operators over a base B should
be thought of as an element of the K-theory group K∗(B). Analogously, a family
of elliptic operators along the leaves of a foliation, or on the fibres of any other quo-
tient, has an index in the K-theory of the noncommutative quotient C∗-algebra. A
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very general conjecture is then that the whole C∗-algebra K-theory group is exactly
generated by indices of this kind. This is known as the Baum-Connes conjecture,
and it has been verified in a large number of different situations. It also has note-
worthy implications: for example, the Baum-Connes conjecture for a discrete group
Γ implies the Novikov conjecture for Γ, which (via surgery theory) is crucial to the
topology of high-dimensional manifolds having Γ as fundamental group.

Chapter II of the book contains a detailed account of this material. The gen-
eral theory is illustrated with many beautiful examples. Connes gives particular
prominence to groupoids arising from geometric situations, and the K-theory maps
arising from associated deformations of algebras. For example, the tangent groupoid
is an algebraic encoding of the idea that the tangent bundle of a manifold M can be
obtained by blowing up the diagonal in M ×M ; the associated convolution algebra
encapsulates the index-theoretic aspects of the pseudodifferential calculus.

The next stage in the development is the noncommutative analogue of differential
topology. Granted that K-theories seem to be “natural” (co)homology theories in
the noncommutative category, one might still search for a noncommutative analogue
of ordinary (co)homology. The strategy in the search for the noncommutative
analogue of some notion is first to find a way of formulating the commutative notion
in “function” rather than “point” terms, and then to try replacing the functions
by elements of a noncommutative algebra. Now the version of cohomology that is
most naturally expressed in “function” terms is de Rham cohomology, but (since
it involves differentiation) it must be formulated in terms of the dense subalgebra
of smooth functions inside the C∗-algebra of continuous ones. In the absence of
a general smoothing theory for C∗-algebras (as there is, say, for high-dimensional
topological manifolds) the choice of such a subalgebra has to be made ad hoc.
Often, however, a natural such subalgebra is available, and one refers to it as a
smooth structure on the C∗-algebra in question.

Suppose a smooth structure has been chosen. How should we construct “non-
commutative de Rham theory”? Connes’s answer is his theory of cyclic cohomology,
expounded in Chapter III of the book. Cyclic cohomology has received an extensive
purely algebraic development in recent years [see, for example, J.-L. Loday, Cyclic
homology, Springer, Berlin, 1992; MR1217970 (94a:19004)], but Connes’s discussion
remains close to the original geometric motivation. One of the deepest applications
is to the construction of the transverse fundamental class for a foliation: this is a
map from the K-theory of the “transverse space” to the real numbers, and it would
have an easy construction if there were an invariant transverse Riemannian metric.
In general no such metric can be found, but Connes noticed that this problem was
analogous to one that he had already surmounted in his work on factors of type
III. Following this insight, and combining ideas from cyclic theory (here the choice
of an appropriate dense subalgebra is a very delicate matter) and sophisticated
versions of the Thom isomorphism in K-theory, Connes was able to construct the
desired map. Geometric results about foliations, including the theorem of Hurder
mentioned above, are immediate corollaries.

A second motivation for cyclic cohomology, equally significant, is the idea of
“quantized calculus”, expounded in Connes’s Chapter IV. If A is an algebra of
operators on some Hilbert space H, and F an operator on H with F 2 = 1, then
the definition da = [F, a] = Fa − aF obeys the basic rule d2 = 0 of de Rham
theory. If in addition F and A are “almost commuting” enough that any product
of sufficiently many commutators [F, a] is of trace class, then the trace can be used
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to define an “integral” of these “differential forms” and we have the ingredients for
a “noncommutative de Rham current”, i.e. a cyclic cocycle. A helpful example is
A = C∞(M), M a compact manifold of dimension n, and F some (zeroth order)
pseudodifferential involution. The commutators are then pseudodifferential opera-
tors of order −1, and any product of more than n of them is therefore trace-class.
In this example we see that the notion of dimension in quantized calculus is related
to the “degree of traceability” of certain commutators.

Not all cyclic classes arise in this way. In fact, such a cyclic class belongs to
the image of a “Chern character” map from K-homology. It follows, therefore,
that if such a cyclic class is paired with an element of K-theory the result must be
an integer, because the evaluation of pairing between K-theory and K-homology
ultimately reduces to the computation of a Fredholm index. In this way one obtains
integrality results somewhat analogous to those provided by the Atiyah-Singer index
theorem. An application discussed in detail by Connes is the work of J. Bellissard
on the existence of integer plateaux of conductivity in the quantum Hall effect.
This concerns the flow of electricity in a crystal subjected to electric and magnetic
fields. In general, the “natural” observables in this problem generate an algebra
isomorphic to that associated to the irrational-slope foliation on a torus, and the
integrality arises from an associated cyclic 2-cocycle.

The last chapter in the book is entitled “The metric aspect of noncommutative
geometry”, and begins an investigation of the analogue of Riemannian geometry
and Yang-Mills theory in the noncommutative context. Many readers will focus
with particular interest on the interpretation of the Standard Model of particle
physics in terms of a noncommutative space which is the product of an ordinary
manifold with a (very small) discrete space. Connes writes: “Our contribution
should be regarded as an interpretation, of a geometric nature, of all the intricacies
of the most accurate phenomenological model of high-energy physics. . . . It does
undoubtedly confirm that high-energy physics is in fact unveiling the fine structure
of space-time. Finally, it gives a status to the Higgs boson as just another gauge
field, but one corresponding to a finite difference rather than a differential.”

The book is magnificently produced, and contains so much new material that
it completely supersedes the French edition [Géométrie non commutative, InterEd-
itions, Paris, 1990; MR1079062 (92e:58016)]. The depth and variety of Connes’
thought will lead the serious reader to explore the background and proofs of the
results in more detail, and he or she will find a comprehensive bibliography for this
purpose.

On the back cover, the publishers describe the book as “the definitive treatment”,
but the subject is still developing so rapidly that the sense of finality conveyed by
this phrase hardly seems appropriate. Vaughan Jones’ comment, also on the cover,
is more apt: “A milestone for mathematics”.

From MathSciNet, December 2013
John Roe
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MR1642584 (99m:46148) 46L37; 19K99, 46L60, 46L80, 46N55, 82B10

Evans, David E.; Kawahigashi, Yasuyuki

Quantum symmetries on operator algebras. (English)

Oxford Mathematical Monographs.
The Clarendon Press, Oxford University Press, New York , 1998, xvi+829 pp.,
$200.00, ISBN 0-19-851175-2

This monumental book presents some of the most exciting developments of the
past 15 years within operator algebra theory and its interaction with mathematical
physics and algebraic topology. A main basis for these developments was established
by V. F. R. Jones, who received the Fields medal in 1990 for his groundbreaking
work on subfactors, link invariants and quantum statistical mechanics. Besides
Jones, many others have worked since the early eighties on these and related themes,
and these efforts have created a literature which it would be impossible to cover
even within more than the well over 800 pages of the monograph under review.
Thus, choices and hence omissions have to be made.

The overall focus of the authors is on combinatorial rather than analytic aspects
of the theories. The later chapters are particulary centered around the viewpoint
emanating from Ocneanu’s paragroup theory together with its many applications.
On the other hand, Tomita-Takesaki theory is essentially avoided, and the analytic
parts of the classification of subfactors (such as S. Popa’s theory of amenability) are
mentioned without proofs. But what should interest the reader is the surprisingly
comprehensive account actually given by the book, and which we proceed to outline.

The first five chapters present what the authors conceive as “the very basics of
operator algebras”: basic operator theory, C∗-algebras, K-theory (in the operator
algebraic set-up), one-parameter semigroups, and von Neumann algebras (in partic-
ular type II1-factors). With due preparation in functional analysis, these together
with the first sections of Chapter 9 (on subfactors) provide material for a year-long
graduate course on modern aspects of operator algebra theory.

The remaining 10 chapters (6–15) treat more advanced subjects pertaining to
the developments alluded to in the first paragraph of this review. These fall into
three main groups: (1) Operator algebras and mathematical physics: the fermion
algebra (Chapter 6), the Ising model (Chapter 7), conformal field theory (Chapter
8). These chapters provide the necessary background from mathematical physics
for the newer developments treated by the subsequent chapters. (2) Subfactors
and their invariants, in particular combinatorial aspects: Subfactors and bimodules
(Chapter 9), axiomatization of paragroups (Chapter 10), string algebras and flat
connections (Chapter 11). It is possible to read most of these chapters without, or
prior to, a detailed reading of the first group. (3) Applications of subfactors and
finer invariants: topological quantum field theory (Chapter 12), rational conformal
field theory and paragroups (Chapter 13), commuting squares of II1-factors (Chap-
ter 14), automorphisms of subfactors and central sequences (Chapter 15). These
chapters include many recent results of the authors.

In the preface, the authors state: “This book is aimed at graduate students
and researchers in operator algebras and graduate students and researchers in the
interface between operator algebras and statistical mechanics, algebraic, topological
and conformal field theory and low-dimensional topological invariants.” All of these
will find a rich source of study and references in this extensively annotated and
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documented volume, and not least a wide range of new perspectives on their own
subject.

From MathSciNet, December 2013
Carl Winsløw

MR2747966 (2012a:46121) 46L37; 46L10, 46L40

Popa, Sorin

Classification of actions of discrete amenable groups on amenable
subfactors of type II.

International Journal of Mathematics 21 (2010), no. 12, 1663–1695.

This is the published version (with typos corrected and a few additional refer-
ences) of an I.H.E.S. preprint dating back to 1992. Since then, the preprint was
widely circulated in the mathematical community and its results have been fully
accepted. Although the initial motivation of the article was applications to the
classification of type IIIλ subfactors, it turned out that its techniques proved to be
useful in other parts of von Neumann algebras theory, such as the currently very
active topic of deformation/rigidity theory. These considerations led the author to
revive his paper and publish it in a refereed journal.

Let us briefly recall some background about the classification of amenable factors.
In his seminal paper [Ann. of Math. (2) 104 (1976), no. 1, 73–115; MR0454659
(56 #12908)], A. Connes proved the uniqueness of the amenable type II1 and type
II∞ factors, denoted by R and R∞ = R⊗ B(�2(N)) respectively. Moreover, for
0 < λ < 1, using the discrete decomposition as a crossed product M = N � σ of
any type IIIλ factor, which he had previously established [Ann. Sci. École Norm.
Sup. (4) 6 (1973), 133–252; MR0341115 (49 #5865)], he also proved the uniqueness
of the type IIIλ amenable factor. In this decomposition, N is a type II∞ factor,
called the core of M , and σ is an automorphism of N of modulus λ. The core
of an amenable type IIIλ factor M is R∞, and the uniqueness of M relies on the
classification of the automorphisms of R∞ [A. Connes, Ann. Sci. École Norm. Sup.
(4) 8 (1975), no. 3, 383–419; MR0394228 (52 #15031)]. Further classification
results for actions of finite groups and general amenable groups on amenable type
II factors were proved by V. F. R. Jones and A. Ocneanu respectively.

A subsequent challenging problem is the classification of amenable inclusions of
factors N ⊂ M with finite Jones index. The crucial tool is the standard invariant,
which is roughly described as follows: Let N ⊂ M be a finite index inclusion of
type II1 factors and let M ⊃ N ⊃ N1 ⊃ · · · ⊃ Nk ⊃ · · · be a corresponding tunnel
of subfactors. The sequence of commuting squares {N ′

k ∩N ⊂ N ′
k ∩M}k together

with canonical traces is encoded in a graph type object called the standard invariant
GN,M . We set N st =

⋃
k N

′
k ∩N and M st =

⋃
k N

′
k ∩M . Then N st ⊂ M st is called

the standard model of N ⊂ M . Under a suitable assumption of amenability for the
inclusion, called strong amenability, the author proved [Acta Math. 172 (1994),
no. 2, 163–255; MR1278111 (95f:46105)] that N ⊂ M is isomorphic to its standard
model, and thus completely classified by its standard invariant, a fact analogous to
the uniqueness of the amenable type II1 factor. A similar result applies for strongly
amenable inclusions of type II∞ factors.
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Concerning the study of some inclusions of type IIIλ factors, a next step to be
achieved is the classification of properly outer automorphisms of strongly amenable
inclusions of type II factors.

Given an automorphism θ of a finite index inclusion N ⊂ M of type II factors,
a basic ingredient is the standard part θst of θ introduced by P. Loi. It is an
automorphism of the standard model N st ⊂ M st and it implements an action γθ on
GN,M , thus defining the standard invariant (GN,M , γθ) of the equivariant inclusion.

We now state the first main result of the paper. Let θ be a properly outer trace-
scaling automorphism of a strongly amenable inclusion N∞ = N ⊗ B(�2(N)) ⊂
M∞ = M ⊗ B(�2(N)) of type II∞ factors (i.e. N ⊂ M is a strongly amenable
inclusion of type II1 factors). Then there is an isomorphism α from N∞ ⊂ M∞

onto N st ⊗R∞ ⊂ M st ⊗R∞ such that α ◦ θ ◦ α−1 = θst ⊗ σ0, where σ0 is a model
automorphism of R∞ having the same module as θ. The uniqueness of σ0, up
to conjugacy, is provided by Connes’ classification of automorphisms of R∞. So,
the action θ is completely classified by the action it implements on the standard
invariant of the inclusion.

The application to the classification of some inclusions of type IIIλ factors
(0 < λ < 1) follows immediately. Precisely, let N = N∞

� σ ⊂ M = M∞
� σ

where N∞ ⊂ M∞ is a strongly amenable inclusion of type II∞ factors and σ is a
λ-scaling automorphism of M∞ leaving N∞ globally invariant. Then N ⊂ M is
isomorphic to ((N st ⊗R∞)� (σst ⊗ σ0) ⊂ (M st ⊗R∞)� (σst ⊗ σ0)), where σ0 is
a model automorphism of R∞ of modulus λ.

The case of a properly outer cocycle action θ of a discrete amenable group G on
a strongly amenable inclusion N ⊂ M of type II1 factors is considered in the last
section. It is shown that such an action is cocycle conjugate to the tensor product
of θst and a properly outer model cocycle action of G on the amenable type II1
factor R.

The results rely in part on tools developed by the author in several previous
papers, and in particular in his influential above-mentioned paper. Moreover, non-
commutative ergodic theory techniques such as the construction of local Rokhlin
towers are of fundamental importance in the subtle proofs.
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