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This monograph contains some recent results by the authors and their collab-
orators on the application of Stein’s method combined with Malliavin calculus to
the normal approximation for functionals of a Gaussian process. It is addressed to
researchers and graduate students in probability and statistics who would like to
learn the basis of Gaussian analysis and its application to asymptotic techniques
related to normal approximations.

1. STEIN’S METHOD

The standard normal distribution -y is a probability on the real line with density

1 2
_ —x%/2
x) = e .
From the fact that ¢ satisfies the differential equation ¢'(x) = —x¢(z), it follows
that a real-valued random variable N has the normal probability distribution =, if
and only if for every differentiable function f : R — R such that xzf(z) and f’(x)

are integrable with respect to 7,

EINf(N)] = E[f'(N)].
Given a general random variable F, if the expectation E[F f(F)]— E[f'(F)] is close
to zero for a large class of smooth functions f, then we should be able to conclude
that the law of F' is close to v in some sense. This is the heuristics of Stein’s method
(see [7]). To make this argument rigorous, given a measurable function h : R — R

such that E[|h(N)|] < oo, where N has the distribution 7, we introduce the Stein’s
equation

(1.1) h(z) = E[R(N)] = f'(z) -z f ().
The function
(1.2) falw) = /2 / (h(y) — E[A(N)]|e™""/2dy

turns out to be the unique solution to equation (1)) satisfying lim, 4 e‘”z/Qf(a;)

= 0. Substituting « by F in equation (LI]) and taking the expectation yields

(1.3) E[h(F)] = E[M(N)] = E[f,(F) — F fr(F)].

In the particular case h = 1(_o 4, for some x € R, one can show from (L2) that

I falleo < V2m/4 and ||ff|lcc < 1. As a consequence, (L3) leads to the following

inequality for the Kolmogorov distance between the law of F, denoted by L(F),

and the normal distribution

(1.4) dgol(L(F),v) =sup|P(F <z) - P(N <z)| < sup |E[f(F)—Ffu(F)],
z€R h€FKol

where Fiol = {f € C' ¢ [[fllo < V27/4,||f 0 < 1}. In a similar way, by

choosing the class of functions h which are indicators of Borel sets, we obtain the

total variation distance drpv, and we if choose the class of functions h such that
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|h(z) —h(y)| < |z—y]|, then we get the Wasserstein distance dyw. Then, the estimate
(T4 holds for these distances, where in the right-hand side Fk,) is replaced by
Frv ={f €C: ||fllooc < V/7/2,]If'loc < 2} for the total variation distance and
by Fw = {f € C' : ||f'|loc < +/2/7} for the Wasserstein distance.

When the random variable F' is a functional of a Gaussian process, one can
estimate the right-hand side of equation (I3]) using the integration by parts formula

of Malliavin calculus.

2. MALLIAVIN CALCULUS

The Malliavin calculus is a stochastic calculus of variations in a Gaussian space,
developed from the probabilistic proof of Hérmander’s hypoellipticity theorem by
Malliavin in [I]. The main application of this calculus is to establish the regularity
of the probability distribution of functionals of an underlying Gaussian process. In
this way one can prove the existence and smoothness of the density for solutions
to ordinary and partial stochastic differential equations. Basic references for the
Malliavin calculus and its applications are the monographs by Malliavin [2] and
Nualart [5]. Chapters 1 and 2 of the monograph under review contain the basic
elements of Malliavin calculus; in particular, the basic ideas in the one-dimensional
case are presented in Chapter 1.

Consider a centered Gaussian family of random variables X = {X(h) : h € 9},
defined in a probability space (2, F, P) and indexed by a real separable Hilbert
space £, such that E[X (h)X (g)] = (h, g) 4 for every h, g € ). The family X is called
an isonormal Gaussian process. Particular examples are $ = R?, where X is just
a d-dimensional random vector and $ = L?([0,T])), where X (h) = fOT h(t)dB(t),
with B a Brownian motion in the time interval [0,7]. We will assume that the
o-field F is generated by X.

The fundamental operators in Malliavin calculus are the derivative operator D,
its adjoint 0 called the divergence operator, and the generator of the Ornstein—
Uhlenbeck semigroup, denoted by L. The derivative operator D behaves as an
infinite-dimensional gradient and is defined by D(X(h)) = h for any h € 9.
More generally, for any cylindrical and smooth random variable of the form F =
g(X(h1),..., X (hm)), where h; € $ and g : R™ — R is an infinitely differentiable
function with bounded partial derivatives, DF is the $)-valued random variable
given by the chain rule,

The operator D can be extended to the Sobolev space D2 C L?(€; $) of random
variables such that E[F?] + E[|DF||3] < co.

The divergence operator ¢ is the adjoint of D. It is an unbounded opera-
tor in L?(Q;$) whose domain is the set of elements u € L?(Q;$) such that
|E[(u, DF)g]| < cyl|F|lL2(q) for every F € DY2. Then, for u in the domain of
0, 8(u) is the square integrable random variable defined by the duality relationship

(2.1) E[(u, DF)s] = E[5(u)F],

for any F € DY2. To introduce the operator L, given F' € L?(f)) consider the
orthogonal expansion F' = E[F] + Z;il Jp(F), where J, is the projection on the
pth Wiener chaos. Then LF = Z;O:l —pJ,(F), provided that this sum converges
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in L2(Q). A fundamental result that connects the three operators is that F' belongs
to the domain of L if and only if ' € D2 and DF belongs to the domain of §, and
in this case,

(2.2) LF = —§(DF).

The operator L~" defined by L™'F = >, —%JP(F) is the pseudo-inverse of L.
The following integration by parts formula is the key ingredient in the applications
of Malliavin calculus to estimate the right-hand side of equation (L3)).

Theorem 2.1. Let F' € D'2 be such that E[F] =0, and let f : R — R be a C*
function with a bounded derivative. Then

(2:3) E[Ff(F)] = E[f'(F)(DF,~DL™'F)s].

Proof. Taking into account that E[F] = 0 and using ([2.2)), we obtain F = LL™!F =
—8(DL'F). Then, the result follows from the duality relationship (21
BE[Ff(F)] = -E[f(F)§(DL™'F)] = E[(D(f(F)),-DL™'F)g]
= B[f'(F)(DF,~DL™'F)s). -

3. NORMAL APPROXIMATIONS

Suppose that F' is a random variable defined in the probability space (92, F, P)
associated with an isonormal Gaussian process X. We assume that F € D'2,
E[F] = 0 and E[F?] = 1. Substituting equation (Z3) into the right-hand side of
([C3) yields

|E[W(F)] = EIWN)]| < [ f7ll«Bl1 — (DF,=DL™'F)s]],
which leads to the inequality
(3.1) di(L(F),~) < GiE[|1 = (DF,=DL™'F)3]
for 1 = 1,2,3, where d; = dko) is the Kolmogorov distance, do = drv is the total
variation distance, d3 = dyw is the Wasserstein distance, and C7, = 1, Cs = 2, and
C3 = 4/2/7. In the first two cases one has to assume that F' has a density.

Fix ¢ > 2, and suppose that the random variable F' belongs to the gth Wiener
chaos. That is, F' is a generalized multiple stochastic integral of order g. In that
case, L™1F = —%F, and, therefore, (DF,—DL™'F)g) = %||DF||% On the other
hand, E[|DF||%] = q. Thus,

E[1 - (DF,-DL'F)g|] < Var (|[DF|2),

Q| =

and we obtain the inequalities

(3.2) di(L(F),7) < Ci/qy/Var (| DF3).

Using Wiener chaos expansions and product formulas for multiple stochastic inte-
grals, one can show the following general formula for a random variable on the gth
Wiener chaos:

qg—1

Var (| DF[5) < T34 (E[F" =3) < (¢ — )Var (| DF3).
Thus, in the right-hand side of (32]) we can replace the variance of the square norm
of the derivative by E[F%] — 3 (which is nonnegative!) Moreover, these inequalities

can be extended to the case E[F?] = 02 > 0. In this case a factor =2 appears for
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i =1,2, a factor 0! appears in the case i = 3, and E[F*] — 3 has to be replaced
by E[F*] — 304
An immediate consequence of these bounds is a quantitative and direct proof

of the so-called fourth-moment theorem (see Nualart and Peccati [6]), which rep-
resents a drastic simplification of the method of moments and cumulants to prove
convergence to the normal distribution. This theorem says that for a sequence
F, = I;(fn), n > 1, of random variables in the gth chaos of X (where f,, belongs
to the symmetric tensor product $®9) such that lim, o, E[FZ] = 02 > 0, the
following assertions are equivalent:

(i) F, converges in distribution to N(0,02).

(ii) E[F} — 30* as n tends to infinity.
(i) Var (| DF|%) — 0 as n tends to infinity.
(iv) [|fn ®r fullge2a-n — 0 as n tends to infinity, where f, ®, f, is the con-

traction of r indices between the elements f, € H%9.

For random variables which are not necessarily in a fixed chaos, one can show
the estimate

E[|l1 = (DF,—DL 'F)g]|] <

3
S ElID*F @1 D*F3e.] /* B[IDFI|R],

and the term that provides an estimate of the error in the normal approximation
is E[||D?*F @ DQF\|%®2]1/4.

The Stein’s method described above and its connection with Malliavin calculus
are developed in Chapters 3 and 5 of the book. The corresponding multivariate
extension of these techniques is explained in Chapters 4 and 6. In the case of a
centered d-dimensional Gaussian random vector N whose covariance matrix C is
positive definite and h : RY — R is such that E[|h(N)|] < oo, Stein’s equation is
the partial differential equation

h(z) — E[h(N)] = (C, Hess f(x))us — (z, V.f(2))ga.

If h is Lipschitz, a solution to this equation is given by
oo
Ful@) = / E[h(N) — h(e~'z + /1 — e 2 N)]dt.
0

Then, by the same methodology as in the one-dimensional case, one can obtain
bounds for the Wasserstein distance between the law of a general random vector F'
and the law of N.

4. APPLICATIONS

Chapters 7 through 9 contain a series of applications of the general results on
normal approximations. First, Chapter 7 deals with the Breuer—-Major Central
Limit Theorem. The goal is to establish the normal approximation for sequences
of the form

1 n

where X is a centered stationary Gaussian sequence with unit variance. The basic
assumption is that f € L?(7y), has an expansion into a series of Hermite polynomials
of the form f(x) = 3°°2 ; a,Hy(2). The number d > 1 is called the Hermite rank of
f. The main result says that if 3, |p(v)|* < oo, where p(v) = E(X1X14,), then
V,, converges to a normal distribution N(0,0?), where 0 = 372 qla? >, ., p(v)9.
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This is proved in the book using chaos expansions and the above fourth-moment
theorem.

An example of such a stationary sequence is given by the increments of a frac-
tional Brownian motion with Hurst parameter H, that is, Xj = B,fﬂ — BH | where
BH is a centered Gaussian process with covariance

1
E[BEBH] = 3 (#H + 21— |t —s?M).

If f = H, is an Hermite polynomial of degree ¢ > 2, the central limit theorem
for the sequence V,, holds if 0 < H < 1 — 2—1q. When H =1 — 2—1q, there is also a
normal approximation but with a logarithmic normalization. In the quadratic case,
where f(x) = 2? — 1 and H < 3/4, using the techniques based on Stein’s method
and Malliavin calculus, one can obtain precise rates of convergence for the total
variation distance between the law of V,,/1/E(V;2) and 7.

In Chapter 8 the authors apply the integration by parts technique of Malliavin
calculus to the explicit computation of the cumulants associated with regular func-
tionals of an underlying Gaussian process.

Consider a sequence of centered random variables {F,, : n > 1} with unit vari-
ance, converging in law to the normal distribution . The purpose of Chapter 9 is to
establish an exact asymptotic expression for the sequence P(F,, < z) — P(N < z),
when z € R is fixed. Suppose that F,, € D2, and let

©(n) = \/Var[(DF,, —DL~1F,)g].

Then it is proved that

P(F, <z)— P(N < 2) R be(g)(z)
¢(n) 3
as n tends to infinity, where ®(z) = P(N < z), assuming that ¢(n) converges to
zero and is strictly positive for n large enough, the random vector

(Fn, (1= (DFy, =DL™'Fy)5) /(1))

converges in law to a centered two-dimensional Gaussian vector with covariance ma-
trix (; T), and the law of F}, is absolutely continuous with respect to the Lebesgue
measure. Some connections of this result with Edgeworth expansions and particular
examples are discussed in this chapter.

5. DENSITY ESTIMATES

A new technique for deriving Gaussian estimates using Malliavin calculus, intro-
duced by Nourdin and Viens in [4], is presented in Chapter 10. Let F € D*? be
such that E(F) = 0. The integration by parts formula proved in Theorem 2] can
also be written as

E[Ff(F)] = E[f'(F)g(F)],
where g(z) = E[(DF,—DL™'F)g|F = z]. This simple observation leads to a
differential equation satisfied by the density p(x) of F. Solving this equation leads
to the following explicit formula for the density of a random variable F', assuming
that g(F) > 0 almost surely

= g =0 (-], 505)
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The above formula holds for all z in the support of the law of F', which is a closed
interval containing the origin. In particular, if 0 < ¢ < g(z) < C < oo for all
x € R, one can obtain lower and upper Gaussian bounds for the density of F. An
important example of an application discussed in the monograph is the case where
F' is the centered maximum of a finite number of Gaussian random variables, with
a nonsingular covariance matrix.

6. UNIVERSALITY

In the last chapter of the book, the authors relate the results and techniques
discussed in the monograph with the universality phenomenon, according to which
the asymptotic behavior of large random systems does not depend on the distribu-
tion of its components. The authors consider random homogenous sums defined as
multilinear symmetric polynomials of degree d < M, vanishing on diagonals, on a
collection of M independent random variables:

QU Yi,....Yu) = > flin,...,ia)Vs,Ys, Vi,

1<iy, o ta <M

Given a sequence of m-dimensional vectors of random homogeneous sums of the
form

(Qk(fkn)7 Yi,...,Ywm,))i<k<m,

it is proved that if the L2-norm of the functions f,g") is uniformly bounded in n,
then the convergence to a normal vector when the Y; have the normal distribution
~ is equivalent to the convergence to a normal vector when the Y; satisfy F(Y;) = 0,
E(Y?) =1, and max; E(Y;*) < co. The proof is based on the techniques developed
in this monograph combined with the extension of the Lindberg principle to the
framework of polynomial functionals of sequences of independent random variables
done by Mossel, O’Donnel, and Oleszkiewicz in [3].

The book contains many examples and exercises which help the reader under-
stand and assimilate the material. Also bibliographical comments at the end of
each chapter provide useful references for further reading.
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