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In Einstein’s theory of general relativity one starts with a Lorentzian metric g̃

defined on a suitable manifold and constructs from it the Ricci tensor R̃, in terms of
which the Einstein field equations may be written. Until very recently, in a vacuum

these equations were that R̃ = 0 (now modified by a tiny but positive cosmological
constant seemingly responsible for the accelerating expansion of the Universe).

Be that as it may, the Ricci tensor and the Ricci-flat Lorentzian metrics g̃ (those

with R̃ = 0) are objects of independent mathematical interest. The Ricci tensor
is already remarkable in its being a tensor! In local coordinates its expression is a
complicated mess of partial derivatives that somehow conspires to be independent
of choice of coordinates. Well, some coordinates might be better than others, and
the Fefferman–Graham ambient metric construction is based on the astonishingly
good things that happen in coordinates (t, xi, ρ) for which a Lorentzian metric
happens to take the form

(1) g̃IJ =

⎛
⎝ 2ρ 0 t

0 t2gij 0
t 0 0

⎞
⎠ ,

where gij = gij(x, ρ) as ρ varies is a one-parameter family of Riemannian metrics
in the coordinates (x1, x2, . . . , xn). The uninterested reader may safely skip the
following details and re-enter the discussion at Theorem 1.

As the authors put it, a “straightforward but tedious” calculation shows that, if
we denote differentiation with respect to ρ by ′, write gij for the inverse of gij , and
employ the Einstein summation convention, then

R̃IJ =

⎛
⎜⎝ 0 0 0

0 R̃ij
1
2g

kl(∇kg
′
il −∇ig

′
kl)

0 1
2g

kl(∇kg
′
jl −∇jg

′
kl) − 1

2g
klg′′kl +

1
4g

klgpqg′kpg
′
lq

⎞
⎟⎠ ,

where

(2) R̃ij = ρg′′ij − ρgklg′ikg
′
jl − 1

2ρg
klg′klg

′
ij − n−2

2 g′ij − 1
2g

klg′klgij +Rij

and Rij is the Ricci tensor of gij(x, ρ) for ρ fixed. Suppose we look for Ricci-flat g̃IJ ,
dubbing such creatures ambient metrics. Setting ρ = 0 in (2) implies that[

n−2
2 g′ij +

1
2g

klg′klgij
]
ρ=0

= Rij

∣∣
ρ=0

,

equivalently that

g′ij(x, 0) =
2

n− 2

(
Rij −

R

2(n− 1)
gij

) ∣∣∣
ρ=0

,

where R ≡ gijRij is the scalar curvature of gij . At this point, those familiar with
conformal differential geometry will recognise the tensor on the right-hand side of
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this equation as twice the Schouten tensor Pij , equivalent to the Ricci tensor but
more congenial with respect to conformal transformations: if ĝij = Ω2gij for some

positive smooth function Ω, then P̂ij = Pij −∇iΥj + ΥiΥj − 1
2g

klΥkΥlgij , where
Υi = ∇i log Ω and ∇i is the Levi-Civita connection for gij . Thus, we come to the
following conclusion.

Theorem 1. If a Lorentzian metric of the form

2ρ dt2 + 2t dt dρ+ t2gij(x, ρ) dx
idxj

is Ricci-flat, then
gij(x, ρ) = gij(x) + 2Pij(x)ρ+O(ρ2)

where gij(x) ≡ gij(x, 0) and Pij(x) is the Schouten tensor of the metric gij(x).

One is naturally led to ask about the higher order terms in ρ, and a remarkable
link with conformal differential geometry begins to emerge as follows.

Theorem 2. If gij(x) is conformally flat, then the Lorentzian metric

2ρ dt2 + 2t dt dρ+ t2gij(x, ρ) dx
idxj

is flat when

gij(x, ρ) = gij(x) + 2Pij(x)ρ+ gkl(x)Pik(x)Pjl(x)ρ
2.

Notice that we are not assuming that gij(x) is flat, only that Ω2(x)gij(x) is flat
for some positive smooth function Ω(x). Evidence that something deep is afoot
begins to accumulate:

Theorem 3. If gij(x) is an Einstein metric, that is to say Pij(x) = λgij(x) for
some λ, necessarily constant, then

2ρ dt2 + 2t dt dρ+ t2gij(x, ρ) dx
idxj

is Ricci-flat when

gij(x, ρ) = gij(x) + 2Pij(x)ρ+ gkl(x)Pik(x)Pjl(x)ρ
2.

A noteworthy aspect of Theorems 2 and 3 is that the expansion of gij(x, ρ) in ρ
terminates at second order. In general, this is not the case but, concerning second
order terms, we find:

Theorem 4. If a Lorentzian metric of the form

2ρ dt2 + 2t dt dρ+ t2gij(x, ρ) dx
idxj

is Ricci-flat and n �= 4, then

gij(x, ρ) = gij(x) + 2Pij(x)ρ+ [gkl(x)Pik(x)Pjl(x)− 1
n−4Bij(x)]ρ

2 +O(ρ3),

where Bij(x) is the so-called Bach tensor, a classical trace-free symmetric 2-tensor
manufactured from second covariant derivatives of the curvature.

Theorem 4 is a relatively straightforward deduction from (2): differentiate once
with respect to ρ and set ρ = 0. Clearly, something goes astray when n = 4 and,
more generally, a formal power series solution exists to all orders only when n is odd.
In even dimensions, the expansion breaks down at order n/2. In all dimensions,
explicit formulæ for higher order terms are formidable.

So, what’s going on here? Firstly, if gij(x, ρ) in (1) is the standard Euclidean
metric ηij on R

n independent of ρ, then the Lorentzian metric g̃IJ is flat and arises
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geometrically by inverse stereographic projection R
n ↪→ Sn together with realising

this sphere as the space of light rays through the origin in R
n+2 with its standard

Lorentzian metric. Equivalently, the change of coordinates (t, xi, ρ) � (s, xi, r) for
ρ < 0, defined by setting −2ρ = r2 and s = rt gives

2ρ dt2 + 2t dt dρ+ t2ηij dx
idxj = s2

dr2 + ηij dx
idxj

r2
− ds2,

which one recognises as the metric cone over hyperbolic (n + 1)-space realised by
the standard Poincaré metric

dr2 + ηij dx
idxj

r2
on {(xi, r) ∈ R

n+1 | r > 0}.

These identifications reek of conformal geometry, especially when one bears in mind
that the Lorentzian symmetry group SO↑(n+1, 1) is also both isometric motions of
hyperbolic (n+1)-space and conformal motions of the round n-sphere (equivalently,
the one-point conformal compactification of Euclidean n-space via stereographic
projection). In other words, the special form of metric (1) certainly fits well with
flat conformal geometry.

But, as a consequence of Theorem 1, this link with conformal geometry persists
into the curved setting as follows. Suppose we just ignore the higher order terms
and, for any Riemannian metric gij dx

idxj on a smooth manifold M , consider the
Lorentzian metric

(3) 2ρ dt2 + 2t dt dρ+ t2(gij + 2Pijρ) dx
idxj

suggested by Theorem 1, where Pij is the Schouten tensor of gij . This Lorentzian

metric g̃IJ induces its own Levi-Civita connection ∇̃I on the tangent bundle in the
(t, xi, ρ) variables, and we may pull back this connection to the space

(4) {(t, xi, ρ) | ρ = 0} = {(t, xi) | t > 0} = R+ ×M.

Furthermore, the substitution t �→ eλt for constant λ simply rescales (3) by e2λ,

having no effect on the Levi-Civita connection ∇̃I . Consequently, the pulled-back
connection on R+ × M descends to a connection on a certain rank n + 2 vector
bundle T on M . A computation shows that this connection may be written as⎡

⎣ σ
μj

τ

⎤
⎦ �−→

⎡
⎣ ∇iσ − μi

∇iμj + gijτ + Pijσ
∇iτ − gjkPijμk

⎤
⎦ ,

where ∇i is the metric connection on M for gij . This formula is very familiar from
conformal differential geometry. It was introduced by T. Y. Thomas in 1926 and
is now seen as equivalent to the conformal Cartan connection, introduced on the
level of frame bundles by É. Cartan in 1923. In summary, Theorem 1 somehow
incorporates one of the most basic constructions in conformal differential geometry,
namely the Cartan connection.

We have yet to make any formal link between Lorentzian metrics of the form
(1) and the conformal class of the metric gij on M . Such a link is initiated by a
geometric interpretation of the space (4) as the bundle of scales G of a conformal
manifold (M, [g]). The point is that a conformal manifold is an equivalence class
of Riemannian metrics on M , where two metrics g and ĝ are said to be equivalent
whenever ĝ = e2Υg for some smooth function Υ on M . Otherwise expressed, this
equivalence is precisely between metrics that measure the same angles according
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to the usual formula cos θ = gijX
iY j/

√
gijXiXjgklY kY l. There is no preferred

metric on a conformal manifold. The best one can do is to gather the metrics from
the conformal class into a bundle π : G → M . Any particular metric trivialises this
bundle G = R+×M and then, for (s(x), x) a section of R+×M , the corresponding
metric is s2g (and it is convenient to scale with s2 so that s has the units of
length). Thus, a naive interpretation of Theorems 1, 4, and higher order expansions,
obtained by iteratively solving (2) for a power series expansion of gij(x, ρ), is as

building an ambient space G̃ ⊃ G with an ambient metric g̃ characterised chiefly by
its being Ricci-flat. It may be reasonably compared with trying to solve the wave
equation from characteristic initial data.

Making all this precise, at the same time freeing up the discussion from any
choice of coordinates, is a formidable task. This is what is accomplished in the
first four chapters of this excellent monograph, The ambient metric. Thus, it is the
“straight pre-ambient metrics” that may be placed in the normal form

2ρ dt2 + 2t dt dρ+ t2gij(x, ρ) dx
idxj

and may then be directly related (in Chapter 4) to asymptotically hyperbolic
“Poincaré metrics”. When the dust settles, the ambient metric construction sees
only the conformal class of the initial metric gij(x, 0) and provides a powerful tool
in the local theory of conformal differential geometry. More on this shortly. . . .

This monograph has been keenly anticipated for more than 25 years! The original
article [C. Fefferman and C. R. Graham, “Conformal invariants”, in Élie Cartan
et les Mathématiques d’Aujourd’hui, Astérisque 1985, Numéro Hors Série, 95–116],
initiated a revolution in the theory of local invariants on a conformal manifold just
as [C. Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31
(1979), 131–262] had done on CR manifolds. Now, at last, all details are available,
and more besides.

As previously stated, the first four chapters carefully set up the construction
itself. The remaining five chapters are concerned with applications, of which there
are many. As already hinted, to first order in ρ the ambient metric construction
is equivalent to the Cartan connection, which is often regarded as the final goal
in local conformal differential geometry. Indeed, having constructed the Cartan
connection, it is often stated that one has “solved the equivalence problem” and,
sure enough, the Cartan connection is flat if and only if the conformal class contains
the flat metric (one says that a metric in this class is “conformally flat”). But the
Cartan connection is only the first step into the conformal world. The ambient
metric assembles higher order information in a subtle but usable fashion. Perhaps
the most striking objects to emerge are intimately related:

• the Fefferman–Graham obstruction tensor,
• Branson’s Q-curvature,
• the GJMS (Graham–Jenne–Mason–Sparling) operators.

These are concepts in even-dimensional conformal differential geometry and all are
concerned with the breakdown in the ambient metric at order n/2 when n is even.
As the name suggests, the obstruction tensor Oij is exactly what prevents the

coefficient of ρn/2 in the power series for gij(x, ρ) from being determined (and even
when Oij = 0, the coefficient is not uniquely determined so the ambient metric
is still in trouble). It is a conformally invariant symmetric trace-free tensor and
coincides with the classical Bach tensor when n = 4. Although explicit formulæ for
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Oij are out of the question except in low dimensions, it has many fine properties:
like the Bach tensor it is divergence-free and vanishes if gij is conformally Einstein.
Branson’s Q-curvature is a high order n-form-valued Riemannian invariant. When
n = 4, it is [

−∇i∇iP− 2PijPij + 2P2
]
dvolg, where P ≡ gijPij .

It is not conformally invariant, but if ĝ = e2Υg, then

Q̂ = Q+ PnΥ,

where the GJMS operator Pn is a self-adjoint linear conformally invariant operator
from functions to n-forms of the form Υ �→ dSdΥ, for some differential operator S
from 1-forms to (n − 1)-forms. In particular, Q transforms by a divergence from
which it follows that

∫
M

Q is a conformal invariant. To close this circle of ideas, if
hij is any trace-free symmetric tensor, then it turns out that∫

M
Qg+εh =

∫
M

Q+ ε
∫
M

Oijh
ij +O(ε2).

These are delicate results for which the ambient metric is essential since, for higher
even n, explicit formulæ are extreme (notwithstanding that Fefferman and Graham
have recently used the ambient metric construction to establish some surprising
recurrence relations due to Juhl, which give some handle on these formulæ).

These matters are discussed in Chapter 7. Before that, Chapter 5 gives a power
series proof of LeBrun’s result (originally proved by twistor methods) that all real-
analytic conformal structures in three dimensions can be realised as the conformal
boundary of a four-dimensional real-analytic self-dual Einstein metric. Chapters 6,
8, and 9 carefully discuss the original motivation and consequences of the ambient
metric in constructing a wealth of conformal invariants (in some circumstances all
scalar invariants) that would otherwise be inaccessible. In particular, Chapter 8
gives a careful discussion of jet isomorphisms that is already useful in Riemannian
geometry, untangling the jets of a metric in terms of Riemannian curvature and its
covariant derivatives. Chapter 7 also discusses the modifications to the construction
that one can impose in the conformally flat or conformally Einstein case so as to
obtain a unique expansion of all orders.

Nowadays, it seems that any of the more subtle advances in local conformal
differential geometry depend on the ambient metric in an essential way. Such
advances continue apace. The careful exposition provided by The ambient metric
has been well worth the wait!
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