Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A Hasse principle for quadratic forms over function fields
HTML articles powered by AMS MathViewer

by R. Parimala PDF
Bull. Amer. Math. Soc. 51 (2014), 447-461 Request permission

Abstract:

We describe the classical Hasse principle for the existence of nontrivial zeros for quadratic forms over number fields, namely, local zeros over all completions at places of the number field imply nontrivial zeros over the number field itself. We then go on to explain more general questions related to the Hasse principle for nontrivial zeros of quadratic forms over function fields, with reference to a set of discrete valuations of the field. This question has interesting consequences over function fields of $p$-adic curves. We also record some open questions related to the isotropy of quadratic forms over function fields of curves over number fields.
References
  • R. Brauer, H. Hasse and E. Noether, Beweis eines Hauptsatzes in der Theorie der Algebren, J. Reine Angew. Math. 167 (1931), 399-404.
  • Jean-Louis Colliot-Thélène, L’arithmétique des variétés rationnelles, Ann. Fac. Sci. Toulouse Math. (6) 1 (1992), no. 3, 295–336 (French, with English and French summaries). MR 1225663, DOI 10.5802/afst.751
  • Jean-Louis Colliot-Thélène, Conjectures de type local-global sur l’image des groupes de Chow dans la cohomologie étale, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 1–12 (French). MR 1743234, DOI 10.1090/pspum/067/1743234
  • J.-L. Colliot-Thélène, Quadrics over function fields in one (or more) variables over a $p$-adic field, Exposé à l’Institut Hausdorff, Bonn, (2009) : http://www.math.u-psud.fr/~colliot/liste-cours-exposes.html, 18.
  • Jean-Louis Colliot-Thélène, Raman Parimala, and Venapally Suresh, Patching and local-global principles for homogeneous spaces over function fields of $p$-adic curves, Comment. Math. Helv. 87 (2012), no. 4, 1011–1033. MR 2984579, DOI 10.4171/CMH/276
  • Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
  • David Harbater and Julia Hartmann, Patching over fields, Israel J. Math. 176 (2010), 61–107. MR 2653187, DOI 10.1007/s11856-010-0021-1
  • David Harbater, Julia Hartmann, and Daniel Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), no. 2, 231–263. MR 2545681, DOI 10.1007/s00222-009-0195-5
  • Günter Harder, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen, Jber. Deutsch. Math.-Verein. 70 (1967/68), no. Heft 4, Abt. 1, 182–216 (German). MR 242838
  • H. Hasse, Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen, J. Reine Angew. Math. 152 (1923), 129–148.
  • H. Hasse, Über die Äquivalenz quadratischer Formen im Körper der rationalen Zahlen, J. Reine Angew. Math. 152 (1923), 205–224.
  • H. Hasse, Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper, J. Reine Angew. Math. 153 (1924), 113–130.
  • H. Hasse, Äquivalenz quadratischer Formen in einem beliebigen algebraischen Zahlkörper, J. Reine Angew. Math. 153 (1924), 158–162.
  • D. R. Heath-Brown, Zeros of systems of $\mathfrak {p}$-adic quadratic forms, Compos. Math. 146 (2010), no. 2, 271–287. MR 2601629, DOI 10.1112/S0010437X09004497
  • K. Hensel, Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung 6 (1897), 83–88.
  • K. Hensel, Zahlentheorie, Göschen, Berlin, (1913).
  • D. Hilbert, Über die Theorie des relativquadratischen Zahlkörpers, Mathematische Annalen 51(1) (1898), 1-127.
  • Detlev W. Hoffmann and Jan Van Geel, Zeros and norm groups of quadratic forms over function fields in one variable over a local non-dyadic field, J. Ramanujan Math. Soc. 13 (1998), no. 2, 85–110. MR 1666433
  • David B. Leep, The $u$-invariant of $p$-adic function fields, J. Reine Angew. Math. 679 (2013), 65–73. MR 3065154, DOI 10.1515/crelle.2012.029
  • M. Lieblich, R. Parimala and V. Suresh, Colliot-Thélène’s conjecture and finiteness of $u$-invariants (2012), arXiv preprint arXiv:1209.6418.
  • Carl-Erik Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, University of Uppsala, Uppsala, 1940 (German). Thesis. MR 0022563
  • H. Minkowski, Mémoire sur la théorie des formes quadratiques à coëfficients entiers. Paris. Impr. nationale. Extrait des Mém. présentés par divers savants à l’ac. des sc. de l’Inst. de France 29, (1884).
  • H. Minkowski, Über die Bedingungen, unter welchen zwei quadratische Formen mit rationalen Coefficienten ineinander rational transformiert werden können, J. Reine Angew. Math. 106 (1890), 5–26.
  • Raman Parimala and V. Suresh, The $u$-invariant of the function fields of $p$-adic curves, Ann. of Math. (2) 172 (2010), no. 2, 1391–1405. MR 2680494, DOI 10.4007/annals.2010.172.1397
  • Emmanuel Peyre, Obstructions au principe de Hasse et à l’approximation faible, Astérisque 299 (2005), Exp. No. 931, viii, 165–193 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167206
  • Hans Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12–18 (German). MR 9381, DOI 10.1515/crll.1942.184.12
  • Jean-Pierre Serre, Cohomologie galoisienne: progrès et problèmes, Astérisque 227 (1995), Exp. No. 783, 4, 229–257 (French, with French summary). Séminaire Bourbaki, Vol. 1993/94. MR 1321649
  • Alexei N. Skorobogatov, Beyond the Manin obstruction, Invent. Math. 135 (1999), no. 2, 399–424. MR 1666779, DOI 10.1007/s002220050291
  • André Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA, 1984. An approach through history; From Hammurapi to Legendre. MR 734177, DOI 10.1007/978-0-8176-4571-7
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): ???
  • Retrieve articles in all journals with MSC (2010): ???
Additional Information
  • R. Parimala
  • Affiliation: Department of Mathematics & Computer Science, Emory University, 400 Dowman Drive NE, Atlanta, Georgia 30322
  • MR Author ID: 136195
  • Email: parimala@mathcs.emory.edu
  • Received by editor(s): August 26, 2013
  • Received by editor(s) in revised form: October 28, 2013
  • Published electronically: March 17, 2014
  • Additional Notes: The author is partially supported by National Science Foundation grant DMS-1001872
    (Based on the AWM Noether lectures, delivered at the 2013 AMS-MAA joint meeting at San Diego)
  • © Copyright 2014 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 51 (2014), 447-461
  • MSC (2010): Primary ???
  • DOI: https://doi.org/10.1090/S0273-0979-2014-01443-0
  • MathSciNet review: 3196794