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A HASSE PRINCIPLE

FOR QUADRATIC FORMS OVER FUNCTION FIELDS

R. PARIMALA

Abstract. We describe the classical Hasse principle for the existence of non-
trivial zeros for quadratic forms over number fields, namely, local zeros over
all completions at places of the number field imply nontrivial zeros over the
number field itself. We then go on to explain more general questions related to
the Hasse principle for nontrivial zeros of quadratic forms over function fields,
with reference to a set of discrete valuations of the field. This question has
interesting consequences over function fields of p-adic curves. We also record
some open questions related to the isotropy of quadratic forms over function

fields of curves over number fields.

1. Introduction

In 1882, Minkowski, who was still a student at Königsberg, wrote a paper on
rational quadratic forms ([22]) which was awarded the mathematics prize by the
French Academy of Sciences. In this paper Minkowski established the foundations
of the theory of integral quadratic forms, with the aim of determining the number of
representations of a natural number as a sum of five squares. From this long article
he extracted, in a letter to Adolf Hurwitz in 1890 ([23]), necessary and sufficient
conditions for two rational forms to be isometric. This is achieved by associating to
any nonsingular form f a set of invariants Cp(f), one for each prime p, which can
take values 1 or −1. If f is an integral form, these invariants Cp(f) only depend
on the reduction of f modulo an explicitly given, sufficiently high power of p. Two
forms are isometric if and only if they have the same dimension and signature, the
same discriminant up to squares, and the same invariants Cp.

Hensel, in 1897 ([15]) ushered in the fields of p-adic numbers, in analogy with
the fields of formal power series, with a grand vision for the parallel development of
algebraic number theory and analytic function theory. Hensel’s 1913 book Zahlen-
theorie ([16]) in spite of its elementary character, defines p-adic numbers (in fact
m-adic numbers for any integer m > 1), and it explains how to compute with them
and how they can be used in the study of binary and ternary quadratic forms.

Hasse, after discovering Hensel’s book in an antiquarian bookshop, decided to
leave Göttingen and continue his studies in Marburg with Hensel. Hensel’s questions
led him to the proof of the local-global theorem for rational n-dimensional forms
([10]), saying that a rational quadratic form has a nontrivial zero if and only if it
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has a nontrivial zero in any Qp and in R. This result was immediately followed by
another ([11]), saying that two rational quadratic forms are equivalent if and only
if they are equivalent over R and over all Qp. Hasse introduced what is now termed
the Hasse invariant as a product of Hilbert symbols and proved that Minkowski’s
invariants Cp were equivalent to his own. Hasse’s work was a significant milestone
in the study of rational quadratic forms. The first generalization came the next year
when Hasse proved the same theorems for quadratic forms over algebraic number
fields ([12], [13]). A few years later an important result was achieved in a different
direction, when Brauer, Hasse, and Noether proved (in a paper dedicated to Hensel)
that a central simple algebra over an algebraic number field, which is a locally a
matrix algebra, is in fact a matrix algebra ([1]).

These results can be expressed by saying that certain varieties defined over a
number field k have a rational point provided they have points over all the com-
pletions of k. Theorems of this kind have come to be termed as Hasse principles.
Such a Hasse principle for a general smooth projective variety fails, as is seen from
examples of genus one curves admitting local points over kvs but with no rational
points. These examples go back to Reichardt [26] and Lind [21]. Manin introduced
an obstruction, using the Brauer group, to the validity of the Hasse principle for
the existence of rational points for varieties over number fields. This obstruction is
now known as the Brauer–Manin obstruction. There has been extensive study of
when this obstruction is the only obstruction to the Hasse principle (cf. [2], [25]).

Let k be a p-adic field. Then every quadratic form in five variables over k has a
nontrivial zero. It has been recently settled that every quadratic form in at least
nine variables over the function field of a curve over k has a nontrivial zero ([14],
[19], [24]). However, analogous questions for function fields of curves over number
fields are wide open. More precisely, let k be a totally imaginary number field.
Thanks to the Hasse–Minkowski theorem, every five dimensional quadratic form
over k has a nontrivial zero. Let F be the function field of a smooth projective
curve over k. The completion of F at a divisorial discrete valuation (cf. Section 8)
of F has a global field as its residue field. In particular, every nine dimensional form
over the completion Fv has a nontrivial zero. If the Hasse principle were true for
quadratic forms over F with respect to its divisorial discrete valuations, it would
follow that every nine dimensional quadratic form over F admits a nontrivial zero.

Thus, the Hasse principle questions for function fields of varieties over number
fields have deep consequences concerning the arithmetic of quadratic forms over
these fields. Beginning with the results of Hasse and Minkowski, we trace in this
article the history of the Hasse principle for existence of nontrivial zeros of quadratic
forms over function fields.

2. Notation

Let k be a field of characteristic not 2. A quadratic form q on a finite dimensional
vector space V over k is a map q : V → k satisfying

(1) q (λv) = λ2q(v) ∀ λ ∈ k, v ∈ V .
(2) The map bq : V × V → k, given by

bq(v, w) =
q(v + w)− q(v)− q(w)

2
,

is bilinear.
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The form q is said to be nondegenerate if the associated bilinear form bq is non-
degenerate. For a choice of basis {ei}1≤i≤n for V , bq is represented by a symmetric
n× n matrix

A(q) = (bq (ei, ej))1≤i≤n .

Nondegeneracy of q is the same as invertibility of A(q). The quadratic form q
is represented with respect to this basis by a homogeneous polynomial∑

1≤i≤j≤n aijXiXj of degree 2 with aij = 2bq (ei, ej) for i �= j and aii = bq (ei, ei).

Two quadratic forms (V1, q1) and (V2, q2) are isomorphic if there is an isomor-
phism of the underlying vector spaces ϕ : V1

∼= V2 with q2 (ϕ(v)) = q1(v). This is
equivalent to the existence of an invertible n× n matrix T such that

(1) A (q1) = T tA (q2)T.

Over fields of characteristic not 2, the study of quadratic forms up to isomorphism
is equivalent to the study of symmetric matrices up to congruence (see equation
(1)). Further, one can choose an orthogonal basis such that the form is diagonal :

q =
∑

1≤i≤n

biX
2
i , bi ∈ k.

If the form is nondegenerate, all bi are nonzero and such a form is denoted by
〈b1, b2, . . . , bn〉. The orthogonal sum of two quadratic forms (V1, q1) and (V2, q2) is
the form q1 ⊥ q2 : V1 ⊕ V2 → k defined by

(q1 ⊥ q2) (v1, v2) = q1 (v1) + q2 (v2) , v1 ∈ V1, v2 ∈ V2.

The matrix associated to q1 ⊥ q2 is the block matrix(
A (q1) 0

0 A (q2)

)
.

A scalar λ ∈ k is represented by q if there is a nonzero vector v ∈ V such that
q(v) = λ.

Example 2.1. The form X2
1 +X2

2 over Q represents 5 but not 3.

A form q is isotropic if there is a nonzero vector v ∈ V such that q(v) = 0. The
form is anisotropic if it is not isotropic.

Example 2.2. A typical isotropic form is X2
1 −X2

2 , is called the hyperbolic plane,
and is denoted by h.

3. Rational quadratic forms

and a theorem of Minkowski and Hasse

Let Q be the field of rational numbers. A basic question is to determine when a
quadratic form over Q has a nontrivial zero. Let q be a quadratic form over Q of
dimension n, represented by a1X

2
1 + · · · + anX

2
n, ai ∈ Q�. By changing ai in their

square classes, which does not affect the isomorphism class of q, we may assume
that the ai are integers. Since multiplying q by a nonzero scalar λ ∈ Q does not
affect the isotropy of q, we assume after scaling, that gcdi (ai) = 1. Such a form
is called a primitive quadratic form. We also assume that the ai are square-free
integers.
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Helmut Hasse

(1898–1979)

Hermann Minkowski

(1864–1909)

Given a nontrivial zero (λ1, λ2, . . . , λn) of q over Q, one can find a zero (μ1, μ2,
. . . , μn) of q with μi ∈ Z, 1 ≤ i ≤ n, and gcdi (μi) = 1. Such a zero is called a prim-
itive zero of q. An element (λ1, λ2, . . . , λn) ∈ Zn is called a primitive congruence
solution modulo m if gcdi(λi) is coprime to m and

∑
1≤i≤n aiλ

2
i ≡ 0 mod m.

Let q be a primitive quadratic form over Q defined by q =
∑

1≤i≤n aiX
2
i . The

following is a set of necessary conditions for q to be isotropic.

• q is isotropic over R, the field of real numbers, i.e., there is a change in the
signs of the ai. (Such a form is called an indefinite quadratic form.)

• q has primitive congruence solutions modulo m for every integer m ≥ 2.

Example 3.1. q = X2 + Y 2 − 7Z2. The form q is indefinite but has no primitive
congruence solutions modulo 4. Hence q is not isotropic over Q.

The first sufficient conditions for a quadratic form q over Q to represent zero
nontrivially were due to Legendre for the case when the dimension of q is 3, towards
the end of the eighteenth century ([29, Chapter IV, Appendix I]). The sufficient
conditions for a general quadratic form q over Q were due to Hasse and Minkowski.

Theorem 3.2 (Hasse and Minkowski). A primitive quadratic form q over Q has a
nontrivial zero provided it is indefinite and admits primitive congruence solutions
modulo n for every integer n ≥ 2.

The Hasse–Minkowski theorem actually provides an efficient recipe to verify
isotropy. Let q =

∑
1≤i≤n aiX

2
i , with ai ∈ Z square-free and gcdi (ai) = 1.

Proposition 3.3. For a primitive quadratic form q =
∑

1≤i≤n aiX
2
i , where n ≥ 3

and ai square-free integers, to be isotropic, it suffices to verify the following:

• There is a change in the signs of the ai.
• There is a primitive congruence solution modulo p2 for the finite set of odd
primes p dividing any of the ai.

• There is a primitive congruence solution modulo 16.

We shall prove this using Hensel’s lemma and the Hasse–Minkowski theorem in
Section 5.
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4. p-adic fields

We now begin by describing Newton’s method for finding rational approxima-
tions to real numbers to motivate Hensel’s construction of the field of p-adic num-
bers.

Consider the equation x2 = 7. This equation has no solutions in Q. We construct
a solution in R as a limit of approximate solutions in Q.

• 0th approximation:
X0 = 2.

• 1st approximation:
To correct X0, we write X1 = X0 + h1.

X2
1 = 7 gives us that X2

0+2X0h1+h2
1 = 7. Solving the equation ignoring

the h2
1 term, we get

h1 =
3

4
, X1 =

11

4
.

• 2nd approximation:
To correct X1, we write X2 = X1 + h2 and solve for X2

2 = 7 ignoring the
h2
2 term, and we end up with

h2 = − 9

88
, X2 =

233

88
.

Continuing this process, we get a sequence of rational numbers

X0 = 2,

X1 =
11

4
= 2.75,

X2 =
233

88
= 2.64772727 · · · ,

X3 =
108497

41008
= 2.6457520483 · · · ,

· · · ,

converging to
√
7 = 2.6457513110 · · · in R.

The field R of real numbers is the completion of Q with respect to the usual
distance metric. We shall describe the p-adic metric which gives rise to the field of
p-adic numbers as the completion of Q for the p-adic metric.

To compare whether two integers x and y are equal, we look at the difference
x− y.

• If |x− y| is less than 1
n for every integer n ≥ 1, then x = y.

• For a given prime p, if x− y is divisible by pn for every integer n ≥ 1, then
x = y.

Thus high divisibility by prime powers is another test for the equality of x and
y. Let us look at x2 = 7 again. We construct a sequence {Xn} of integers such
that X2

n − 7 is divisible by 3n+1.

• 0th approximation:
X0 = 2. Then X2

0 − 7 is divisible by 3.
• 1st approximation:
X1 = X0+3h1. Pick h1 so thatX

2
1−7 is divisible by 32, i.e., 4+12h1+9h2

1−7
is divisible by 9. Pick h1 = 1, X1 = 5.
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• 2nd approximation:
X2 = X1 + 32h2. Pick h2 so that X2

2 − 7 is divisible by 33. Pick h2 =
1, X2 = 14.

Iterating this process, we get a sequence {Xn} of integers:

X0 = 2,

X1 = 2 + 3 = 5,

X2 = 2 + 3 + 32 = 14,

X3 = 2 + 3 + 32 + 2× 33 = 68,

· · · ,
Xn = 2 + 3h1 + 32h2 + · · ·+ 3n−1hn−1,

· · · ,

where 0 ≤ hi ≤ 2 for each i, satisfying 3n+1|(X2
n − 7) for each n.

If the series 2 + 3h1 + 32h2 + · · · + 3n−1hn−1 + · · · is to converge with respect
to an absolute value, it should treat integers divisible by high powers of 3 as small!
This is the 3-adic absolute value ||·||3 on Q.

For any nonzero integer a, define the p-adic valuation νp as follows:
Let pn be the highest power of p dividing a. Set νp(a) = n. For a rational

number a
b , where a, b ∈ Z, both nonzero, set νp

(
a
b

)
= νp(a)− νp(b).∣∣∣∣∣∣a

b

∣∣∣∣∣∣
p
=

(
1

p

)νp(
a
b )

.

||·||p is the p-adic absolute value on Q, which defines a metric on Q called the

p-adic metric. For an integer a �= 0, ||a||p is small if a high power of p divides a.

Definition 4.1. The field Qp of p-adic numbers is the completion of Q with respect
to the p-adic metric.

Every series a0 + a1p+ a2p
2 + · · ·+ anp

n + · · · , where ai ∈ Z, converges in Qp.

Example 4.2.

1 + p+ p2 + p3 + · · ·+ pn + · · · = 1

1− p
∈ Qp.

The solution X = 2+ 3h1 + 32h2 + · · ·+ 3nhn + · · · constructed above defines a
3-adic number X whose square is 7 in Q3.

5. Complete fields and Hensel’s lemma

We relate congruence solutions modulo pn to solutions in p-adic completions.
This is achieved via Hensel’s lemma, which asserts lifting of congruence solutions
to solutions in the completion.

Definition 5.1. A discrete valuation on a field k is an onto function ν : k� → Z

satisfying

ν(ab) = ν(a) + ν(b),

ν(a+ b) ≥ min{ν(a), ν(b)}.
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The valuation ring of ν is the ring

O = {x ∈ k� |ν(x) ≥ 0} ∪ {0}.
The ring O is a local domain with maximal ideal generated by any element π ∈ O

with ν(π) = 1. Such an element π is called a parameter for ν. The residue field of
the valuation ν is κ(ν) = O/(π).

The valuation ν gives rise to an absolute value on k as follows. Fix a real number
λ with 0 < λ < 1, and set

|| x ||ν = λν(x), x ∈ k \ {0},
|| 0 ||ν = 0.

This is a non-archimedean absolute value, i.e.,

|| x+ y ||ν ≤ max
{
|| x ||ν , || y ||ν

}
(better than the usual triangle inequality). Let kν denote the completion of k with
respect to the metric induced by the norm || · ||ν .

Example 5.2. The p-adic valuation νp onQ is a discrete valuation. The completion
of Q with respect to νp is the field Qp of p-adic numbers.

Remark 5.3. Any discrete valuation on Q is a p-adic valuation.

Example 5.4. Let Fq(t) denote the rational function field in one variable over the
finite field Fq. Define νt : Fq(t)

� → Z as follows.
For f(t) ∈ Fq[t], write

f(t) = tn (a0 + a1t+ · · ·+ amtm) , ai ∈ Fq, a0 �= 0.

Set νt(f) = n and extend νt to Fq(t) \ {0} by setting νt

(
f
g

)
= νt(f)− νt(g) for

f, g ∈ Fq[t], both nonzero. The function νt is a discrete valuation on Fq(t) with t
as a parameter. The completion of Fq(t) at νt is isomorphic to Fq((t)), the field

of Laurent series in t. (A Laurent series is a formal sum amt−m + am−1t
−(m−1) +

· · ·+ a1t
−1 + a0 + b1t+ b2t

2 + · · ·+ bnt
n + · · · , where ai, bi ∈ Fq.)

The set of discrete valuations of Fq(t) is in bijection with monic irreducible
polynomials in Fq[t] together with

1
t .

Let (k, ν) be a complete discrete valued field with ring of integersOν , a parameter
π and residue field κ of characteristic p. A quadratic form q =

∑
1≤i≤n aiX

2
i , ai ∈ k,

is primitive if aj ∈ Oν for each j and π does not divide ai for some i. We may
also assume that π2 does not divide ai for any i. A zero (λ1, λ2, . . . , λn) of q is
primitive if λj ∈ Oν for each j and at least one λi is a unit in Oν . A tuple
(λ1, λ2, . . . , λn) ∈ kn is said to be a primitive zero modulo πm of q if λj ∈ Oν for
each j, at least one λi is a unit in Oν and

∑
1≤i≤n aiλ

2
i ≡ 0 mod πm. Define

εp =

{
1 if charκ �= 2,
2ν(2) + 1 if charκ = 2.

Lemma 5.5 (Hensel’s square criterion). Let λ ∈ Ov be a unit, and let charκ = p.
Then λ is a square provided λ is a square modulo πεp .

Theorem 5.6 (Hensel). Let q =
∑

1≤i≤n aiX
2
i be a primitive quadratic form over

k with ν (ai) ≤ 1 for every i. Suppose that q has a primitive zero modulo πεp+1.
Then q has a nontrivial zero in k.
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Proof. This is a consequence of Hensel’s square criterion. Let λ = (λ1, λ2, . . . , λn)
be a primitive zero modulo πεp+1. Since q is a primitive form and λ is a primitive
zero modulo πεp+1, ai and λj are units in Ov for some i and j.

Case I. i = j.
Assume without loss of generality that a1 and λ1 are units. Set c = a2λ

2
2+ · · ·+

anλ
2
n. Then c is a unit as a1λ

2
1 + c ≡ 0 mod πεp+1. Also note that λ2

1 ≡ −ca−1
1

mod πεp .
By Hensel’s square criterion, −ca−1

1 is a square in k, say θ2 = −ca−1
1 for some

θ ∈ k. Then (θ, λ2, λ3, . . . , λn) is a nontrivial zero of q in k.

Case II. ai and λi are not units simultaneously for 1 ≤ i ≤ n.
Assume without loss of generality that λ1 is a unit and a1 = πa′1 with a′1 a unit.

Set c = a2λ
2
2 + · · · + anλ

2
n. Then πa′1λ

2
1 + c ≡ 0 mod πεp+1, which implies that π

divides c. Set c = πc′. Then a′1λ
2
1 + c′ ≡ 0 mod πεp . Hence c′ must be a unit. By

Hensel’s square criterion, −c′a′−1
1 is a square in k, say θ2 = −c′a′−1

1 for some θ ∈ k.
Then (θ, λ2, λ3, . . . , λn) is a nontrivial zero of q in k. �
Remark 5.7. Let p be an odd prime, and let q =

∑
1≤i≤n aiX

2
i be a primitive

quadratic form where n ≥ 3 with each ai ∈ Z and coprime to p. Then q has a
nontrivial zero in Qp.

Proof. A simple counting argument which goes back to Euler yields the fact that
forms of rank at least 3 are isotropic over finite fields. Thus q has a primitive zero
modulo p, say (λ1, λ2, λ3, . . . , λn). Now we are back in Case I of the proof of the
previous theorem. �
Proof of Proposition 3.3. Remark 5.7 tells us that q has nontrivial zeros in Qp for
odd primes p which do not divide any of the ai. The hypotheses of Proposition
3.3 imply that q has primitive zeros modulo pεp+1 for each prime p dividing any
of the ai and for p = 2. The theorem of Hensel (Theorem 5.6) implies that q has
a nontrivial zero in each corresponding Qp. Thus we have primitive zeros modulo
pm for every prime p and every integer m ≥ 1. This in turn gives primitive zeros
modulo N for every integer N ≥ 2 by the Chinese remainder theorem. Since q is
given to be an indefinite form, there is a nontrivial zero of q in R. By the Hasse–
Minkowski theorem (Theorem 3.2), we can conclude that there exists a nontrivial
zero of q in Q.

The Hasse–Minkowski theorem can also be stated as follows:

Theorem 5.8 (Hasse and Minkowski). Let q be a primitive quadratic form over
Q. If q is indefinite and isotropic over Qp for every prime p, then q is isotropic
over Q.

6. Hensel’s vision

In his 1908 paper, Neue Grundlagen der Arithmetik in Crelle’s journal, Hensel
defined the p-adic numbers and proved the result that later became known as
Hensel’s lemma.

Even earlier, Hensel announced these results at the 1897 German Mathematical
Association annual meeting along with a grand vision for the parallel development
of algebraic number theory (i.e., the study of number fields) and analytic function
theory (i.e., the study of function fields). The number field/function field analogy
has seen tremendous development over the last century.
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Kurt Hensel

(1861–1941)

“The analogy between the results of the theory of algebraic functions
of one variable and of algebraic numbers has struck me for several
years, and could suggest replacing the decomposition of algebraic
numbers into ideal prime factors with a simpler way of treatment,
which is completely equivalent to the expansion of algebraic func-
tions into power series in the neighborhood of a point.” (Jahres-
bericht der Deutschen Mathematiker-Vereinigung 6, 83–88.)

For a prime p and q = pr, let Fq denote the finite field with q elements. A global
field k is a finite extension of Q (a number field) or a finite extension of Fp(t) (a
function field). A local field is a completion of a global field at a place, i.e., at a
discrete valuation or at an archimedean absolute value. It is isomorphic to R or C
(archimedean completions) or a finite extension of Qp or Fp((t)) (non-archimedean
completions).

Let k be a global field, and let Ωk be the set of all discrete valuations of k. Let
Vk denote the set of all places of k.

Example 6.1.

• VFq(t) = ΩFq(t) is in bijection with the set of monic irreducible polynomials

in Fq[t] together with
1
t .

• VQ is in bijection with the set of primes together with the real place ∞.

The Hasse–Minkowski theorem holds for all global fields.

Theorem 6.2. Let q be a quadratic form over a global field k. If q is isotropic over
kν for every place ν ∈ Vk, then q is isotropic over k.

The above theorem for quadratic forms in three variables over number fields goes
back to Hilbert ([17]).
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7. Hasse principle for varieties

Let k be any field with char (k) �= 2. The equation
∑

1≤i≤n aiX
2
i = 0, where

ai ∈ k� and n ≥ 3, defines a quadric hypersurface X ⊂ Pn−1
k which is a smooth

projective variety over k. The varietyX has a k-rational point provided the defining
quadratic form is isotropic. Let X(k) denote the set of k-rational points of X. The
Hasse–Minkowski theorem can be reformulated as

Theorem 7.1. Let X be a smooth projective quadric over a global field k. If
X (kν) �= ∅ for all ν ∈ Vk, then X(k) �= ∅.

For a variety Y defined over a global field k, we say that Y satisfies the Hasse
principle or a local-global principle if whenever Y (kν) �= ∅ for all ν ∈ Vk, Y (k) �=
∅. Quadrics are examples of varieties over number fields which satisfy the Hasse
principle. These are projective homogeneous spaces. More generally, one has

Theorem 7.2 (Harder [9]). Let G be a connected linear algebraic group defined
over a number field k, and let X be a projective homogeneous space under G over
k. Then X satisfies Hasse principle for the existence of rational points.

8. Hasse principle for function fields and the u-invariant

It is natural to look for a Hasse principle for quadrics defined over a more general
field with respect to a set of discrete valuations of the field. This has interesting
consequences for determining the u-invariant.

Let E be any field with char (E) �= 2. The dimension of a quadratic form (V, q) is
the dimension of the underlying vector space V . If q is nondegenerate, the number
of variables in the polynomial representing q with respect to a basis of V is equal
to the dimension of q.

Definition 8.1. The u-invariant of a field E is defined as

u(E) = sup{dim(q) | q anisotropic quadratic form over E}

Example 8.2. Let F be a field with char (F ) �= 2. Let k = F ((t)) be the field of
Laurent series over F . Since every power series of the form 1 + a1t + a2t

2 + · · · +
ant

n + · · · , where ai ∈ F is a square in F [[t]], any f ∈ F ((t)) can be written as

f = λg2, λ ∈ F, g ∈ F ((t)) or f = λtg2, λ ∈ F, g ∈ F ((t)).

A quadratic form q over F ((t)) can be diagonalised as q1 ⊥ tq2, where q1 =
〈λ1, λ2, . . . , λr〉 and q2 = 〈μ1, μ2, . . . , μs〉 with λi, μj ∈ F . The form q is isotropic if
and only if q1 or q2 is isotropic over F . Thus,

u
(
F ((t))

)
= 2u(F ).

Example 8.3. Let Fq be a finite field with q odd. There is a unique nonsquare
class, i.e., there is a nonsquare ε ∈ F�

q such that every a ∈ Fq is either a square or
ε times a square. It follows that u (Fq) = 2.

Example 8.4. Let k be a local field which is not isomorphic to R or C. Using
ideas similar to those in Example 8.2, it can be shown that u(k) = 4.

Example 8.5. Let k be a global field without an ordering. Then by the Hasse–
Minkowski theorem (Theorem 6.2), u(k) = 4.
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We would like to study the finiteness of the u-invariant of function fields of curves
over p-adic fields or number fields via the Hasse principle with respect to divisorial
discrete valuations which are defined as follows:

Let k be a p-adic field or a number field, and let X be a smooth projective
geometrically integral curve over k. Let K be the function field of X. Let O denote
the integers in k. A divisorial discrete valuation of K is a discrete valuation of K
centered on a codimension 1 point of some regular proper model X/O of X.

8.1. Function fields of curves over p-adic fields. Let K = Qp(t). Let Ω0
K be

the set of all divisorial discrete valuations of K. For ν ∈ Ω0
K , let Kν denote the

completion of K at ν.

• If ν is trivial on Qp, then Kν is isomorphic to k((t)) where k is a finite
extension of Qp. The residue field κ(ν) at ν is isomorphic to k.

• If ν restricts to the p-adic valuation on Qp, then Kν is a complete discrete
valued field with residue field κ(ν) a finite extension of Fp(t).

In either case, by the Hasse–Minkowski theorem, u
(
κ(ν)

)
= 4 so that u (Kν) = 8.

If the Hasse principle holds for quadrics over K with respect to Ω0
K , it would

follow that u
(
Qp(t)

)
= 8, i.e., every quadratic form in at least nine variables over

Qp(t) would have a nontrivial zero. Whether u (Qp(t)) = 8 was a longstanding
open question (cf. [27, pp. 248–249]). Even the finiteness of u

(
Qp(t)

)
remained

open until the late 1990s. The first finiteness results were due to Merkurjev and
independently to Hoffman and VanGeel ([18]). We refer to [4] for a brief summary
of results concerning the u-invariant of function fields of p-adic curves. We have

• u
(
Qp(t)

)
= 8 for p �= 2 ([24]).

• u
(
Qp(t)

)
= 8 for all p ([14], [19]).

The theorems quoted above do not invoke a Hasse principle for quadrics. A
proof that u

(
Qp(t)

)
= 8 for p �= 2 via the Hasse principle is due to Colliot-Thélène,

Parimala, and Suresh ([5]):

Theorem 8.6. Let K be a function field in one variable over a p-adic field with
p �= 2. Then the Hasse principle holds for isotropy of quadrics in at least three
variables over K with respect to the set of divisorial discrete valuations of K.

The proof of the above theorem uses patching techniques and theorems developed
by Harbater, Hartman, and Krashen ([7], [8]).

8.2. Function fields of curves over number fields. Let k be a totally imaginary
number field. There are open questions concerning the u-invariant of function fields
in one variable over k.

Question I. Is u
(
Q(

√
−1)(t)

)
< ∞?

Question I′. Is u
(
Q(

√
−1)(t)

)
= 8?

Even Question I is wide open. Let us look at these questions from the viewpoint
of the Hasse principle.

Let K = Q
(√

−1
)
(t), and let Ω0

K be the set of divisorial discrete valuations of

K. Let ν ∈ Ω0
K .

• If ν is trivial on Q
(√

−1
)
, then Kν � k((t)) where k is the residue field at

ν which is a finite extension of Q
(√

−1
)
.
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• If ν restricts to a discrete valuation on Q
(√

−1
)
extending the p-adic val-

uation of Q, then Kν is a complete discrete valued field with residue field
κ(ν) a finite extension of Fp(t).

In either case, by the Hasse–Minkowski theorem, u
(
κ(ν)

)
= 4 and hence u (Kν) =

8. If the Hasse principle were true for quadratic forms over K with respect to Ω0
K ,

one would get u
(
Q

(√
−1

)
(t)

)
= 8. This seems to be a difficult question. However,

there are some conditional results in this direction. In order to explain these results,
we begin with the definition of the Brauer–Manin obstruction for the existence of
zero-cycles on a smooth projective variety.

8.3. The Brauer–Manin obstruction. The Brauer group of a field was intro-
duced by Richard Brauer to study finite dimensional division algebras over the
field.

A central simple algebra over a field E is a finite dimensional E-algebra which
becomes isomorphic to a matrix algebra over the algebraic closure of E. Given a
central simple algebra A over k, there is a finite dimensional central division algebra
DA over k, uniquely determined by A up to isomorphism, such that A ∼= Mr (DA).
The Brauer equivalence on central simple algebras is defined as follows: A ∼ B if
and only if Mn(A) ∼= Mm(B) for some integers m,n ≥ 1, which happens if and
only if DA

∼= DB . A Brauer equivalence class is represented by a central division
algebra over E. Brauer equivalence classes of central simple algebras over E form
an abelian group under the tensor product operation, called the Brauer group of
E, denoted Br(E).

The following reciprocity (exact) sequence for a global field k is due (indepen-
dently) to Hasse, Brauer, and Noether and to Albert:

1 −→ Br(k) −→
⊕
ν∈Vk

Br (kν)
∑

invν−−−−→ Q/Z −→ 0

Let D be a finite dimensional central division algebra over k of dimension n2. Let
XD be the Brauer–Severi variety associated to D introduced by Châtelet, namely,
the scheme of left ideals of D of dimension n over k. The variety XD has a rational
point over an extension E of k if and only if D ⊗k E is a matrix algebra. In view
of the above reciprocity sequence, one gets a Hasse principle for XD:

XD (kν) �= ∅ ∀ ν ∈ Vk =⇒ XD(k) �= ∅.
Let X be a smooth projective geometrically integral variety defined over a field

E. Let Z0(X) be the group of zero cycles on X, i.e., the free abelian group on the

Helmut Hasse Richard Brauer Emmy Noether A. Adrian Albert

(1898–1979) (1901–1977) (1882–1935) (1905–1972)
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set of closed points of X. The degree map deg : Z0(X) → Z is defined as

deg

(∑
i

nixi

)
=

∑
i

ni[κ (xi) : E],

where κ (xi) denotes the residue field at xi. Let Z
1
0 (X) denote the set of zero cycles

of degree 1 on X. Let Br(X) denote the Brauer group of the scheme X ([6]). Every
element α in Br(X) is represented by a sheaf of Azumaya algebras on X. For a
closed point x in X, let αx ∈ Br (κ(x)) denote the specialization of α at x. Given
a zero cycle z =

∑
i nixi on X, we define αz ∈ Br(k) to be

∑
i ni coresκ(xi)/k (αxi

).
Let k be a number field, and let X be a smooth projective geometrically integral

variety over k. By the reciprocity sequence, given α ∈ Br(X) and a zero cycle z on
X,

∑
ν invν (αz) = 0. We look for a local-global principle for the existence of zero

cycles of degree 1 on X. An obstruction is given by the Brauer–Manin set:

⎛
⎝ ∏

ν∈Vk

Z1
0 (Xkν )

⎞
⎠

Br(X)

=

{
{zν}ν∈Vk , zv ∈ Z1

0 (Xkν ) ,
∑
ν

invν (αzν ) = 0 ∀ α ∈ Br(X)

}
.

We have

Z1
0 (X) ⊆

( ∏
ν∈Vk

Z1
0 (Xkν

)

)Br(X)

⊆
∏
ν∈Vk

Z1
0 (Xkν

) .

We say that the Brauer–Manin obstruction is the only obstruction for the exis-
tence of zero cycles on X if( ∏

ν∈Vk

Z1
0 (Xkν

)

)Br(X)

�= ∅ =⇒ Z1
0 (X) �= ∅.

It is known that the analogous Brauer–Manin obstruction for the existence of
rational points is not the only obstruction to the existence of rational points on X
(Skorobogatov [28]).

Colliot-Thélène Conjecture ([3]). Let X be a smooth projective geometrically
integral variety over a number field k. Then the Brauer–Manin obstruction is the
only obstruction to the existence of zero-cycles of degree 1 on X.

We have the following conditional result for the finiteness of the u-invariant of
function fields of curves over number fields.

Theorem 8.7 (Lieblich, Parimala, and Suresh ([20])). Suppose that Colliot-Thélène
conjecture is true. Let K be a function field in one variable over a number field.
Then the u-invariant of K is finite.
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[17] D. Hilbert, Über die Theorie des relativquadratischen Zahlkörpers, Mathematische Annalen
51(1) (1898), 1-127.

[18] Detlev W. Hoffmann and Jan Van Geel, Zeros and norm groups of quadratic forms over
function fields in one variable over a local non-dyadic field, J. Ramanujan Math. Soc. 13
(1998), no. 2, 85–110. MR1666433 (2000c:11058)

[19] David B. Leep, The u-invariant of p-adic function fields, J. Reine Angew. Math. 679 (2013),
65–73. MR3065154

[20] M. Lieblich, R. Parimala and V. Suresh, Colliot-Thélène’s conjecture and finiteness of u-
invariants (2012), arXiv preprint arXiv:1209.6418.

[21] Carl-Erik Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven
vom Geschlecht Eins (German), Thesis, University of Uppsala, 1940 (1940), 97. MR0022563
(9,225c)

http://www.ams.org/mathscinet-getitem?mr=1225663
http://www.ams.org/mathscinet-getitem?mr=1225663
http://www.ams.org/mathscinet-getitem?mr=1743234
http://www.ams.org/mathscinet-getitem?mr=1743234
http://www.math.u-psud.fr/~colliot/liste-cours-exposes.html
http://www.math.u-psud.fr/~colliot/liste-cours-exposes.html
http://www.ams.org/mathscinet-getitem?mr=2984579
http://www.ams.org/mathscinet-getitem?mr=0244269
http://www.ams.org/mathscinet-getitem?mr=0244269
http://www.ams.org/mathscinet-getitem?mr=2653187
http://www.ams.org/mathscinet-getitem?mr=2653187
http://www.ams.org/mathscinet-getitem?mr=2545681
http://www.ams.org/mathscinet-getitem?mr=2545681
http://www.ams.org/mathscinet-getitem?mr=0242838
http://www.ams.org/mathscinet-getitem?mr=0242838
http://www.ams.org/mathscinet-getitem?mr=2601629
http://www.ams.org/mathscinet-getitem?mr=2601629
http://www.ams.org/mathscinet-getitem?mr=1666433
http://www.ams.org/mathscinet-getitem?mr=1666433
http://www.ams.org/mathscinet-getitem?mr=3065154
http://www.ams.org/mathscinet-getitem?mr=0022563
http://www.ams.org/mathscinet-getitem?mr=0022563


A HASSE PRINCIPLE FOR QUADRATIC FORMS OVER FUNCTION FIELDS 461
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Birkhäuser Boston Inc., Boston, MA, 1984. MR734177 (85c:01004)

Department of Mathematics & Computer Science, Emory University, 400 Dowman

Drive NE, Atlanta, Georgia 30322

E-mail address: parimala@mathcs.emory.edu

http://www.ams.org/mathscinet-getitem?mr=2680494
http://www.ams.org/mathscinet-getitem?mr=2680494
http://www.ams.org/mathscinet-getitem?mr=2167206
http://www.ams.org/mathscinet-getitem?mr=2167206
http://www.ams.org/mathscinet-getitem?mr=0009381
http://www.ams.org/mathscinet-getitem?mr=0009381
http://www.ams.org/mathscinet-getitem?mr=1321649
http://www.ams.org/mathscinet-getitem?mr=1321649
http://www.ams.org/mathscinet-getitem?mr=1666779
http://www.ams.org/mathscinet-getitem?mr=1666779
http://www.ams.org/mathscinet-getitem?mr=734177
http://www.ams.org/mathscinet-getitem?mr=734177

	1. Introduction
	2. Notation
	3. Rational quadratic forms and a theorem of Minkowski and Hasse
	4. 𝑝-adic fields
	5. Complete fields and Hensel’s lemma
	6. Hensel’s vision
	7. Hasse principle for varieties
	8. Hasse principle for function fields and the 𝑢-invariant
	8.1. Function fields of curves over 𝑝-adic fields.
	8.2. Function fields of curves over number fields
	8.3. The Brauer–Manin obstruction

	Ackowledgments
	About the author
	References

