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The story of quantum graphs illustrates that a flower can grow only if it finds
good soil. The central idea of the book under review is almost eighty years old,
being first put forward by Linus Pauling as a simple model to describe certain
organic molecules. It took almost two decades before the scheme was worked out
in detail [RS53], and subsequently it was happily forgotten; for another third of a
century it had the status of an obscure textbook example.

Looking back, this lack of interest may seem strange because the subject has
various attractive features. On one hand it is simple, the building elements being
ordinary differential operators. On the other hand it combines tools and intuition
from a number of disciplines such as graph theory, combinatorics, mathematical
physics, PDEs, and spectral theory, presenting thus nontrivial challenges which, as
the authors say, make it dear to a mathematician’s heart.

The theory started slowly returning to the stage in the 1980s; see [Ro83] or
[GPSS,[ES89]. The main catalyst came from the application side, being related to
the progress of fabrication techniques in solid state physics which made it possible
to prepare structures of designed shapes, first from metals and semiconductors,
later from other materials. Many of them consisted of microscopic “wires” on
which electrons moved ballistically, and that made quantum graphs a very suitable
model. What is probably more important, however, is that these new investigations
attracted attention to a rich mathematical structure of the theory and triggered a
wave of papers that has continued to grow. The authors of this book were a part
of those efforts, the older one already at the early stages.

In a fast developing field a need naturally arises for texts which summarize the
progress and indicate directions of further explorations. In the present case the first
such paper was probably [KS99], followed soon by a two-part review of one of the
authors [Ku04Ku05]. A powerful impetus came from a 2007 semester-long program
“Analysis on Graphs” in the Isaac Newton Institute in Cambridge. A large number
of papers which originated there was collected in the proceedings volume [EKKST]
and inspired many other endeavors. Important as these surveys and collections
were, though, they could not substitute for a monograph-style presentation with a
unique author perspective. This gap is now filled by the book under review, which,
according to the authors, serves dual purposes: it provides an introduction to and
survey of the current state of quantum graph theory, and at the same time, it can
serve as a much needed reference text.

Even if it is not formally divided in that way, the book consists in fact of three
parts differing in their style of exposition. The first two chapters describe basic
constructions and frequently used technical results, the following three are devoted
to various issues from the spectral theory, and the closing two chapters have more
the character of a review describing connections to quantum chaos theory as well
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as various generalizations and applications. The text is accompanied by four short
appendices briefly summarizing some notions from graph theory, linear operators,
spectral theory, and symplectic geometry, and an extensive bibliography including
more than 700 items. To make the reading smoother, most references are collected
in the closing sections of each chapter, except the last one, which is to a large degree
a commented survey of results.

The first chapter introduces the reader to the subject of the book describing op-
erators on graphs. Since most mathematicians seem to be familiar with graphs, in
the combinatorial sense, as a collection of vertices where the edges simply play the
role of indicators of which of the vertices are connected, the authors first describe
such graphs and operators on them, in the first place the (combinatorial) Lapla-
cian, before passing to the main topic. This is useful also because such “discrete”
operators are a technical tool, as described later in Section 3.6. After that metric
graphs are introduced, both abstractly as simplicial complexes and illustratively as
families of curves in a Euclidean space, and the required function spaces on them
are defined.

This allows one to introduce second-order differential operators on such metric
graphs, in the first place the Laplacian and its generalizations to Schrodinger oper-
ators, nonmagnetic as well as magnetic. The differential expressions themselves are
not sufficient; to define such Hamiltonians as self-adjoint operators one has to spec-
ify conditions that match functions from the operator domain at the graph vertices.
The authors provide several equivalent ways in which families of such admissible
vertex conditions can be characterized, with emphasis on the formulation proposed
in [Ku04] which is based on splitting the condition into Dirichlet, Neumann, and
Robin parts. They also provide examples and expressions of the corresponding
quadratic forms and discuss assumptions one must impose when infinite graphs are
considered.

Discussion of operators on graphs continues in Chapter 2. Here scattering ma-
trices are the departure point allowing one to write a secular equation determining
the spectrum. An alternative point of view is also proposed in which one stud-
ies first-order differential operators on the graph, oriented by replacing its edges
with pairs of oppositely oriented bonds. Here one considers also scattering matri-
ces which are associated with no self-adjoint second-order operator. The question
then appears when the graph Laplacian can be factorized as A* A with a first-order
operator A; it is shown that it happens if and only if the Robin part of the vertex
conditions is absent. Furthermore, the chapter contains discussion of the index
theorem of differential operators on graphs, as well as the their dependence on the
vertex conditions. Finally, magnetic Schrédinger operators and their behavior un-
der gauge transformations are mentioned. Some examples are worked out, usually
with the “Kirchhoff” vertex coupling or its straightforward generalizations referred
to usually as J-coupling.

The next three chapters are devoted to spectra of quantum graphs. Chapter 3
contains the general theory. For compact graphs, discreteness of the spectrum
is proved together with its generic simplicity, the analytic dependence on model
parameters, as well as Hadamard-type formule and bracketing, which generalizes
the usual eigenvalue interlacing results in the Sturm—Liouville theory. For infinite
graphs the spectral decomposition requires also generalized eigenfunctions which are
characterized here by a Schnol-type theorem, i.e., by their subexponential growth
at large distances. While quantum graphs have some properties in common with
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PDEs, there are differences, the most striking probably being invalidity of the
unique continuation principle. Another important topic discussed in this chapter is
the “ubiquitous” Dirichlet-to-Neumann map, which here plays a role analogous to
that of Weyl’s m-function for ordinary differential equations. Finally, the authors
discuss the Weyl high-energy asymptotics and the trace formulae expressing the
spectral counting function in terms of closed orbits on the graph.

The topic of Chapter 4 is periodic graph systems. The corresponding Floquet—
Bloch theory is developed for quantum graphs and used to analyze their band
spectra. The possible existence of “flat bands”, or a point spectrum, is highlighted
as a consequence of the invalidity of the unique continuation principle. Other
questions addressed here are the existence of spectral gaps and the location of
spectral edges; it is shown that unless the graph is essentially a one-dimensional
chain, they may not correspond to the edges of the corresponding Brillouin zone.

The general discussion of spectral properties continues in Chapter 5. The topics
treated here include opening of spectral gaps by “decorations” of the graph and a
thorough discussion of nodal properties of the graph Hamiltonian eigenfunctions,
including nodal deficiencies and their relations to the appropriate Morse indices.
Also addressed here are spectral determinants as a tool of spectral analysis, together
with the related ¢ functions, and scattering on graphs.

As indicated above, the last two chapters have dominantly the character of a
review. The sixth one is devoted to quantum graphs as model systems for studying
quantum chaos, following a deep idea proposed originally in [KS97]. The aim is to
analyze statistical properties of (generic) quantum graph spectra and to compare
them with distributions appearing in other chaotic systems, in particular, those
described by random matrix ensembles. Using the trace formulae derived before,
the authors discuss here properties of the appropriate correlation functions and
indicate directions in which this analysis could be continued.

The last chapter has the most “eclectic” character, describing briefly numerous
applications and generalizations of the concept of a quantum graph. The breadth
of current activities makes it difficult to pursue each of the topics listed here to a
considerable depth; as the authors say, it would take another book which would
become obsolete by its publication date. Despite this limitation this survey is very
useful covering, in particular, inverse problems on graphs (“Can one hear the shape
of a quantum graph?”, etc.), other equations that can be supported by graphs
(heat, wave, Dirac, pseudo-differential operators, nonlinear Schrédinger, and oth-
ers), graph models of thin network structures (with implications for interpretation
of the vertex coupling conditions), “leaky” graph structures and photonic crystals,
as well as the use of quantum-graph methods to model various physical phenomena.

As is clear from this description, the style of the book inevitably changes as
the reader proceeds towards the end. The opening part presents theorems with
complete proofs, later on some are offered in a sketched form, and the survey
part contains claims accompanied with a discussion, sometimes on a heuristic level.
What is important, however, is that each claim is presented with its full background
in the literature, which allows the interested reader to follow the idea to the extent
of what is presently known about the particular topic.

The authors say that they intended to write the book in a way accessible to
graduate and advanced undergraduate students in mathematics, physics and engi-
neering. This goal was no doubt achieved, but in addition the book can be useful
to a broad spectrum of researchers interested in mathematics of quantum graphs as
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well as in applications of the theory. In addition, with a reasonable degree of cer-
tainty one can predict that by filling an important gap in the literature, Berkolaiko
and Kuchment have stimulated further development in this area.
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