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Proposition XXXIV, Theorem XXVIII of Newton’s Principia reads:

If in a rare medium, consisting of equal particles freely disposed at
equal distances from each other, a globe and a cylinder described
on equal diameters move with equal velocities in the direction of
the axis of the cylinder, the resistance of the globe will be but half
as great as that of the cylinder

(quoting from [9]). Newton gives a page and a half long proof of this result, and
continues with Scholium,1 also a little more than a page long, in which one of the
oldest problems of calculus of variations2 is described, with a complete answer, but
without proof (Newton says, “By the same method. . . ”).

The problem is to find the shape of the body of revolution with a fixed cross-
section and height having the smallest resistance to the motion in a homogeneous
inviscid and incompressible medium. Specifically, the assumption made about the
medium is that it consists of point masses that

(1) do not interact with each other, and
(2) reflect off the moving body elastically, so that the energy and momentum

are preserved.

Newton starts with analyzing a particular case, the frustum of a cone, and
presents the answer geometrically: if Q is the midpoint of the segment OD, then
the optimal shape is characterized by the equality QC = QS; see Figure 1 on the
left (the figure is taken from [9], the body is moving to the right). Then Newton
considers a general case, see Figure 1 on the right. The optimal shape has a flat
front end with the angle FGB equal to 135◦. Newton says,

This Proposition I conceive may be of use in the building of ships.3

Again, the answer is presented geometrically. Let N be a general point of the
optimal profile, and let GR be parallel to the tangent line to the curve at N . Then

MN

GR
=

GR3

4BR ·GB2
.

See Figure 2, borrowed from [4], for computer drawings of optimal shapes, and
[4–6, 15] for the history of Newton’s problem of minimal resistance.

The book under review is a modern continuation of Newton’s work. One can
imagine numerous variations on the above-described setup: for example, the moving
body may lack rotational symmetry, fail to be convex, rotate while moving, have a
rough surface, and so on and so forth. The assumptions (1) and (2) are still in effect,
and this relates the material with geometric optics and the theory of mathematical
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1explanatory comment
2preceding the famous Brachistochrone
3Newton’s solution was criticized as unrealistic. Indeed, his model poorly describes the motion

of a ship in water but it gives good results for bodies that move in rarefied gas with high Mach
number. Thus Newton was ahead of his time by some 300 years!
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Figure 1

Figure 2. Two optimal shapes: the height equals the radius, and
the height equals twice the radius.

billiards. Indeed, one may assume that the body is at rest, whereas the particles
move and reflect off the surface of the body according to the law “the angle of
incidence equals the angle of reflection”. This connection with billiards explains
the title of the book.

The book can be read at three levels: one can get a snapshot of the theory from a
well-written Introduction (four pages long); one can read the 20-page-long Chapter
1 which gives a panorama of the main definitions and results, without proofs; or
one can immerse into the study of the book as a whole. The book ends with a
list of open problems. A substantial part of the work was done, over the years, by
the author and his collaborators. I shall present a few examples of the problems
tackled in the book.

Allowing not necessarily rotationally symmetric, but still convex, bodies yields
shapes with smaller resistance than those of Newton’s; see Figure 3, also borrowed
from [4]. However, if one allows nonconvex shapes (so that a particle may reflect
more than once off the surface), the result is somewhat surprising: one can construct
bodies, inscribed into a given cylinder, with arbitrarily small resistance. Further-
more, this can be achieved by making arbitrarily small grooves on the surface of a
convex body.
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Figure 3. This body, discovered by P. Guasoni in the 1990s, has
the same height to radius ratio but a smaller resistance than the
body in Figure 2, on the right.

A significant part of the book concerns rough bodies.4 Imagine a convex body
whose surface is poked with microscopic hollows, grooves, and cracks. Such a body
will seem convex but the billiard reflection from its surface will not be subject
to the law “the angle of incidence equals the angle of reflection”. One defines a
rough body as a limit of a sequence of bodies with hollows of sizes tending to zero
such that the sequence of the respective scattering laws converges in an appropriate
sense. As a result, one describes this billiard scattering by a certain measure on
the set of incoming and outgoing directions.

To be specific, consider the two-dimensional case. The incoming and outgoing
rays are characterized by the angles ϕ and ϕ+ made by the rays with the normal
to the boundary at the impact point. The scattering law of a rough body is a
measure on [−π/2, π/2]2. One of the results is that this measure can be weakly
approximated by scattering laws of a sequence of converging bodies with hollows
if and only if it satisfies two conditions: it is invariant under the time-reversing
involution (ϕ, ϕ+) �→ (ϕ+, ϕ), and its two projections on [−π/2, π/2] coincide with
the usual billiard measure (1/2) cosϕ dϕ. Similar characterizations are given in
higher dimensions.

The study of rough bodies naturally lead to the Monge–Kantorovich optimal
mass transport problem [16]. The general setup is as follows. One has two measure
spaces (X1, μ1) and (X2, μ2) with μ1(X1) = μ2(X2) and a cost function c : X1 ×
X2 → R. One considers the set of measures Γ on X1 × X2 whose projections on
X1 and X2 are μ1 and μ2. The problem is to minimize∫

X1×X2

c(x, y) dν(x, y)

over ν ∈ Γ.

4There is a significant recent activity on drag reduction in aerodynamics; see, e.g., a thematic
issue [17]. The model used in this approach is totally different from the one in the book under
review.
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One has the following interpretation in terms of billiard scattering by rough
surfaces. The sets of incoming and outgoing trajectories at a point are identified
with unit hemispheres (the spaces X1 and X2); the measures μ1 and μ2 describe the
densities of the trajectories. The measure ν describes the scattering at the point,
and the cost function is the momentum transmitted to the body by the particle with
the corresponding incoming and outgoing velocities. From this point of view, the
transport corresponding to reflections off a smooth surface (the optical reflection)
is not optimal: one can reduce the total cost by introducing roughness.

Another problem studied in the book concerns the mean resistance of a body.
In this formulation, the body moves with the velocity randomly chosen from the
uniform distribution on the unit sphere, and the resistance is considered as a random
variable. One wants to minimize and/or maximize the mathematical expectation.
A physical interpretation of this setting is that the body moves translationally and
slowly rotates at the same time.

There are a number of subproblems of this kind, depending on the class of bodies
under consideration. For example, in dimension two, the ratio of the least mean
resistance in the class of nonconvex bodies of fixed area to the least mean resistance
in the class of convex bodies of the same area is about 0.9878 (for convex bodies,
the optimal shape is a round disk). Another example: given a convex body, by how
much could its mean resistance be lowered by grooving its surface? The answer
does not depend on the body, but only on the dimension d. For d = 3, the answer
is about 3%, and as d → ∞, the answer tends to approximately 20.9%.

The Magnus effect is a deflection of the trajectory of a spinning body (such as
a golf or a tennis ball). Named after a German physicist who described it in the
mid-nineteenth century, it was described by Newton in [10]:5

. . . I had often seen a Tennis ball, struck with an oblique Racket,
describe such a curve line. For, a circular as well as a progressive
motion being communicated to it by that stroak, its parts on that
side, where the motions conspire, must press and beat the con-
tiguous Air more violently than on the other, and there excite a
reluctancy and reaction of the Air proportionably greater.

One of the topics of the book is a novel model of the Magnus effect where the
reflections of the particles from the body are elastic but the surface is rough (in the
usual models, the interaction of the particles with the body is not elastic). This
study is restricted to the case of a two-dimensional rough disk.

The Magnus effect is direct if the moving rough disk is deflected in the direction
of rotation of its front points, and inverse otherwise. An important quantity is
γ = ωr/v, where ω is the angular velocity of the rotation, r is the radius, and v
the speed of the disk. One finds a general formula for the resistance force and its
moment in terms of the scattering law of the rough disk, along with theoretical and
numerical results for particular profiles of hollows.

For example, consider the sequence of regular m-gons with m congruent rectan-
gles with aspect ratio 1 : m removed. The smaller side of each rectangle is contained
in a side of the m-gon, and the ratio of the longer side of a rectangle to the side of
the polygon equals 1 − 1/mp; see Figure 4 (a). This sequence represents a rough
disk with rectangular hollows. Its moment of resistance force equals −0.75γ, hence
one has an inverse Magnus effect in this case. For the rough disks with triangular

5One cannot help mentioning Berry’s law: “Nothing is ever discovered for the first time” [2].
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Figure 4. Two kinds of rough disks; the figure borrowed from [13].

hollows, Figure 4 (b), the moment of the resistance is known only in some particular
cases. Incidentally, although it is known that some rough disks exhibit the direct
Magnus effect, explicit examples of such roughness are not known.

The last two chapters of the book concern invisibility and retroreflection. Invis-
ibility is a subject of a great current interest [7, 8]. In the book under review, this
and related terms are understood in the sense of geometric optics. In fact, three
related properties are considered:

(1) a body has zero resistance in a given direction;
(2) a body leaves no trace when moving in a given direction;
(3) the body is invisible in a given direction.

The relation between these properties is (3) ⊂ (2) ⊂ (1).
To be concrete, let us define (3): a body B is invisible in direction v if every

incoming ray of light having direction v continues along the same line after its
reflections off B. There is a wealth of results on invisible bodies; here is a sampler.

First of all, bodies invisible in one direction exist; see Figure 5. The curves are
parabolas sharing the focus. The body of revolution of this plane figure is invisible
in dimension three.

Figure 5. An invisible body; the figure borrowed from [12].
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Figure 6. A tube; the width is unit, and the obstacles have height
ε. The figure borrowed from [1].

Figure 7. The helmet and a retroreflector based on it. The figure
borrowed from [11].

One can construct three-dimensional bodies invisible in two directions, or invis-
ible from a point. However bodies invisible in all directions do not exist, and it is
not known whether bodies invisible in three directions exist. It is worth mentioning
a recent related result of Bialy [3] that there exists a smooth Riemannian metric
in R

n that is Euclidean outside a compact set and that has n(n + 1)/2 invisible
directions.

A retroreflector is a reflecting body such that every incoming ray of light even-
tually reflects in the opposite direction. Everyone is familiar with the retroreflector
made of three flat pairwise orthogonal mirrors (bicycle cube reflector). However
this reflector is imperfect: if it has a finite size, then some rays do not reflect in the
opposite direction. No perfect retroreflector is known, and the last chapter of the
book concerns asymptotically perfect retroreflectors, that is, sequences of bodies
whose reflection properties approximate perfect retroreflection.

Namely, four examples of asymptotically perfect retroreflectors are considered,
and here we present two. The first is a semi-infinite tube depicted in Figure 6. The
result is that, for every ε < 1/2, almost every trajectory leaves the tube, and as
ε → 0, the measure of the set of incoming trajectories that exit in the opposite
direction tends to 1.

Another remarkable hollow, discovered by P. Gouveia and called helmet, is made
of two arcs of parabolas that share the axis; the focus of each parabola lies on the
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other parabola; see Figure 7. The helmet is a nearly perfect retroreflector, with an
error of less than 1%.

Let me conclude with a remark. Geometric optics and the theory of mathemati-
cal billiards are intimately related with symplectic geometry: the space of oriented
nonparameterized geodesics (rays of light) is a symplectic manifold, and the optical
(billiard) reflection is a symplectic transformation; see, e.g., [14]. This symplec-
tic point of view may bring new insights into the area (in fact, [3] makes use of
symplectic geometry in a substantial way).

To conclude, this is a fascinating book, well written and well illustrated, and,
most importantly, open-ended. I expect substantial progress to be made in this
area in the near future.
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