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Jean-Victor Poncelet was among the classical French mathematicians who worked
in mechanical engineering; the famous theorem that now bears his name was part
of the “Saratov notebook”, the notes on geometry he wrote during his yearlong im-
prisonment after the battle of Krasnoi, where he served as Lieutenant in Napoleon’s
army. From the many fascinating historical accounts (for mathematical perspec-
tive cf., e.g., [Rend. Sem. Mat. Fis. Milano 54 (1984), 145–158 (1987); MR0909049
(88j:14064)] by H. J. M. Bos as well as its review by S. L. Kleiman) we learn that
in order to give a rigorous proof of his theorem he had the vision to extend Eu-
clidean geometry by two kinds of invisible points, the points at infinity of projective
geometry and the complex points which are not defined over the reals. In the on-
line version (http://www.crcnetbase.com/isbn/978-1-58488-347-0) of E. W.
Weisstein’s CRC concise encyclopedia of mathematics [second edition, Chapman &
Hall/CRC, Boca Raton, FL, 2003; MR1944431 (2003j:00008)] we can watch the
theorem in motion: it says that the billiard in a conic is a completely integrable
system. It is perhaps beside the point to seek a precise attribution for extending
this result to the billiard in a quadric hypersurface, but the work of S.-J. Chang
and R. M. Friedberg [J. Math. Phys. 29 (1988), no. 7, 1537–1550; MR0946326
(89j:58043)] was pioneering in that respect; a sequel [S.-J. Chang, B. Crespi and
K. J. Shi, J. Math. Phys. 34 (1993), no. 6, 2242–2256; MR1218986 (94g:58092)]
related it both to Darboux’s theorem and to the “space Poncelet” theorem by
P. A. Griffiths and J. D. Harris [Comment. Math. Helv. 52 (1977), no. 2, 145–160;
MR0498606 (58 #16695)]; and in [J. Math. Phys. 34 (1993), no. 6, 2257–2289;
MR1218987 (94g:58093)] Crespi, Chang and Shi gave explicit genus-2 solutions to
the billiard problem in space, using Klein’s generalization to genus 2 of the Weier-
strass σ-function, which at that time was little known but twenty years later has
become one of the major tools for studying PDEs and moduli spaces.

In any event, the integrability of the billiard in a quadric hypersurface and the
expression of the trajectories by hyperelliptic functions are the main themes of this
book. The authors (Radnović first worked on Poncelet’s theorem in her Ph.D.
thesis [Geometrija integrabilnih bilijara i periodične trajektorije, Univ. Belgrade,
2003]; Dragović was the advisor) have written a great many papers that reveal
connections of the theorem with other classical results and in particular Cayley’s
algebraic closure condition (see the next paragraph of this review), which could be
relevant to coding theory and cryptography. This book is mainly devoted to the
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authors’ work, richly embedded in its historical perspective and adapted to the lat-
est implications in the theory of integrable systems and PDEs, including statistical
mechanics. There is no aim at completeness in any respect, be it bibliograph-
ical, historical, algebraic/geometric or dynamical; this shows excellent restraint,
and it makes the book very valuable in its selective purpose. A book attempting
to address all the meanings and implications of Poncelet’s theorem by now would
have to have the nature of a handbook. To put it in context, I avail myself of a
second-hand quote, namely Nicholas Katz’ paraphrase of Lipman Bers’ assertion
that “[a] significant mathematical problem [. . . ] is never solved only once” [N. M.
Katz, in Mathematical developments arising from Hilbert problems (Proc. Sympos.
Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), 537–557,
Amer. Math. Soc., Providence, RI, 1976; MR0432640 (55 #5627) (p. 542); L. Bers,
ibid., 559–609; MR0427623 (55 #654) (p. 559)]: Poncelet’s theorem has been given
essentially different proofs by enumerative geometry, synthetic geometry, algebraic
geometry, analysis, mechanics, measure theory and matrix algebra, at least.

The authors’ point of departure is the proof of Poncelet’s theorem given (in its
algebro-geometric version most conceptually, if not for the first time) by Griffiths
and Harris [op. cit.] as well as M. Reid’s, P. E. Newstead’s and R. Donagi’s expres-
sion of the addition law on a hyperelliptic Jacobian by means of linear subspaces
of the intersection of two quadric hypersurfaces. Roughly speaking, a pencil of
quadrics in (2g + 1)-dimensional projective space corresponds to a hyperelliptic
curve of genus g (an idea that goes back to A. Weil [cf. Amer. J. Math. 76 (1954),
347–350; MR0061125 (15,778c)]); the Poncelet case of plane conics (genus 1) takes
only a little tweaking to be represented in P

3, where it was unwittingly rediscovered
several times in the 19th century. The authors provide a “just-in-time” review of
the analytic and geometric version of the elliptic and hyperelliptic addition rule;
projective geometry and duality, including some beautiful (and to-the-point) clas-
sical theorems with proofs; and correspondences. They devote one chapter each
to Poncelet-type theorems which can be translated into a hyperelliptic addition
law. The more traditional billiard in a quadric was interpreted as a Poncelet-type
result by A. P. Veselov [Funktsional. Anal. i Prilozhen. 22 (1988), no. 2, 1–13, 96;
MR0947601 (90a:58081)], who also did further work with J. Moser on discrete geo-
desic motion. Cayley’s resultant-type condition for the Poncelet closure is explored;
this could be applied to coding theory and cryptography, being an algebraic condi-
tion on periodic orbits. Then, the authors offer a link between Poncelet’s theorem
and Marden’s (a mid-20th-century result on the relationship between the roots of
a cubic polynomial and those of its derivative). In developing continued-fraction
representations occurring in Marden’s theorem, a relation with the integrals of the
Toda system is pointed out. A chapter on the theme of continued fractions revisits
the link found by Halphen between the value of an elliptic integral and Poncelet’s
theorem. The last chapter is the most contemporary. Elliptic functions were used
by R. J. Baxter to identify solvable models in statistical mechanics; as in the case of
the soliton equations, the theoretical underpinnings gave rise to interpretations and
developments in representation theory and a host of related subjects. The authors
encode some of the solutions, classified by I. M. Krichever, by means of a Poncelet
(2, 2) correspondence: on the one hand, Baxter’s biquadratic; on the other, points
of the incidence correspondence that pairs points on a conic and tangents to another
conic.
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The book provides a self-guided introduction to a set of classical gems that have
to do with elliptic or hyperelliptic addition theorems; several connections were
worked out originally by the authors in previous research papers. In addition,
solutions to some of the integrable systems that came of age in the 1970s (KdV
hierarchy, Toda lattice, Yang-Baxter equations, chiefly) are produced in this con-
text. The style is clear and the calculations are complete. The authors should
be commended for refraining from trying to survey more directions into which the
Poncelet pied piper could take the charmed reader; had they not, we would be re-
viewing an infinite book. This reviewer is not gifted with such tasteful restraint, but
will only offer a minimal complement—the references provided above also are not
in this book. On the classical side, one can find a wealth of historical perspectives
and related results in H. F. Baker’s treatment of the Poncelet theorem [Principles
of geometry. Vol. 4, Cambridge Univ. Press, Cambridge, 1925; JFM 51.0531.07].
Of other related theorems on linear systems on a plane curve (not necessarily of
genus 0 or 1 as in the original), the present book pursues Darboux’s but not C.
Segre’s [Torino Atti 59 (1924), 303–320; JFM 50.0428.02]—credit is due to Ciro
Ciliberto for this little-known reference. Peter F. Ash provided the charming ref-
erence to Chapter 14 of I. J. Schoenberg’s [Mathematical time exposures, Math.
Assoc. America, Washington, DC, 1982; MR0711022 (85b:00001)], which shows in
particular that Steiner’s theorem is a singular case of Poncelet—which is a good
excuse for having fun with the conformal-mapping software developed by D. T.
Piele, M. W. Firebaugh and R. Manulik [Amer. Math. Monthly 84 (1977), no. 9,
677–692; MR0486568 (58 #6291)]. Of course Poncelet’s theorem never ceases to
rise from its ashes; two reincarnations will have to suffice: hyperelliptic curves
“with real multiplication” (a case investigated by G. Humbert in 1899) [cf. J. M.
Wilson, Acta Arith. 93 (2000), no. 2, 121–138; MR1757185 (2001f:11099)]; and
an occurrence in the theory of Painlevé transcendents [N. J. Hitchin, in Geome-
try and analysis (Bombay, 1992), 151–185, Tata Inst. Fund. Res., Bombay, 1995;
MR1351506 (97d:32042)]. This is also not the first monograph exclusively devoted
to Poncelet’s theorem [cf., e.g., L. Flatto, Poncelet’s theorem, Amer. Math. Soc.,
Providence, RI, 2009; MR2465164 (2011f:37001)], but it is certainly a focused,
enjoyable and valuable one.

Emma Previato

From MathSciNet, March 2014
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Poncelet’s theorem.

(Chapter 15 by S. Tabachnikov)
American Mathematical Society , Providence, RI , 2009, xvi+240 pp.,
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What do shooting pool [J. K. Moser and A. P. Veselov, Comm. Math. Phys. 139
(1991), no. 2, 217–243; MR1120138 (92g:58054)]; two-demand queueing probabili-
ties; instantons [M. S. Narasimhan and G. Trautmann, Pacific J. Math. 145 (1990),
no. 2, 255–365; MR1069891 (91m:14016)]; the convex hull of the eigenvalues of a
complex matrix (more precisely, Toeplitz’ numerical range [cf. B. Mirman, Linear
Algebra Appl. 281 (1998), no. 1-3, 59–85; MR1645335 (99j:51013)]); the twist map
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on an annulus [E. Garibaldi and A. O. Lopes, Ergodic Theory Dynam. Systems
28 (2008), no. 3, 791–815; MR2422016 (2010b:37059)]; the Dirichlet problem in
a planar domain [V. P. Burskii and A. S. Zhedanov, “On Dirichlet, Poncelet and
Abel problems”, preprint, arxiv.org/abs/0903.2531]; and genus-2 curves with
real multiplication [J.-F. Mestre, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988),
no. 13, 721–724; MR0972820 (89k:11106)] have in common? “One of the most
important . . . theorems in projective geometry”, announces the book under review
(Preface), namely Poncelet’s. I, very respectfully, disagree. The true “important”
feature that has those and many more manifestations is the addition law for an
elliptic curve (cf. [P. A. Griffiths, Invent. Math. 35 (1976), 321–390; MR0435074
(55 #8036)], where the theorem was derived from this fact). The double nature,
analytic and algebraic, of, more generally, Riemann surfaces is perhaps a small
part of the reason for “the unreasonable effectiveness of mathematics in the natural
sciences” [E. P. Wigner, in Mathematical analysis of physical systems, 1–14, Van
Nostrand Reinhold, New York, 1985; MR0824292]. Motion, and its organization
under a group law, is—as far as we currently know—the stuff that nature is made
of. The fascination of Poncelet’s theorem, to me, rests on the fact that it can be
proved in so many fundamentally different ways. Poncelet himself (while a pris-
oner in Russia, as his romantic biography at the St. Andrews’ history site informs)
proved the theorem by synthetic geometry, bypassing the fact that the complex
projective plane had not been formally defined; a visionary feat. In that spirit,
the theorem is a statement about two ellipses, and intersecting or tangent lines,
a “porism” which says that if a polygon of n sides is inscribed in an ellipse and
circumscribed to another, then infinitely many such polygons exist (in fact, the
given one can be rotated in a suitable sense). This is very well, but why does the
inner ellipse happen to be the ellipse enveloped by the n-sided polygons of maximal
perimeter inscribed in the outer ellipse [G. Fejes Tóth and L. Fejes Tóth, Period.
Math. Hungar. 3 (1973), no. 3-4, 271–274; MR0333990 (48 #12309)]? (Parenthet-
ically, dynamics scholars now recognize the inner ellipse as the caustic of a billiard
system.) My favorite explanation of course is that zig-zagging along the sides of
the polygon is a measure-invariant motion, and the measure, as Jacobi pointed out,
is the arc length of the (given, outer) ellipse: an elliptic integral; moving along
the sides then is an integrable system (continuous or discrete, as you may prefer)
and amounts to the addition of one given point (of period n, in this case) on the
corresponding elliptic curve. Then again, there are independent proofs given by
enumerative geometry and more.

But that is not the point of view taken in this book. Instead, the author aims for
a “textbook”, resulting as it does from his sabbatical year at the NSA, where the
course was taught. It has then the great merit of being reasonably self-contained: a
sketch of projective geometry is given, and in view of proving the theorem using the
elliptic curve, an introduction to complex analysis (conformal mappings, doubly-
periodic meromorphic functions, modular functions); the algebraic transliteration of
the n-closure given by Cayley; an array of pretty “degenerate cases” (the two ellipses
are in special position: another plethora of classical theorems ensues); the queueing-
theory application (this is part of the author’s research area). As a self-study
book, it seems a little challenging for a newcomer to complex analysis (an excellent
and down-to-earth alternative introduction to elliptic functions and modular forms
could be P. Du Val’s [Elliptic functions and elliptic curves, Cambridge Univ. Press,
London, 1973; MR0379512 (52 #417)]), and it’s a pity there are no exercises. Minor
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quibbles (such as the fact that Ĉ is called “the complex sphere”, which might be a bit
ambiguous, instead of “the Riemann sphere”; quite a few typos; not many pictures)
are best suppressed, in view of the fact that the book is certainly well written. The
real regret I have, quite aside from the fact that the other aspects of the theorem
are not considered, is the fact that there is no mention of the extension of the
theorem in space (hyperelliptic curves), except in the very beautiful Supplement
on billiards (Chapter 15), contributed by S. Tabachnikov. However, I fully agree
with the author: Poncelet’s theorem is “one of the most . . . beautiful theorems in
projective geometry”; truly, it is beautiful, and so is this book.

Emma Previato

From MathSciNet, March 2014
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A Poncelet theorem in space.

Commentarii Mathematici Helvetici 52 (1977), no. 2, 145–160.

The classical theorem of Poncelet on polygons inscribed in a curve of second
order and circumscribed around another such curve is generalized to the case of
three-dimensional space in the following way. Let S and S′ be smooth surfaces of
second order in the complex projective space P3. Then the existence of a finite
polyhedron simultaneously inscribed in and circumscribed around the surfaces S
and S′ implies the existence of infinitely many such polyhedra. The vertices of
these polyhedra lie on the intersection curve of the surfaces S and S′, their faces
are tangent to both surfaces, and the edges are lines lying alternately on S and
S′. The paper is presented in a rather elementary way; the proofs of the theorems
contained in it can be understood even by a nonexpert in algebraic geometry.

M. A. Akivis

From MathSciNet, March 2014
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Bos, H. J. M.

The closure theorem of Poncelet.

Rendiconti del Seminario Matematico e Fisico di Milano 54 (1984), 145–158
(1987).

This note summarizes some joint work done with F. Oort, C. Kers, and D. Raven
on the history and mathematics of Poncelet’s famous closure theorem, which to-
day is formulated as follows: given two smooth conics C,D in general position
in the complex projective plane (in fact, although this is not stated, any alge-
braically closed ground field of characteristic not 2 will do), if there exists one
nondegenerate n-gon inscribed in C and circumscribed about D, then there exist
infinitely many, or equivalently, if there exists one nondegenerate sequence of pairs
(P1, L1), (P2, L2), . . . with Pi ∈ Ci and Li tangent to Di and Pi, Pi+1 ∈ Li such
that Pn+1 = P1, then there exist infinitely many. There are always four degener-
ate n-gons, respectively sequences: if n = 2j, they arise from the four choices of
Pj ∈ C ∩D; if n = 2j + 1, they arise from the four choices of Lj as a common tan-
gent. Three proofs are discussed, Poncelet’s (1822), Jacobi’s (1828), and Griffiths’
(1976), but not A. Hurwitz’s [Math. Ann. 15 (1879), 8-16; Jbuch 9, 398]. Hurwitz
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in effect considered all possible sequences and formed the locus G of (Pi, Pn+1) in
C × C. If P1 is a general point, then there are two distinct possibilities for Pn+1;
so

∫
[G] · [C × Pn+1] = 2. Similarly

∫
[G] · [Pn+1 × C] = 2. Hence

∫
[G] · [Δ] = 4,

where [Δ] is the diagonal. However, G meets Δ in at least five distinct points.
Therefore G contains Δ. Griffiths considered the locus E of (P1, L1). It is a dou-
ble covering of C, branched over C ∩ D. So E is an elliptic curve. Since the
automorphism of E that sends (P1, L1) to (Pn+1, Ln+1) has five fixed points, it is
constant. Jacobi used his theory of elliptic curves and argued similarly, but the
degree of similarity is a delicate matter, the stuff of historical analysis. Poncelet’s
“brilliant, complicated and idiosyncratic” proof centers on essentially the following
lemma: if C,D1, D2, · · · are conics through the same four distinct points and if
(P1, L1), (P2, L2), · · · is a sequence as above but with Li tangent to Di instead of
D, then as P1 varies continuously along C, the chord PiPn envelops (is tangent to)
another conic D′ through the four points. The theorem follows by taking Di = D
for i = 1, · · · , n; indeed, the conics D and D′ have five tangents in common, so
they coincide. At this point, it is incorrectly asserted that D = D′ because they
have four points and three tangents in common; however, any two conics have four
points and four tangents in common. The lemma is reduced to the case n = 2 by a
simple induction. No proof of that case is given. And the following generalization
of it is stated, also without proof: if C,D1, D2 are in general position, then the
appropriate envelope X has degree 24. Finally, the limit of X, as D2 approaches a
conic through C ∩D1, is described, but again no proof is given.

S. L. Kleiman
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Poncelet’s theorem in space.

Proceedings of the American Mathematical Society 127 (1999), no. 9, 2547–2556.

In this paper a generalization of Poncelet’s theorem from plane configurations
to configurations in the complex projective space Pg+1 is presented.

The two equivalent versions of this theorem in Pg+1 are written as follows: take
a confocal family of quadrics Eλ (λ ∈ P1) and a precise projective definition of
reflection; choose E0, E1, · · · , Eg+1 quadrics of the family.

Version I. If there is a polygon inscribed in E0 and circumscribed to each Ek so
that its successive sides are linked by a reflection on E0, then there is a g-dimensional
family of such polygons obtained by moving any vertex on E0.

Version II. By fixing Ek (k = 1, · · · , g) and choosing any number of confocal
quadrics Eλ0

, · · · , Eλn
, one can assume to have a Poncelet polygon whose successive

sides are obtained by bouncing on Eλj
, in which case there is a g-dimensional family

of such n-gons obtained by moving any of the vertices pj over Eλj
.

For the case of plane configurations, a very interesting interpretation of Pon-
celet’s theorem is revisited [P. Griffiths and J. Harris, Comment. Math. Helv. 52
(1977), no. 2, 145–160; MR0498606 (58 #16695)]. An elliptic curve C and an order
n point τ of C are the main ingredients of this nice interpretation. The idea to gen-
eralize the theorem for configurations of quadrics in Pg+1 is to find a hyperelliptic
curve X and a point p in its Jacobian, playing the role of C and τ in the classical
Poncelet theorem. Explicit constructions for X and p are given.
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With this description it is possible to bring together some different known ver-
sions of Poncelet-type theorems. Also, some directions for further investigations
(arithmetic questions, vector bundles and compactifications) are suggested.

Roberto Munoz
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Dolgachev, Igor V.

Classical algebraic geometry.
A modern view.

Cambridge University Press , Cambridge, 2012, xii+639 pp pp., $150.00,
ISBN 978-1-107-01765-8

This is a long-expected book—preliminary versions have been circulating on the
internet for years. As the title indicates, the aim of the book is to express in modern
language some of the results in classical algebraic geometry obtained in the 19th
(sometimes 20th) century. Some of these results can occasionally be found scattered
in the modern literature, but this is certainly the first book devoted entirely to
classical topics. Of course, in writing such a book one has to make choices. Still,
the amount of material covered is absolutely impressive—it reflects the amazing
culture of the author.

Here is a glimpse of the main topics of the book. Chapter 1 deals with polarity
and apolarity. Polarity associates to a homogeneous polynomial F of degree d on
a vector space E a symmetric d-linear form on E. Setting the first k variables
equal to a ∈ E gives the k-th polar hypersurface of F at a. The quadric polars
(k = d − 2) lead to the definition of the Hessian and the Steinerian of F , two
important hypersurfaces associated to F .

Apolarity is the classical terminology for the duality between SdE∨ and SdE.
The book discusses a famous application to the problem of writing a general form
F of degree d as a sum of d-th powers of linear forms (“Waring problem for forms”).

Chapter 2 recalls the geometry of conics and quadrics. Many classical results
(Chasles, Desargues, Pascal and Brianchon, Darboux, Steiner, Salmon . . . ) are
interpreted in modern language. Some more sophisticated geometry appears here
and there, for instance with the variety of self-polar triangles of a conic or the
celebrated Poncelet porism.

Chapter 3 deals with plane cubics: the Hesse pencil and its automorphism group,
the dual curve, the Hessian, the projective generation of plane cubics. The chapter
concludes with a more advanced section (mostly without proof) on the invariant
theory of plane cubics.

Chapter 4 discusses the representation of a form F as a determinant of linear
forms. The case of symmetric determinants is particularly interesting since it is
related to theta characteristics on the hypersurface V (F ). The case where V (F ) is
a curve or a surface, possibly singular, is studied in detail.

Chapter 5 is devoted to theta characteristics on a smooth curve C, and to the
corresponding theta functions. The study of theta characteristics gives rise to a rich
geometry over F2 which has been much studied classically, with a flowery terminol-
ogy: syzygetic (or azygetic) triad (or tetrad), Steiner complexes, fundamental sets.
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All these notions are explained here in modern language. The last section explains
the Scorza correspondence associated to a non-effective theta characteristic on a
curve of genus g, and the rather mysterious Scorza quartic (a quartic hypersurface
in Pg−1) constructed from that correspondence.

In Chapter 6 the previous results are applied to plane quartic curves. The special
feature is that odd theta characteristics correspond to the famous 28 bitangent lines
to the quartic, so that general results on theta characteristics translate nicely into
geometric statements on the bitangents. Choosing a fundamental set, or a line
bundle of order 2, or an even theta characteristic, gives different types of equations
for the curve, from which various geometric properties follow.

Next, some special quartics are studied: the Clebsch quartics, which can be
written as a sum of 5 fourth powers, and the Lüroth quartics, which pass through
the vertices of a complete pentagon. There is a beautiful relation between these
two families, related to the Scorza correspondence introduced in Chapter 5.

The chapter concludes with a complete description of the possible automorphism
groups of plane quartics.

Chapter 7 deals with Cremona transformations. After giving some general results
and some interesting examples, the book focuses on planar transformations. This
culminates with the Noether factorization theorem: the Cremona group is generated
by the standard quadratic transformation and projective automorphisms.

Chapter 8 is devoted to del Pezzo surfaces. This will be more familiar to the
modern reader, since there are a number of recent texts on the subject. The treat-
ment here is fairly complete, with a detailed study of the geometry of those surfaces
in each degree (except 3) and a complete description of the possible automorphism
groups.

The special case of cubic surfaces is treated in Chapter 9. It starts with the
classical results about lines on the surface, with emphasis on a particular con-
figuration, the “double-sixes” and their remarkable properties (Schur’s theorem).
Next, a complete classification of singular cubics is given. Various ways of writing
the equation of the surface, with some interesting geometric consequences, are ex-
plained: Cayley-Salmon equation as a determinant, Sylvester representation as a
sum of 5 cubes, Cremona hexahedral equation. Again the chapter concludes with
a complete description of the possible automorphism groups.

Chapter 10 studies the geometry of lines in projective space. After discussing
the Grassmann variety of lines, the author considers divisors of degree 1 and 2 in
this variety, called linear and quadratic complexes. The so-called “singular surface”
of a quadratic complex of lines in P

3 is a Kummer surface; it is shown that many
properties of the Kummer surface can be explained from that point of view. Then
the author discusses some particular quadratic complexes (harmonic, tangential,
tetrahedral, . . . ).

The last section studies ruled surfaces, their numerical characters, and the rela-
tions between them (“Cayley-Zeuthen formulas”). As an application, a complete
classification of quartic ruled surfaces in P3 is given.

Each chapter includes a large number of exercises, and a very interesting histor-
ical note with references (more than 600 in total). Most of the book is accessible to
those with a standard background in algebraic geometry (as found for instance in
R. Hartshorne’s book [Algebraic geometry, Springer, New York, 1977; MR0463157
(57 #3116)]), though some parts may require some more specific knowledge, e.g.,
invariant theory or some advanced curve theory.
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The author has rendered a great service to the algebraic geometry community:
most of the material treated was available previously only in classical texts, which
are quite difficult to read for modern mathematicians. This is a wonderful book.
Anyone interested in classical algebraic geometry should have a copy.

Arnaud Beauville

From MathSciNet, March 2014


