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This monograph was the first to receive the recently established Ferran Sunyer
i Balaguer Prize. It guides an exciting tour through several areas of mathematics,
such as graph theory, real and p-adic Lie groups, differential geometry, measure
theory and analytic number theory. At the center are the solutions of two seem-
ingly unrelated problems. One is the Ruziewicz problem, asking whether Lebesgue
measure is the only finitely additive probability measure defined on the Lebesgue
subsets of the unit sphere Sn inRn+1. This is closely related with the the Hausdorff-
Banach-Tarski paradox; see the book by S. Wagon [The Banach-Tarski paradox,
Cambridge Univ. Press, Cambridge, 1985; MR0803509 (87e:04007)]. The other
problem is the explicit construction of so-called expanders: an (n, k, c)-expander
is a k-regular graph X with n vertices such that for every subset A of vertices,
|∂A| ≥ c|A|(1 − |A|/n). Here, ∂A is the set of neighbours of A in X \ A. More
precisely, one wants to construct sequences of expanders with c > 0 (and possibly
also k) fixed, while n → ∞. Expanders are of big interest in various applications
with an algorithmic flavour, such as sorting networks, Monte Carlo algorithms, or
telephone networks [see, e.g., F. V. Bien, Notices Amer. Math. Soc. 36 (1989),
no. 1, 5–22; MR0972207 (90a:90052)]. It should be noted that essentially the same
problems are discussed, under a very different perspective with a more number the-
oretical flavour, in the book by P. C. Sarnak [Some applications of modular forms,
Cambridge Univ. Press, Cambridge, 1990; MR1102679 (92k:11045)].

Chapters 1–2 present these two problems and give a first set of related results.
For example, the expanding constant c of a graph can be compared with its isoperi-
metric number (Cheeger constant), up to bounded factors involving only k. Chapter
2 contains, among other things, the negative answer to the Ruziewicz problem for
the circle S1, a theorem due to Banach.

Representation theory plays an important role throughout this book. Of par-
ticular interest here is Kazdhan’s property (T), the central theme of Chapter 3.
A locally compact group G is said to have this property if the trivial representa-
tion is isolated in the Fell topology of the unitary dual of G. A lattice (discrete
subgroup with finite co-volume) has property (T) if and only if G does. Borel’s
theorem on lattices in products of semisimple algebraic groups over the reals and
p-adics can be used to construct many discrete groups Γ with property (T). Ex-
amples are Γ = SLn(Z) for n ≥ 3 or SO(n,Z[ 15 ]) for n ≥ 5. This allows a first
method of construction of expanders, going back to Margulis: one can take the
finite homomorphic images of Γ and their Cayley graphs with respect to a fixed
set of generators. On the other hand, it is shown how the Ruziewicz problem for
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n ≥ 4 has been solved by Margulis and by Sullivan, exhibiting a finitely generated
subgroup with property (T) which is dense in SO(n+ 1,R).

This leaves the Ruziewicz problem for n = 2, 3. Also, the expanders constructed
via property (T) are not best possible. The next three chapters prepare for the
final solution. Chapter 4 is on the Laplacian and its eigenvalues, both for compact
Riemannian manifolds and for graphs, where the Laplacian is a natural difference
operator. Cheeger’s inequality relates the smallest positive eigenvalue λ1 with the
isoperimetric constant of a manifold, and results of Dodziuk, Alon and others carry
this over to graphs. This links λ1 with expanders and suggests how to modify
property (T) for a finitely generated group in order to obtain expanders from its
finite homomorphic images. Now Selberg’s theorem, which says that λ1(Γ(m)\H) ≥
3
16 for congruence subgroups Γ(m) of Γ = SL2(Z), enters upon the scene: the
standard Cayley graphs of Γ/Γ(m) must satisfy λ1 ≥ an explicit positive constant.
A slight modification yields a family of expanders with k = 3 and c = 0.01. Working
with the discrete Laplacian amounts to working with the adjacency matrix. The
graph is called Ramanujan if the eigenvalues of the latter other than ±k satisfy
|λ| ≤ 2

√
k − 1, which is the best possible bound. Ramanujan graphs are expanders,

but the converse is in general not true.
Chapter 5 presents the main ingredients of the representation theories of

PGL2(R)0 and PGL2(Qp) in terms of their action on the hyperbolic plane H and
the regular tree Xp with degree p+1, respectively. For a lattice Γ in PGL2(Qp), a
criterion for Γ\Xp to be Ramanujan is given in terms of representations. Chapter 6
is an overview, quoting the work of Deligne and Jacquet-Langlands in the context
of the spectral decomposition of L2(PGL2(Q)\PGL2(A)), where A is the adèle ring
of Q. These are the deepest tools used here (leading among other things to the
solution of the Petersson-Ramanujan conjecture).

All these ingredients are then merged in Chapter 7, containing the highlights of
this book. A discrete, algebraic group over Z[1/p] is constructed, which is a lattice
in G = SO(3,R)×PGL2(Qp) when diagonally imbedded. Via the spectral decom-
position of L2(Γ\G), the Ruziewicz problem is solved for n = 2, 3 by projecting a
suitable subgroup of Γ into SO(3,R). This result is originally due to Drinfel′d. On
the other hand, by projecting the congruence subgroups Γ(N) of Γ into PGL2(Qp)
acting on the tree Xp, the same results on representations are used to construct
the Ramanujan graphs Γ(N)\Xp, giving rise to the best known expanders. This
is a result obtained by the author with R. Phillips and Sarnak [Combinatorica 8
(1988), no. 3, 261–277; MR0963118 (89m:05099)].

The final three chapters bring together miscellaneous topics related with the
above material, such as distributing points on a sphere, and conclude with a set
of open problems. The Appendix, written by J. Rogawski, explains the Jacquet-
Langlands theory and indicates Deligne’s proof of the Petersson-Ramanujan con-
jecture. It would merit its own review.

In conclusion, this is a wonderful way of transmitting recent mathematical re-
search directly “from the producer to the consumer”. Sometimes one seems to feel
a certain impatience on the part of the author: misspelling of names is chronic, not
all items in the bibliography are cited, the index might be more comprehensive,
and as the author says, “the choice of what to prove and what just to survey was
very subjective”: this is indeed true.

Wolfgang Woess

From MathSciNet, March 2015
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MR2415383 (2010b:20070) 20F65; 05C25, 05E15, 11B30, 20G40

Bourgain, Jean; Gamburd, Alex

Uniform expansion bounds for Cayley graphs of SL2(Fp).

Annals of Mathematics. Second Series 167 (2008), no. 2, 625–642.

This very interesting paper applies a wide range of techniques from additive
combinatorics, representation theory and combinatorial group theory to study ex-
pansion properties of Cayley graphs. Suppose that S is a finite set of elements
in SL2(Z) which is symmetric (closed under taking inverses) and generates a non-
elementary subgroup of SL2(Z), that is to say a subgroup which does not possess
a solvable subgroup of finite index. Then by reducing (mod p) for each prime p we
obtain a finite set Sp of elements of SL2(Fp). Using this, we may define the Cayley
graph Gp = G(SL2(Fp), Sp) to be the graph which has the elements of G = SL2(Fp)
as vertices, and in which two vertices corresponding to elements x, y ∈ G are linked
if x = σy for some σ ∈ S. This graph is, of course, d-regular where d = |S|.

The main result of this paper is that this family of Cayley graphs is a family of
expanders. There are two equivalent ways to define what this means. The first is
the one that gives the concept its name: there is some constant c > 0, independent
of p, such that for any set X consisting of at most one half the vertices of Gp the
1-neighbourhood N1(X) = X ∪ {y : xy ∈ E(Gp)} has size at least (1 + c)|X|. The
second property, which is nontrivially equivalent to the first, is that the lim sup as
p → ∞ of the second largest eigenvalue λ1(Gp) is strictly less than d. The expansion
property, which has been extensively written about in many places, should be
thought of as asserting that the family Gp is in a sense a family of pseudorandom
graphs. A great deal more on expanders and their importance may be found in the
article [S. Hoory, N. Linial and A. Wigderson, Bull. Amer. Math. Soc. (N.S.) 43
(2006), no. 4, 439–561; MR2247919 (2007h:68055)].

There is another interesting result in this paper, namely that by taking a random
set of 2k generators {g±1

1 , . . . , g±1
k } for a Cayley graph on SL2(Fp), for each p, we

almost surely get a family of graphs whose second largest eigenvalues are bounded
away from 2k as p → ∞.

We focus on the ideas behind the proof of the first theorem. Fix a prime p
and consider the probability measure μS(x) = |S|−1

∑
g∈S δg(x) which places equal

mass on each point of S. The first main idea is to use the trace formula to conclude

that 1
N

∑N−1
j=0 λ2m

j = (2k)2mμ
(2m)
S (1), where the eigenvalues of Gp are listed as

2k = λ0 > λ1 ≥ · · · ≥ λN−1 ≥ −2k and μ
(j)
S denotes the jth convolution power of

μS .
Thus the main business of the paper is to examine these convolution powers

μ
(j)
S . The first step (Proposition 4) is merely stated; the proof may be found in [A.

Gamburd, Israel J. Math. 127 (2002), 157–200; MR1900698 (2003b:11050)]. The
proposition claims that the graphs Gp have girth at least c log p for an appropriate

constant c > 0. This means that if l0 < 1
2c log p then the measure μ

(l0)
S (and hence

all measures μ
(l)
S with l ≥ l0) is fairly “spread out”, meaning that it does not

resemble a δ peak too closely. More specifically we have a bound ‖μ(l)
S ‖∞ < pγ ,

which may be thought of as saying, roughly, that the support of μ
(l)
S behaves like a

subset SL2(Fp) of size at least pγ .
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The next stage of the argument consists in bootstrapping this information rather
considerably by looking at repeated convolution squares, that is to say by looking

at the relationship between ν = μ
(j)
S and ν ∗ ν = μ

(2j)
S . For each j = l0, 2l0, 4l0, . . .

one of two possibilities eventually occurs: either (i) ν ∗ ν is “not much more spread
out” than ν, meaning that ‖ν ∗ ν‖2 > p−ε‖ν‖2, or (ii) ν is almost uniform in the
sense that ‖ν‖2 < p−3/2+ε (note that |SL2(Fp)| ∼ p3).

Suppose for the moment that (ii) holds, in which case we have a convolution

power μ
(l1)
S , l1 ∼ Cε,k log p, which is almost uniformly distributed in the sense

that ‖μ(l1)
S ‖2 < p−3/2+ε. A little representation theory, specifically the fact that

SL2(Fp) has no nontrivial representations of degree less than (p− 1)/2, then allows

one to conclude that still somewhat higher convolution powers μ
(l2)
S are extremely

uniform and hence to obtain a bound on an appropriate μ
(2m)
S (1) to use in the

trace formula mentioned at the start of the review. This fact, that in groups
with no small-dimensional representations convolution smoothes things out very
dramatically, seems to have first been observed in a related context by P. C. Sarnak
and X. X. Xue [Duke Math. J. 64 (1991), no. 1, 207–227; MR1131400 (92h:22026)].
More recently it has been elaborated upon and placed in a more general context
by W. T. Gowers, who introduces the name “quasirandom group” for groups with
this property [Combin. Probab. Comput. 17 (2008), no. 3, 363–387; MR2410393
(2009f:20105)].

It remains to rule out the possibility that (i) holds, and this is done using the
techniques of additive combinatorics together with some combinatorial group the-
ory. Here is a very brief summary. Supposing that ‖ν ∗ ν‖2 > p−ε‖ν‖2, a rather
tedious but essentially straightforward decomposition of ν into level sets produces
a set A ⊆ SL2(Fp) with pγ < |A| < p3−γ with large “additive energy”, that is to
say with many solutions to xy = zw. By T. C. Tao’s noncommutative version
of the Balog-Szemerédi-Gowers theorem [Combinatorica 28 (2008), no. 5, 547–
594; MR2010b:11017] one may locate an “approximate group” H related to A.
By the work of H. A. Helfgott [Ann. of Math. (2) 167 (2008), no. 2, 601–623;
MR2415382 (2009i:20094)] any such approximate subgroup H must fail to generate
all of SL2(Fp). By classifying the proper subgroups of SL2(Fp), one sees that H
must in fact be contained in a 2-step solvable group G0. Working backwards, it
follows that the measure ν concentrates near a coset of this solvable group G0, and
it is this possibility which must be ruled out in order to complete the argument. A
result of Kesten concerning walks in the free group is applied to conclude that if this
were the case then many different words of length l0 in the generating set S would
lie in G0. A combinatorial group theory argument is then applied to contradict
this, essentially because the solvability forces too much commutation between the
aforementioned words.

This last paragraph, in particular, has been a very brief sketch. However, the
reviewer hopes that it has adequately conveyed the amazingly rich array of ideas
which have been brought to bear on this problem.

Ben Joseph Green

From MathSciNet, March 2015
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MR2415382 20G40; 05C25, 20F69

Helfgott, H. A.

Growth and generation in SL2(Z/pZ).

Annals of Mathematics. Second Series 167 (2008), no. 2, 601–623.

This paper represents a breakthrough in the asymptotic theory of Cayley graphs
of finite groups, and their application to random walks and expander graphs. The
main result concerns the group G = SL(2, p), where p is prime. It is proved that
if A is any set of generators of G, and if Γ(G,A) is the corresponding Cayley
graph (i.e., the graph with vertex set G and edges {g, ga} for all g ∈ G, a ∈ A),
then the diameter of Γ(G,A) is O((log p)c), where c and the implied constant are
absolute. This was a long-standing open problem, and part of a much more general
conjecture of L. Babai that for any finite quasisimple group G and generating set
A, diam(Γ(G,A)) 
 (log |G|)c.

A few special cases of the main result were known previously; for example, for
the generating set

A =

{(
1 1
0 1

)
,

(
1 0
1 1

)}

[see A. Lubotzky, Discrete groups, expanding graphs and invariant measures, Progr.
Math., 125, Birkhäuser, Basel, 1994; MR1308046 (96g:22018) (Theorem 4.4.2)].
That proof requires some deep number theory, namely Selberg’s spectral gap the-
orem, and does not work for many other generating sets; for example, it does not
work for the set

A =

{(
1 3
0 1

)
,

(
1 0
1 3

)}
.

In contrast, Helfgott’s proof is not based on such number theory, but rather on
additive-combinatorial methods. These include recent sum-product estimates such
as that of S. V. Konyagin [“A sum-product estimate in fields of prime order”,
preprint, arxiv.org/abs/math/0304217]: if A ⊆ GF(p) with |A| < p1−δ (δ > 0),
then either |A · A| or |A+ A| is greater than |A|1+ε, where ε > 0 depends only on
δ. This and many other tools are used to establish the key proposition, from which
the main result follows: if A is a generating set for SL(2, p) and |A| < p3−δ for some
fixed δ > 0, then |A ·A ·A| > c|A|1+ε, where c, ε > 0 depend only on δ.

The results of this paper have been applied a number of times already, for ex-
ample, by J. Bourgain and A. Gamburd [Ann. of Math. (2) 167 (2008), no. 2,
625–642; MR2010b:20070] to prove that Cayley graphs of SL(2, p) are expanders
with respect to the projection of any fixed elements in SL(2,Z) generating a non-
elementary subgroup. In addition, the author [“Growth in SL3(Z/pZ)”, preprint,
arxiv.org/abs/0807.2027] has recently extended his results to SL(3, p).

Martin W. Liebeck

From MathSciNet, March 2015

MR2813339 (2012f:20148) 20H20; 20G20

Larsen, Michael J.; Pink, Richard

Finite subgroups of algebraic groups.

Journal of the American Mathematical Society 24 (2011), no. 4, 1105–1158.

This impressive article gives a generalization to arbitrary fields of Jordan’s the-
orem concerning finite subgroups of GLn over a field of characteristic zero, namely:

arxiv.org/abs/math/0304217
arxiv.org/abs/0807.2027


508 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

For every n there exists a constant J(n) such that any finite subgroup of GLn

possesses an abelian normal subgroup of index at most J(n). The corresponding
statement for fields of positive characteristic is false, but the authors prove the
following result:

Theorem. For every n there exists a constant J ′(n) such that any finite subgroup
Γ of GLn over any field k possesses normal subgroups Γ3 ⊆ Γ2 ⊆ Γ1 such that:

(a) [Γ: Γ1] ≤ J ′(n).
(b) Either Γ1 = Γ2 or p := char(k) > 0 and Γ1/Γ2 is a direct product of finite

simple groups of Lie type in characteristic p.
(c) Γ2/Γ3 is abelian of order not divisible by char(k).
(d) Either Γ3 = {1} or p := char(k) > 0 and Γ3 is a p-group.

As with related earlier works, such as [M. V. Nori, Invent. Math. 88 (1987),
no. 2, 257–275; MR0880952 (88d:20068)], Γ is approximated by an algebraic group
G (though the context here is more general, and the method of approximation quite
different). If G1, G2, and G3 denote the identity component, the radical, and the
unipotent radical of G, respectively, then the groups Γi in the theorem are roughly
equal to Γ ∩ Gi. The least accessible part of Γ is the image of Γ ∩ G1 in G1/G2,
and a significant portion of the paper is devoted to describing this part. To that
end, the authors introduce the notion of a constructible family of algebraic groups
and frame many of their results in terms of sufficiently general finite subgroups of
geometric fibers of such families.

The authors observe that some of their main results follow (with some work) from
the classification of finite simple groups, but they provide completely independent
proofs based on methods from the theory of algebraic groups rather than on those
of finite groups. Since the first preprint of this article was circulated in 1998, several
other related results have been published. In particular, using the classification of
finite simple groups M. J. Collins gave optimal bounds for J(n) [J. Group Theory 10
(2007), no. 4, 411–423; MR2334748 (2008g:20106)] and for J ′(n) [J. Reine Angew.
Math. 624 (2008), 143–171; MR2456628 (2009j:20071)].

Peter A. Brooksbank

From MathSciNet, March 2015

MR2869010 (2012m:05003) 05-02; 05C40, 11N05, 11N35, 20F65, 68R10

Lubotzky, Alexander

Expander graphs in pure and applied mathematics.

Bulletin of the American Mathematical Society. (New Series) 49 (2012), no. 1,
113–162.

This paper is a survey based on notes prepared for the Colloquium Lectures at the
Joint Annual Meeting of the American Mathematical Society and the Mathematical
Association of America in January 2011. The notes were posted on the website of
the AMS before the meeting.

The basic definition: Let 0 < ε ∈ R and X = (V,E) be a finite graph. The
graph X is an ε-expander if for every subset Y of V with |Y | ≤ 1

2 |V | the inequality
|∂Y | ≥ ε|Y | holds, where ∂Y is the vertex boundary of Y , that is, the set of vertices
in V which are connected to some vertices of Y but are not in Y .
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A main goal of the theory of expanders is to construct and apply families of
ε-expanders with fixed ε, uniformly bounded (usually constant) degrees and infin-
itely growing numbers of vertices. A probabilistic proof of the existence of such
families was discovered simultaneously with the introduction of the notion of ex-
panders. However, for applications it is important to have explicit constructions.
Such constructions were first found using very advanced mathematical tools such
as the Kazhdan property (T) from the representation theory of infinite groups and
the Ramanujan Conjecture (proved by Deligne). For many years most of the appli-
cations of expanders were in computer science. Recently the situation has changed
and expanders have found applications in algebra, geometry, and number theory.
These applications, together with some of the recently discovered expander families,
constitute the main contents of the survey.

The paper conforms to the established standards of survey papers for the Bulletin
of the AMS, according to which “proofs should be at most briefly sketched”. In
this connection the reviewer does not intend to describe the contents of the survey
in any detail and is only going to mention some of the topics found there.

The paper starts with a very short description of basic results and relatively
classical constructions of expanders. The main purpose of this description is to
introduce the necessary terminology, notation, and to state basic results used later
in the paper. In this connection, in many cases, readers are referred to the author’s
book [Discrete groups, expanding graphs and invariant measures, Progr. Math.,
125, Birkhäuser, Basel, 1994; MR1308046 (96g:22018)] and the survey [S. Hoory,
N. Linial and A. Wigderson, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–
561; MR2247919 (2007h:68055)] for details. (In connection with the discussion
of zigzag products I would like to add two references: [N. Alon, O. Schwartz and
A. Shapira, Combin. Probab. Comput. 17 (2008), no. 3, 319–327; MR2410389
(2009b:05070)], containing a simple zigzag type construction of expanders, and
[M. Mendel and A. Naor, in Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, 236–255, SIAM, Philadelphia, PA, 2010; see
MR2797147 (2012f:68008)], containing a significant simplification of the proof of
expansion properties of zigzag products as well as applications of zigzag products
in metric geometry.)

The next portion of the survey is devoted to a series of results proving the
following conjecture of L. Babai, W. M. Kantor and A. Lubotzky [European J.
Combin. 10 (1989), no. 6, 507–522; MR1022771 (91a:20038)]: There exist k ∈ N

and ε > 0 such that every nonabelian finite simple group G has a symmetric set
of generators Σ of size at most k such that the Cayley graph of the group G with
respect to Σ is an ε-expander.

Here we also find a description of some novel techniques of establishing the
expander property of a family of graphs (Bourgain–Gamburd (2008) and further
developments).

After that, the author turns to applications. A section on applications in com-
puter science is relatively brief (in comparison with their number); this is justified
by the fact that such applications have already been presented in other sources.
Here we find the following two applications: (1) to error-correcting codes, Sipser–
Spielman (1996) and some further developments; (2) to the product replacement
algorithm. This is one of the algorithms used to produce a random element in a
subgroup generated by explicitly given elements g1, . . . , gk of some large group (for
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example, the symmetric group). Expanders are used for the theoretical explanation
of the experiments in which the algorithm shows outstanding performance.

A very rough description of the section “Expanders in number theory” is the
following: We can regard the well-known result of Green and Tao (2008) about
primes in arithmetic progressions as a result about primes in orbits of a commutative
group. The applications discussed in the section are devoted to primes in orbits of
noncommutative groups like GLn(Z). This study is based on expander properties
of Cayley graphs of some certain groups. It was initiated by Bourgain, Gamburd
and Sarnak (2010) and developed rapidly.

One of the applications of expanders found in the section “Applications to group
theory” is to the design of meaningful and useful notions of “small subsets”, “large
subsets” and “generic elements” of an infinite discrete group.

One of the results (Lackenby (2006)) presented in the section “Expanders and
geometry” shows that the Lubotzky–Sarnak conjecture (about expansion properties
of Cayley graphs of certain groups) has very close ties with conjectures on the
topology of hyperbolic 3-manifolds such as the virtual Haken conjecture and the
Heegard gradient conjecture.

The last section is described by the author as containing “brief remarks on several
topics which should fit into these notes but for various reasons were left out”.

In conclusion I would like to mention that this is a very interesting and readable
survey containing much more than I described above. It should be also mentioned
that in some parts of the survey the reader is expected to have a rather advanced
knowledge of (mostly) algebraic terminology.

Mikhail Ostrovskii

From MathSciNet, March 2015

MR2897695 11B05; 11B75

Bourgain, Jean; Varjú, Péter P.

Expansion in SLd(Z/qZ), q arbitrary.

Inventiones Mathematicæ 188 (2012), no. 1, 151–173.

This impressive paper is a further installment in a series of papers by the authors
and others on the expansion properties of finitely generated subgroups of linear
groups under natural quotient maps. Let us begin by briefly recalling the context.
Let S be a finite symmetric subset of SLd(Z), and consider the Cayley graph on
SLd(Z/qZ) obtained by joining x to y iff xy−1 ∈ S. Then one is interested in
whether this graph is an expander—that is, in whether there is some ε > 0 such
that the edge-boundary ∂A satisfies |∂A| ≥ ε|A| whenever |A| < 1

2 |SLd(Z/qZ)|.
Typically, one wishes for ε to depend only on S, and not on q.

The construction of expander graphs as Cayley graphs in this way has a long
history, and the reader is referred to the excellent survey of A. Lubotzky [Bull.
Amer. Math. Soc. (N.S.) 49 (2012), no. 1, 113–162; MR2869010 (2012m:05003)]
for more details.

Previous works of the authors, Gamburd and Sarnak, Helfgott, Pyber and Szabó,
and Breuillard, Green, and Tao have established this expansion property when
S generates a Zariski-dense subgroup of SLd(Z) as q ranges over the square-free
integers coprime to some fixed q0. This has applications to the so-called affine
sieve; see [J. Bourgain, A. Gamburd and P. C. Sarnak, Invent. Math. 179 (2010),



SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 511

no. 3, 559–644; MR2587341 (2011d:11018)] and the review of that paper for more
information.

The aim here is to dispense with the assumption that q is squarefree in this
result. The proof of this is difficult, and moreover relies on two substantial ingre-
dients. Firstly, the aforementioned result about squarefree q is used as a black box
(Theorem A). Secondly, and quite surprisingly, a deep result of J. Bourgain et al.
[J. Amer. Math. Soc. 24 (2011), no. 1, 231–280; MR2726604 (2011k:37008)] on the
equidistribution of torus orbits of certain subgroups of SLd(Z) is employed.

The broad scheme of the proof is the same as that of previous works in the series
and goes back to the work of Bourgain and A. Gamburd [Ann. of Math. (2) 167
(2008), no. 2, 625–642; MR2415383 (2010b:20070)]. The key point is to obtain
a certain product growth estimate for subsets of SLd(Z/qZ) (Proposition 2 of the
paper under review), and this must now be done for arbitrary q.

Very roughly, the proof may be split into two extreme cases: (i) q does not
contain any prime to a large power, and (ii) every prime divisor of q occurs to
a high power. In case (i) the key ingredients are Theorem A, a pretty lemma
(Lemma 4) about the nonexistence of an approximate inverse homomorphism to
the projection from SLd(Z/p

2Z) to SLd(Z/pZ), the work of Gowers (extending
work of Sarnak and Xue) on quasirandom groups, and various calculations in the
Lie algebra L = sld(Z/pZ). Case (ii) is deeper, and this is where Theorem B is
brought into play in order to obtain some expansion properties in L under addition
and conjugation.

In very recent work [Geom. Funct. Anal.22 (2012), no. 6, 1832–1891;MR3000503],
A. S. Golsefidy and P. P. Varjú have weakened, in the case where q is squarefree, the
assumption that 〈S〉 is Zariski-dense to asking only that the connected component
of the Zariski closure of 〈S〉 be perfect. This condition is also necessary. The next
(and perhaps final) goal in this line of work would be to merge that result with the
one in the paper under review, obtaining expansion for q arbitrary assuming only
that 〈S〉 has perfect Zariski closure.

Ben Joseph Green
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The Bourbaki report under review describes new applications of classical siev-
ing techniques made possible by recent breakthroughs in the understanding of the
problem of growth in groups. One crucial aspect of sieve methods is that they
can be thought of as local-to-global principles. In the classical case, one studies
integers, i.e., subsets of Z, by asking, e.g., that they avoid certain residue classes
modulo primes. In this case there is an obvious underlying group homomorphism
Z → Z/pZ for a set of selected primes p. In recent years many questions and
applications arose where one was naturally led to generalize the above sieve setting
to more general groups G, provided natural surjections G → Gp were still available
for p running over a certain index set I (in many cases this set would still be a
subset of primes). Beyond the unavoidable problem of computing local densities
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since one wants to avoid “generalized residue classes” in the groups Gp, the crucial
question was to find a way to lift, in a strong quantitative way, the local information
gathered from the Gp’s to the “global” elements investigated in G. This is where
issues regarding expansion in groups (or, in a more combinatorial way, in some of
the Cayley graphs naturally attached to the group one starts with) come into play.

In the introduction of the paper under review the following precise statement
is given. Consider the subgroup Λ of SL2(Z) (known as the Lubotzky group)
generated by the matrices (

1 ±3
0 1

)
,

(
1 0
±3 1

)
.

It is Zariski dense in SL2 although it has infinite index in SL2(Z).
Let f be a nonconstant polynomial in Z[X,Y ] and let x0 ∈ Z2\{(0, 0)}. Then

there exists an integer r ≥ 1 depending only on f and x0 such that {γ ∈ Λ :
Ω(f(γ · x0)) ≤ r} is Zariski dense in SL2 (in particular it is infinite). Here the
function Ω counts the number of prime factors, counted with multiplicity.

This result is an instance of much more general statements of J. Bourgain, A.
Gamburd and P. Sarnak [Acta Math. 207 (2011), no. 2, 255–290; MR2892611].

Besides explaining the strategy and describing the various ingredients needed for
the proof of the above result (and of its generalizations) the report also discusses
a different sieve method developed independently (and almost at the same time)
by Kowalski and Rivin. The latter work also relies on spectral gap properties in
groups though the sieve setting differs [see E. Kowalski, The large sieve and its
applications, Cambridge Tracts in Math., 175, Cambridge Univ. Press, Cambridge,
2008; MR2426239 (2009f:11123); I. Rivin, Duke Math. J. 142 (2008), no. 2, 353–
379; MR2401624 (2009m:20077)]. This other type of sieve produces applications
where the group involved comes from yet a different context. The report mentions
the application to the study of torsion in the homology of random 3-manifolds, in
the sense of Dunfield and Thurston (details can be found in [E. Kowalski, op. cit.]).

This Bourbaki report is organized as follows. After a short introduction together
with the description of a few motivating examples (e.g., applications to arithmetic
properties of curvatures in Apollonian circle packings, or, as mentioned above, tor-
sion in the homology of random 3-manifolds), the author gives a short account of
classical sieve methods which are the ones used in some of the most striking appli-
cations (e.g., those obtained by Bourgain, Gamburd and Sarnak in [Invent. Math.
179 (2010), no. 3, 559–644; MR2587341 (2011d:11018); op. cit.; MR2892611]).
The emphasis is put on the local/global aspects of the sieve. Then the heart of
the report is devoted to the so-called sieve in orbits (also called affine linear sieve)
of Bourgain, Gamburd and Sarnak. The general question can be summarized as
follows. Let m ≥ 2 and Λ ⊂ GLm(Z) be a finitely generated subgroup. Given a
vector x0 ∈ Zm one considers its orbit Λ · x0 ⊂ Zm. Now for a given polynomial
f ∈ Q[X1, . . . , Xm] such that f assumes only integral values on Λ · x0, a natural
question is to measure the extent to which the integer f(x) is “typical” as x runs
over Λ · x0 (the meaning of “typical” here is usefully discussed in an appendix to
the paper under review). Since one would like to bring to bear sieve methods to
answer questions of this type, important hypotheses have to be satisfied. A de-
scription of these conditions is given in the next section of the report. Here various
deep results need to be used, e.g., strong approximation (in the context of the work
of Matthews, Vaserstein, Weisfeiler, Nori, etc.) provides suitable surjectivity and
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independence of p properties, crucial for the sieve to apply. It is also at this point
that recent results on expansion in groups enter the game. Starting with H. A. Helf-
gott’s breakthrough [Ann. of Math. (2) 167 (2008), no. 2, 601–623; MR2415382
(2009i:20094)], this subject drew a lot of attention for a few years and culminated
with the work of A. Salehi Golsefidy and P. P. Varjú [Geom. Funct. Anal. 22 (2012),
no. 6, 1832–1891; MR3000503]. Let us quickly state their main result: let G/Q
be a linear algebraic group which is connected, simply connected and absolutely
almost simple. Up to fixing a faithful Q-representation one may assume G ⊂ GLm,
for some m ≥ 1. Let Λ ⊂ G(Q) ∩ GLm(Z) be a Zariski-dense (in G), finitely gen-
erated subgroup. Let S be a symmetric generating system for Λ. Then the family
of Cayley graphs obtained by reducing Λ modulo d with respect to the reduction
of S modulo d is a family of expander graphs, as d runs over the set of positive
square-free integers.

The expansion property can be rephrased in terms of the existence of a uniform
spectral gap for a natural set of Hecke operators attached to the Cayley graphs
involved. It is this crucial property that enables the “transfer” of the local data to
the global information in the sieving process. Three short sections end the report.
Other applications of the affine linear sieve are mentioned, together with natural
open questions that arise.

The report is written in a very clear and enlightening way, with many examples
and discussions meant to introduce nonexperts to the subject.

Florent Jouve
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The purpose of this carefully written paper is to prove explicit versions of two
well-known theorems, namely:

• the Bourgain-Gamburd argument for the expansion of Cayley graphs, mod-
ulo primes, of subgroups of SL2(Z) which are Zariski-dense in SL2(Z) [J.
Bourgain and A. Gamburd, Ann. of Math. (2) 167 (2008), no. 2, 625–642;
MR2415383 (2010b:20070)];

• H. A. Helfgott’s growth theorem for SL2(Fp) [Ann. of Math. (2) 167 (2008),
no. 2, 601–623; MR2415382 (2009i:20094)].

In addition, the author obtains, as corollaries, an explicit solution to Babai’s con-
jecture for SL2(Fp); explicit diameter bounds for Cayley graphs, modulo primes, of
Zariski-dense subgroups of SL2(Z); and explicit bounds for the largest eigenvalue
and for the diameter of a third of the groups discussed in Lubotzky’s famous 1-2-3
problem.

The value of these results is two-fold: firstly, given the acknowledged mathe-
matical importance of the work of Bourgain-Gamburd and Helfgott (in particular
to sieve methods), one would naturally like to have some indication of the size of
the constants to which these results pertain. The author remarks that the original
proofs of the two main results were effective, thus it is not surprising that one can
obtain explicit versions; nonetheless, the gap between ‘effective’ and ‘explicit’ is
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sometimes a large one, and the current paper bridges that gap for these results. No
claim is made for the bounds being sharp—there is clearly a great deal of scope for
further investigation in this direction.

Secondly, one can also see this paper as presenting a complete proof of the
original qualitative forms of the results of Bourgain-Gamburd and Helfgott. As the
author remarks, “when read in this light, ignoring the fussy technical details arising
from trying to have explicit bounds, it may in fact be useful as a self-contained
introduction to this area of research”. Indeed, the author has clearly gone to some
pains to make sure that the exposition of this paper is clear and accessible to those
not already familiar with the area.

The proof of (an explicit version of) Helfgott’s growth theorem given here has the
flavour of the original proof of Helfgott, albeit modified in the light of subsequent
work by a number of authors:

• firstly, Helfgott’s work on SL3(Fp) demonstrated (for instance) how the
geometry of maximal tori could be used in the proof [H. A. Helfgott,
J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 761–851; MR2781932];

• secondly, the subsequent generalization to all groups of Lie type (due inde-
pendently to E. Breuillard, B. Green and T. C. Tao [Geom. Funct. Anal. 21
(2011), no. 4, 774–819; MR2827010] and L. Pyber and E. Szabó [“Growth
in finite simple groups of Lie type of bounded rank”, preprint, arXiv:1005.
1858]) highlighted those ingredients which were truly key.

Indeed, a qualitative version of the proof given here is sketched out in the mono-
graph of Pyber and Szabó [op. cit.].

The proof of the Bourgain-Gamburd argument is, again, reminiscent of the orig-
inal. A central ingredient of the original proof is the L2-flattening theorem, an
explicit version of which is proved here for all finite groups.

Nick Gill
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