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As the authors state in the preface, “the book is a fusion of a research mono-
graph on function theory on symplectic manifolds and an introductory survey on
symplectic topology”. This is exactly correct. It is possible to read this book with-
out any prior symplectic geometric background, because the book skillfully presents
all the necessary background material and ideas, and can serve as an introductory
text. In the main part of the book some necessary background symplectic topolog-
ical notions are introduced and their key properties are postulated. The authors
then return to building more rigorous symplectic topological foundations in the
last three chapters of the book. But the main part of this book introduces the
reader to a new very interesting area of symplectic topology largely discovered by
Leonid Polterovich with coauthors, especially with Michael Entov. This new area
has fascinating connections with quantum mechanics, which are also discussed in
the book.

Symplectic structure on a manifold M is a closed non-degenerate differential 2-
form ω. According to a theorem of Darboux, it is locally equivalent to the form
ω0 =

∑n
1 dxi ∧ dyi on R2n. Thus the symplectic form is a skew-symmetric cousin

of the Euclidean metric. But while the group of isometries of the Euclidean metric
is finite dimensional, the symplectic isometries, called symplectomorphisms, form
a huge infinite-dimensional group Diff(M,ω). So, symplectic geometry has a more
topological, rather than geometric, flavor. Hence, the term symplectic topology.
Symplectic structure naturally appears on the phase space of a classical mechanical
system, which makes symplectic geometry the natural language for Hamiltonian
mechanics, and symplectic topology is specifically designed to address its qualitative
problems.

With any smooth function H : M → R, one can associate a Hamiltonian vector
field XH that is ω-dual to the differential dH of the function H, i.e., ω(·, XH) =
dH(·) and which generates (if it is integrable) a 1-parametric subgroup of Diff(M,ω).
In turn, these subgroups generate a subgroup Ham(M) ⊂ Diff(M,ω), called the
group of Hamiltonian diffeomorphisms. The Lie algebra of Ham(M) is the func-
tional space C∞(M)/R of smooth functions defined up to an additive constant.
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According to a theorem of A. Banyaga [3], the group Ham(M) for a closed M is
simple and coincides with the commutator subgroup of the identity component of
Diff(M,ω). If M is non-compact, then according to another result of Banyaga, the
subgroup Ham0(M) of compactly supported symplectomorphisms and its universal

cover H̃am0(M) are perfect groups. There exists a unique non-trivial homomor-

phism Cal : H̃am0(M) → R, called Calabi homomorphism [7]; its kernel coincides
with the commutator subgroup [Ham0(M),Ham0(M)]. The Calabi homomorphism

can be defined by the formula Cal(f) =
∫ 1

0

∫
M

Htω
n, where Ht is compactly sup-

ported Hamiltonian generating f . It turns out that the definition does not depend
on the choice of the generating Hamiltonian Ht.

A symplectomorphism f : (M,ω) → (M,ω) preserves the volume form ωn, and
hence the group of symplectomorphisms is a subgroup of the group Diff(M,ωn) of
volume preserving diffeomorphisms of M . In the beginning of the 1970s Mikhail
Gromov proved an alternative: Diff(M,ω) is either C0-closed (rigidity) or C0-
dense in Diff(M,ωn) (flexibility). Moreover, the alternative must have the same
resolution for all symplectic manifolds. The flexible resolution of the alternative
would imply that compared to volume preserving maps, symplectic maps have
no special qualitative properties, such as additional fixed points or constraints on
symplectic embeddings of one domain to another. In the 1980s Gromov’s alternative
was resolved in favor of rigidity by Gromov himself [16], as well as by the author of
this review [10,11]. The proof of Arnold’s conjecture for the 2n-torus in the work of
C. Conley and E. Zehnder in [9] also implied the flexible resolution of the alternative.
The method of J-holomorphic curves invented by Gromov to establish symplectic
rigidity was very remarkable in its own right and yielded a large number of other
fundamental results. Many of them were discussed in the original Gromov work.
For instance, Gromov defined the first specifically symplectic invariant, now called
Gromov width, which allowed him to prove his famous symplectic non-squeezing
theorem: a ball of radius 1 cannot be symplectically embedded to a polydisc whose
smallest radius is < 1, regardless of its volume. Remarkable development of the
subject quickly followed Gromov’s work: Floer homology theory, Hofer geometry,
and many other great results which continue to be discovered today.

The introduction in 1990 by Helmut Hofer [17] of a bi-invariant metric on the
group of Hamiltonian diffeomorphisms was a seminal step in the development of
symplectic topology and led to the foundation of a new area, now called Hofer
geometry. Existence of a bi-invariant metric on a huge non-compact infinite-
dimensional group is a remarkable phenomenon manifesting symplectic rigidity.
It is also quite remarkable that such a bi-invariant metric is essentially unique. In
2010 L. Buhovsky and Y. Ostrover proved the following result (see [5]): any bi-
invariant non-degenerate Finsler type distance metric on Ham(M) generated by a
norm that is continuous in the C∞-topology is equivalent to the Hofer metric. The
Hofer metric, according to the authors of the book under review, is one of “three
wonders” of symplectic topology (the other two are C0-closedness of the group
Diff(M,ω) and additional fixed point phenomenon for symplectomorphisms, the
subject of V. I. Arnold’s conjectures [2]), which are discussed in the first chapter.
And it is the the starting point of the functional development which is the main
subject of the book.

A symplectic form ω on a manifoldM yields a Poisson bracket {f, g} for functions
on M , given by the formula {f, g} = ω(Xf , Xg) = dg(Xf ) = −df(Xg). In the
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general vein of symplectic C0-rigidity, Entov and Polterovich proved [13], extending
earlier results of Cardin and Viterbo [8] and Zapolsky [20], that the Poisson bracket
is lower semi-continuous in the C0-topology, i.e.,

lim inf
(F,G)

C0
→(F,G)

{F ,G} = {F,G}.

The second chapter of the book discusses various proofs of this result and its re-
finements, and in particular, the following Buhovsky’s estimate [4] of the precise
rate of this convergence. Denote

||{F,G}||δ = inf
||F−F ||,||G−G||≤δ

||{F ,G}||,

where || · || is the C0-norm of a function on a compact manifold M . Then there
exists δ0(F,G) > 0 such that for all δ ∈ (0, δ0(F,G)) one has

||{F,G}|| − ||{F,G}||δ ≤ CΨ(F,G)1/3δ2/3,

where C ≤ 100 is a constant independent of F and G, and

Ψ(F,G) := ‖{{{F,G}, F} , F}+ {{{F,G}, G} , G}‖ .
Moreover, for generic F,G the power δ2/3 is sharp.

Exploration of Poisson bracket rigidity is one of the main themes throughout the
book. For instance, the authors discuss an interesting invariant pb4(X0, X1, Y0, Y1)
of quadruples of compact sets X0, X1, Y0, Y1 of a symplectic manifold M , based on
properties of the Poisson bracket. The invariant was defined by Buhovsky, Entov,
and Polterovich in [6]. We return to its definition later on in the review.

Next, the book discusses the notion of a quasi-morphism and its symplectic
ramifications. This notion belongs to geometric group theory. A quasi-morphism is
a real valued function μ on a group G which is a homomorphism up to a bounded
error, i.e., there exists a constant C > 0 such that

|μ(gh)− μ(g)− μ(h)| ≤ C for any g, h ∈ G.

A prototypical example of a quasi-morphism is the Poincaré rotation number, which

is a quasi-morphism on the universal cover D̃iff(S1) of the group of orientation
preserving diffeomorphisms of the circle.

In the symplectic context, an important example of a quasi-morphism is the

Maslov index μ : S̃p(2n,R) → R, where we denote by S̃p(2n,R) → R the uni-
versal cover of the group of linear symplectic transformations of R2n. Given a
symplectic matrix S, we take its polar decomposition S = PU , where matrix P
is positive definite self-adjoint and U is unitary, and then take the complex deter-
minant det(U) ∈ S1. The constructed map Sp(2n,R) → S1 lifts to the required

Maslov quasi-morphism μ : S̃p(2n,R) → R.

Recall that a surjective Calabi homomorphism Cal : H̃am0(M) → R is defined

on the group H̃am0(M) for a non-compact M , while for a closed M there are no
non-trivial homomorphisms Ham(M) → R. However, it turned out that in many
cases the group Ham(M) admits Calabi quasi-morphisms, which were discovered by
Entov and Polterovich [12] and which satisfy the following Calabi property: for any
f supported in a displaceable subset U ⊂ M , they coincide with Cal(f |U ), where
displaceability means existence of a Hamiltonian diffeomorphism h ∈ Ham(M) such
that h(U) ∩U = ∅. Existence of Calabi quasi-morphisms is another manifestation
of symplectic rigidity. Similar to the Hofer metric they can be defined via the
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theory of spectral invariants, i.e., invariants defined in terms of critical values of

the action functional Sφ(γ̃) =
∫ 1

0
Φt(γ(t))dt −

∫
D
ω. Here φ is a diffeomorphism

from H̃am0(M); Φt, t ∈ [0, 1], is a time dependent Hamiltonian generating φ and
γ̃ is a pair (γ,D), where γ : [0, 1] → M is a loop and D is a homotopy class of

2-discs which span γ; this pair is an element of the universal cover Λ̃0(M) of the
space of contractible loops of M . The link between quasi-morphisms and spectral
invariants is discussed in detail in the book.

The book then introduces the first connection of symplectic topology with quan-
tum mechanics. In von Neumann formalism of quantum mechanics the state of a
physical system is a functional ρ on the space L(H) of Hermitian operators (observ-
ables) of a Hilbert space H which satisfies three axioms: ρ(Id) = 1 (normalization),
ρ(A) ≥ 0 if A is non-negative (positivity), and ρ(αA+βB) = αρ(A)+βρ(B), α, β ∈
R, A,B ∈ L(H) (linearity). A. Gleason proved in [15] that when dimH ≥ 3
the relaxed definition of a quasi-state, when one postulates linearity only for com-
muting pairs of operators A,B, is equivalent to the original von Neumann defi-
nition. In classical mechanics a natural analog of quantum quasi-states are sym-
plectic quasi-states. These are functionals ζ : C(M) → R on the space C(M)
of continuous functions on a symplectic manifold M which satisfies the analogous
three conditions: ζ(1) = 1 (normalization); ζ(F ) ≥ 0 if F ≥ 0 (positivity); and
ζ(αF + βG) = αζ(F ) + βζ(G) for Poisson commuting functions F,G ∈ C(M) and
real α, β (quasi-linearity). Here we call continuous functions Poisson commuting
if they can be uniformly approximated by pairs of Poisson commuting functions.
Entov and Polterovich discovered (see [14]) an anti-Gleason phenomenon in classi-
cal mechanics: there exist symplectic quasi-states which are not states, i.e., which
are not necessarily linear on non-Poisson commuting pairs of functions. Again, the
source of such examples is the theory of action spectral invariants. The theory of
symplectic quasi-states is related to the theory of topological quasi-states introduced
by A. Aarnes [1]. This link is also explored in the book. The book discusses sev-
eral interesting applications of the theory of symplectic quasi-states to symplectic
topology, and in particular to Hofer geometry and Lagrangian intersection theory.

We mentioned above a Poisson bracket based invariant pb4(X0, X1, Y0, Y1) of
quadruples of compact subsets X0, X1, Y0, Y1 ⊂ M of a symplectic manifold M . It
is defined by the formula

pb4(X0, X1, Y0, Y1) = inf{F,G},

where the infimum is taken over all compactly supported C∞-functions F,G : M →
R which satisfy the following conditions:

F |X0
≤ 0, F |X1

≥ 1, G|Y0
≤ 0, G|X1

≥ 1.

The class of such pairs of functions is non-empty whenever X0∩X1 = Y0 ∩Y1 = ∅.
Non-trivial bounds for this invariant come from the theory of quasi-states. In turn,
this invariant allows us to prove interesting dynamical properties, such as existence
of Hamiltonian trajectories between points of two subsets of the phase space of a
Hamiltonian system. For instance, let V be compact domain in T ∗Tn that contains
the 0-section, and let D1 and D2 be intersections of two distinct fibers of T ∗Tn with
V . Then for any Hamiltonian G : V → R that vanishes on ∂V and is greater than
or equal to 1 on the 0-section there is a Hamiltonian trajectory of G intersecting
D0 and D1.
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Another interesting Poisson bracket based invariant can be associated to a finite

open cover U = {Ui}i=1,...,N ,
⋃N

1 Ui = M of a symplectic manifold M . Define

pb(U) = inf
→
F

max
x,y∈QN

�
{

N∑
1

xiFi,

N∑
1

yjFj

}
�
.

Here the maximum is taken over x = (x1, . . . , xN ), y = (y1, . . . , yN ) in the unit
cube QN = {0 ≤ xi ≤ 1, i = 1, . . . , N}, and the infimum is taken over all partition

of unity
→
F = {F1, . . . , FN} subordinated to the covering U . It turns out that

symplectic topology yields non-trivial lower bounds for the invariant pb(U). For
instance, for displaceable sets the book defines a class of invariants, called spectral
widths, which could be viewed as variations of Gromov’s width invariant. If w is one
of these invariants, define w(U) := maxi w(Ui). It turns out that if the partition

U consists of displaceable open sets, then pb(U) ≥ c(N)
w(U) , where the constant c(N)

depends only on the number N of the elements of the partition.
Interestingly, the invariant pb(U) provides yet another link of symplectic topol-

ogy with quantum mechanics, this time with the theory of quantum noise. This
discussion, which follows Polterovich’s papers [18, 19], culminates the main part of
the book, before the authors return in the last three chapters to the building of the
necessary additional symplectic topological background.
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