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SELECTED MATHEMATICAL REVIEWS

related to the first article in the previous section by

W. T. GOWERS

MR1631259 (2000d:11019) 11B25; 11N13

Gowers, W. T.

A new proof of Szemerédi’s theorem for arithmetic progressions of
length four.

Geometric and Functional Analysis 8 (1998), no. 3, 529–551.

This remarkable paper gives a new proof that every subset of the integers with
positive density must contain arithmetic progressions of length four. This was
conjectured by P. Erdős and P. Turán [J. London Math. Soc. 11 (1936), 261–
264; Zbl 015.15203], and eventually proved by E. Szemerédi [Acta Math. Acad.
Sci. Hungar. 20 (1969), 89–104; MR0245555]. Szemerédi’s proof depended on the
theorem of van der Waerden. It gave no explicit function η(N), tending to zero
with N , such that an integer subset of [1, N ] of size at least η(N)N must contain a
progression of length 4. Since then it has been an important open problem, which
this paper solves, to prove Szemerédi’s result with an explicit function η(N). The
result given here is that there is a positive constant c such that any integer subset of
[1, N ] with at least N(log log logN)−c elements contains an arithmetic progression
of length 4. In a future paper it is promised that the number of logarithms will
be reduced to 2. Moreover, the author plans to extend the technique to arithmetic
progressions of arbitrary length k ≥ 4, obtaining bounds of the same form, but
with the constant c depending on k.

The initial stages of the proof are motivated by K. F. Roth’s treatment [J. London
Math. Soc. 28 (1953), 104–109; MR0051853] of progressions of length 3, in which
the circle method was used. However, it is clear that the usual notion of uniform
distribution is not sufficient to handle progressions of length 4. Instead Gowers
uses “quadratic uniformity”. If A ⊆ [1, N ] is an integer set with ηN elements, and
characteristic function χA, define an = χA(n)−η. Roughly speaking, one says that
A is quadratically uniform if∑

n≤N

anan+k exp(2πinθ) = o(ηN),

uniformly in θ, for “almost all” relevant k. It is shown that a quadratically uniform
set contains arithmetic progressions of length 4.

For a set that fails to be quadratically uniform, one can find many values of k
for which the above sum is large at some value θ = γ(k)/N , with γ(k) integral.
The proof proceeds to find a large set K of values of k for which the graph Γ =
{(k, γ(k)) : k ∈ K} has a difference set whose cardinality is little more than that of
Γ itself. This is the situation described by the theorem of G. Freiman [Foundations
of a structural theory of set addition, Translated from the Russian, Amer. Math.
Soc., Providence, R. I., 1973; MR0360496]. A quantitative version of this result,
due to I. Z. Ruzsa [Acta Math. Hungar. 65 (1994), no. 4, 379–388; MR1281447],
is applied to show that there is a long arithmetic progression, almost all of whose
elements lie in Γ. Using this information it is shown that if A is not quadratically
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uniform, then there exist α and β, and a long arithmetic progression P , such that∑
n∈P

an exp
(
2πi(αn2 + βn)

)
is large. The proof is now completed by showing that there is a further large
arithmetic progression Q, say, such that

∑
n∈Q an is large and positive. It follows

that the density η for the original set A must be appreciably smaller than for
A ∪ Q. As in Roth’s theorem, one can now iterate this fact to get the bound
η � (log log logN)−c.

It is natural to ask to what extent the proof can be adapted to attack the
problem of 4 primes in arithmetic progression. In fact, large parts of the argument
go through. However, it is clear that the use of anything like Freiman’s theorem
will provide bounds which are too weak for such an application.

D. R. Heath-Brown

From MathSciNet, October 2016

MR2150389 (2007b:37004) 37A05; 28D05

Host, Bernard; Kra, Bryna

Nonconventional ergodic averages and nilmanifolds.

Annals of Mathematics. Second Series 161 (2005), no. 1, 397–488.

The paper under review makes a landmark contribution to the literature sur-
rounding the nonconventional ergodic averages introduced by H. Furstenberg in
his ergodic-theoretic proof of Szemerédi’s theorem [E. Szemerédi, Acta Arith. 27
(1975), 199–245; MR0369312].

Let (X,A, μ, T ) be a finite-measure, invertible measure preserving system. Fur-
stenberg showed in [J. Analyse Math. 31 (1977), 204–256; MR0498471] that for
any natural number k and any non-negative, non-identically-zero f ∈ L∞(X), one
has

lim inf
n−m→∞

1

n−m

n−1∑
i=m

∫
f(x)f(T ix)f(T 2ix) · · · f(T kix) dμ(x) > 0.

Furstenberg also showed that the limit exists for k = 2 by proving

lim
n−m→∞

1

n−m

n−1∑
i=m

f1(T
ix)f2(T

2ix)

to exist in L2(X) for bounded f1, f2. A proof of the existence of the corresponding
limit for the (k = 3, T totally ergodic) case was given in a series of papers by
J.-P. Conze and E. Lesigne [cf. Bull. Soc. Math. France 112 (1984), no. 2, 143–
175; MR0788966]; the means for proving the general k = 3 case is perhaps implicit
in [H. Furstenberg and B. Weiss, in Convergence in ergodic theory and probability
(Columbus, OH, 1993), 193–227, de Gruyter, Berlin, 1996; MR1412607], though the
authors’ [Ergodic Theory Dynam. Systems 21 (2001), no. 2, 493–509; MR1827115]
contains the first fully general, published proof for k = 3. The present paper
establishes the existence of an L2-limit for general k.

Significantly, the authors consider another type of ergodic averaging which had
only recently gained attention: the so-called averaging along cubes. The cube av-
eraging scheme evolved out of methods devised by W. T. Gowers in his proof of
Szemerédi’s theorem via harmonic analysis [Geom. Funct. Anal. 11 (2001), no. 3,
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465–588; MR1844079]. The first to import these structures into the ergodic-
theoretic context under consideration was V. Bergelson, who in [Descriptive set
theory and dynamical systems (Marseille-Luminy, 1996), 31–57, Cambridge Univ.
Press, Cambridge, 2000; MR1774423] showed that

lim
ni−mi→∞

i=1,2

1

(n1 −m1)(n2 −m2)

n1−1∑
i1=m1

n2−1∑
i2=m2

f(T i1x)g(T i2x)h(T i1+i2x)

exists in L2(X) for bounded functions f, g, h. It follows from this proof that for a set
A of positive measure, μ(A∩TnA∩TnA∩Tn+mA) has average value approaching at
least μ(A)4 over sufficiently large rectangles in Z2. One can see this as case k = 2 in
a more general scheme, case k = 1 consisting in the ergodic theorem and Khinchin’s
recurrence theorem. The authors [in Modern dynamical systems and applications,
123–144, Cambridge Univ. Press, Cambridge, 2004; MR2090768] proved case k = 3
of this scheme, in which one considers a triple Cesàro limit of terms which are
products of seven functions evaluated along vertices of 3-dimensional parallelepipeds
or “cubes”; here they establish the general case.

The paper follows the usual global strategy for establishing limits for non-
conventional ergodic averages; namely identification of a characteristic factor,
followed by a refined analysis on this factor. For example, a factor Z ⊂ A
(here Z is a T -invariant σ-algebra) is characteristic for the averaging scheme

limn−m→∞
1

n−m

∑n−1
i=m f1(T

ix)f2(T
2ix) · · · fk(T ix) if the limit reduces to zero

1 whenever E(fi|Z) = 0 for some i. It is easy to see that if Z is characteristic, then
in establishing existence of the limit, one may assume without loss of generality
that the fi are Z-measurable. In his proof of Szemerédi’s theorem, Furstenberg
showed that the maximal (k − 1)-step distal factor is characteristic for the averag-
ing scheme in question; when k = 2 this is the Kronecker factor, on which one can
easily compute the limit, but already for k = 3 it is too fine to readily establish
existence of the limit, which in fact lies on the coarser Conze-Lesigne algebra. The
characteristic factors Zk found by the authors for the aforementioned averaging
schemes are indeed the Kronecker and CL-factors for the appropriate small values
of k. Having constructed them, the bulk of the work here is in establishing that
for general k, the restriction of the system to Zk is an inverse limit of translations
on nilmanifolds. Since existence of the corresponding limit was previously known
in this setting (cf. [A. Leibman, Ergodic Theory Dynam. Systems 25 (2005), no. 1,
201–213; MR2122919] or [T. Ziegler, Ergodic Theory Dynam. Systems 25 (2005),
no. 4, 1357–1370; MR2158410]), this suffices for the proof.

In constructing the factors Zk, the authors follow Furstenberg’s original proof
of the Szemerédi theorem in considering conditional product measures on product
spaces. The novelty here is that instead of considering measures on Xk, they

construct measures on the “cube product” X2k ; elements explored exhaustively in
[W. T. Gowers, op. cit.] force relevance to averages taken on arithmetic progressions.
Unfortunately the Gowers connection, though acknowledged, is not explained (its
sole mention serves to de-emphasize the connection, if anything), rendering many
of the early moves in the paper somewhat opaque and unmotivated. Yet it is easy
to give a brief motivating synopsis, done here for k = 3.
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The Gowers uniformity seminorm ||| · |||3 is defined for real-valued functions on
ZN by

|||f |||3 =
( ∑

a,b,c,d∈ZN

f(a)f(a+ b)f(a+ c)f(a+ b+ c)

× f(a+ d)f(a+ b+ d)f(a+ c+ d)f(a+ b+ c+ d)
)1/23

.

Taking X = ZN with counting measure and letting T be the shift, this is just⎛
⎝ N−1∑

b,c,d=0

∫
X

fT bfT cfT b+cfT dfT b+dfT c+dfT b+c+df dμ

⎞
⎠

1/23

.

Letting now (X,μ, T ) be any ergodic system and normalizing so that μ(X) = 1,
one can start with this expression and pass to Cesàro limits in the variables d, c
and b in turn. Passing to a Cesàro limit in d, one obtains(

1

N2

N−1∑
b,c=0

∫
X2

(f ⊗ f)(T × T )b(f ⊗ f)(T × T )c

× (f ⊗ f)(T × T )b+c(f ⊗ f) dμ[1]

)1/23

,

where μ[1] = μ× μ. Now passing to a Cesàro limit in c, one gets

( 1

N

N−1∑
b=0

∫
X2

E
(
(f ⊗ f)(T × T )b(f ⊗ f)|I [1]

)2
dμ[1]

)1/23

=
( 1

N

N−1∑
b=0

∫
X4

(f ⊗ f ⊗ f ⊗ f)(T × T × T × T )b

× (f ⊗ f ⊗ f ⊗ f) dμ[2]
)1/23

,

where I [1] is the μ[1]-invariant algebra on X×X and μ[2] is the conditional product
of μ[1] with itself over I [1]. Finally, upon passing to a Cesàro limit in b, one obtains

(∫
X4

E(f ⊗ f ⊗ f ⊗ f |I [2])2 dμ[2]

)1/23

=

(∫
X8

(f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f) dμ[3]

)1/23

,

where I [2] is the μ[2]-invariant algebra on X4 and μ[3] is the conditional product of
μ[2] with itself over I [2]. The authors take this last expression as the definition of
|||f |||3. Higher values of k get a similar treatment by induction. The characteristic
factors Zk are in turn constructed out of the measurable structures μ[k]. The details
are too involved for a review; we mention only that the uniformity seminorms are
used to establish the property of being characteristic, the point being that when

|||fi|||k is small for some i this forces lim supN ‖ 1
N

∑N−1
n=0 (

∏k
i=1 T

infi)‖ to be small.
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More recently, a second proof of this paper’s main result has been obtained in
[T. Ziegler, J. Amer. Math. Soc. 20 (2007), no. 1, 53–97 (electronic); MR2257397
(2007j:37004)].

REVISED (December, 2006; January, 2007)
Randall McCutcheon

From MathSciNet, October 2016

MR2289012 (2008a:11002) 11-02; 05-02, 05D10, 11B13, 11P70, 11P82, 28D05,

37A45

Tao, Terence; Vu, Van

Additive combinatorics. (English)

Cambridge Studies in Advanced Mathematics, 105.
Cambridge University Press , Cambridge, 2006, xviii+512 pp., $85.00,
ISBN 978-0-521-85386-6; 0-521-85386-9

The subject of the book under review is additive combinatorics—a young and
extensively developing area in mathematics with many applications, especially to
number theory. Roughly speaking, one can define this area as combinatorics related
to an additive group structure. Modern additive combinatorics studies various
groups, from the classical group of integers to abstract groups of arbitrary nature.

It is difficult to determine a starting point for additive combinatorics. Among
the origins of the theory one should mention the Cauchy theorem on set addition
on the group of residues modulo a prime [A. L. Cauchy, J. École Polytech. 9 (1813),
99–116; per bibl.], I. Schur’s theorem on monochromatic solutions to the equation
x+y = z [Jahresber. Deutsch. Math.-Verein. 25 (1916), 114–117; JFM 46.0193.02],
and, certainly, the famous van der Waerden theorem on monochromatic arithmetic
progressions [B. L. van der Waerden, Nieuw Arch. Wisk. 15 (1927), 212–216; JFM
53.0073.12]. Probably the first serious application of combinatorial methods to
classical number theory was made by Shnirel′man. Using Brun’s lower estimates for
the density of P+P where P is the set of primes he deduced that every integer > 1 is
a sum of a bounded number of primes [L. Shnirel′man, Izv. Donsk. Politeh. Inst. 14
(1930), 3–28; JFM 56.0892.02; Math. Ann. 107 (1933), 649–690; Zbl 0006.10402].

Van der Waerden’s theorem had a great influence on the development of additive
combinatorics. In this connection, it is worthy of mention that the most spectacular
results of additive combinatorics, namely, Szemerédi’s theorem on arithmetic pro-
gressions in subsets of the set of integers of positive density, Gowers’ estimates for
the density of sets without arithmetic progressions, and, of course, the theorem of
Green and Tao on the existence of arbitrarily long progressions in the set of primes,
are directly related to van der Waerden’s theorem. The last two results—and also
such outstanding achievements as the theorem of Bourgain, Katz, and Tao on sums
and products of sets in finite fields and Ruzsa-Chang’s refinement of Freiman’s
theorem—have led to the extremely active development of additive combinatorics
in the last decade. During this period it has become a very rich and fruitful theory
that is interacting and interlacing different areas of mathematics, such as harmonic
analysis, graph theory, probability theory, ergodic theory, geometry of numbers,
and algebraic geometry. This theory is beautiful and contains a lot of challenging
problems. It is not a surprise that it has combined the efforts of many leading
mathematicians, including the authors of the book under review. However, there
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has been an absence of systematic exposition of contemporary additive combina-
torics (earlier results are presented in the monograph by M. B. Nathanson [Additive
number theory, Springer, New York, 1996; MR1477155]). The purpose of the book
under review is to fill this gap.

The monograph is designed for a wide mathematical audience and does not
require any specific background from a reader. However, everybody who intends
to read this book should be ready to study tools and ideas from different areas of
mathematics, which are concentrated in the book and presented in an accessible,
coherent, and intuitively clear manner and provided with immediate applications
to problems in additive combinatorics. The text is supplemented by a large number
of exercises.

In Chapter 1 Tao and Vu discuss the well-known probabilistic method [see
N. Alon and J. H. Spencer, The probabilistic method, Second edition, Wiley-Intersci.,
New York, 2000; MR1885388] and its applications to problems in additive number
theory such as the construction of sum-free sets and thin bases.

In the next chapter general inequalities on doubling constants, Ruzsa’s
and Green’s covering lemmas, the theorem of Balog-Szemerédi-Gowers, elemen-
tary sum-product estimates and Ruzsa’s triangle inequality are considered. Also,
non-commutative analogues of the results obtained are discussed.

In Chapter 3 some tools of geometry of numbers are described (for example, the
Brunn-Minkowski inequality on addition of sets in R

d). Applications of harmonic
analysis are considered in the next chapter. In particular, the spectrum of additive
sets, Bohr sets, and dissociated subsets of the spectrum are considered. Also, some
applications to problems concerning Bk[g] sets and progressions in sumsets are
obtained.

The general theory of set addition in arbitrary groups is considered in Chapter
5. Tao and Vu give the definitions and obtain the properties of Freiman homomor-
phisms and the so-called e-transform. Theorems of Cauchy-Davenport, Kneser,
Mann, Vosper and the very important Freiman theorem on the structure of sets
with small doubling are proved.

In the next chapter the authors discuss some aspects of Ramsey theory and ap-
plications of graph theory to additive combinatorics. Also, the beautiful Plünnecke
theorem on the connection between the cardinalities of |A + B| and |A + kB| is
proved.

In Chapter 7 the direct and inverse Littlewood-Offord problems are studied by
the Fourier approach and the probability method. The quadratic generalizations
of the problem are considered.

Further, Tao and Vu discuss some problems of incidence, particularly, crossing
numbers and the theorem of Szemerédi-Trotter. Also, they describe some applica-
tions of the Szemerédi-Trotter theorem to the sum-product problem in R and other
fields.

In the next chapter the authors deal with methods of algebraic geometry—for
example, the polynomial method—and applications of these methods to problems
concerning addition with restrictions. Davenport’s problem and the one- and mul-
tidimensional Erdős-Ginzburg-Ziv problems are considered.

In Chapter 10 Tao and Vu give several proofs of Roth’s theorem on sets with-
out arithmetic progressions using methods of harmonic analysis, the dynamical
approach, and the original combinatorial method of Szemerédi. In the next chap-
ter the case of arithmetic progressions of length greater than three is considered.
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Gowers’ method, the ergodic approach, and the hypergraph methods of proving the
result are explained. Moreover, a sketch of the proof of Green-Tao’s theorem on
arithmetic progressions in the primes is given.

The last part of the book contains some results of Lev, Sarkozy, Szemerédi,
and Vu on arithmetic progressions in sumsets and also theorems on complete and
subcomplete sequences.

Sergĕı V. Konyagin and Ilya D. Shkredov

From MathSciNet, October 2016

MR2680398 (2011j:11177) 11N13; 11B30, 11P32

Green, Benjamin; Tao, Terence

Linear equations in primes.

Annals of Mathematics. Second Series 171 (2010), no. 3, 1753–1850.

The paper under review is a landmark contribution to analytic number theory.
The authors establish, conditioned on two conjectures labeled MN(s), GI(s), a vast
multilinear generalization of the classical Dirichlet theorem on primes in arithmetic
progressions. Before describing the result we remark that the conjecture MN(s) was
proved by the authors in 2008 [“The Möbius function is strongly orthogonal to nilse-
quences”, preprint, arXiv:0807.1736], and the conjecture GI(s) was recently proved
by the authors and the reviewer [“An inverse theorem for the Gowers Us+1[N ]-
norm”, preprint, arXiv:1009.3998]; thus the results of the paper under review are
no longer conditional.

Consider the following problem: Let P denote the set of primes. Let A be a k×n
integer matrix, and let 
v ∈ Zk be an integer vector. We ask the following basic
question: are there integer-valued vectors 
x, so that all coordinates of A
x + 
v are
prime, and if so, how often? In the case where n = k = 1, the classical Dirichlet
theorem asserts that ax + v is prime if and only if there are no “local obstruc-
tions”, namely gcd(a, v) = 1. Furthermore, the Siegel-Walfisz theorem provides the
asymptotic number of primes x ≤ N with ax+ v prime.

The authors prove the following theorem: Suppose that no two rows of A are
linearly dependent, and that the conjectures MN(s) and GI(s) (to be described
below) are true. Then the following local-to-global principle holds: A
x + 
v ∈ Pk

infinitely often if and only if for any prime p, there is an integer vector 
x such that
all coordinates of A
x+
v are in (Z/pZ)∗, and there are infinitely many 
x with A
x+
v
positive.

Furthermore, the asymptotic number of such integer vectors 
x is given by∣∣{
x ∈ [−N,N ]n, A
x+ 
v ∈ P
k
}∣∣ ∼ S(A,
v)

Nn

(logN)k
,

where S(A,
v) can be computed explicitly. As a special case one can get, for exam-
ple, the asymptotic number of k-term arithmetic progressions of prime numbers.

We remark that the condition that no two rows of A are linearly dependent
excludes the case of the twin prime conjecture; thus, the paper has no bearing on
this problem.

One may also restate the requirement that all coordinates of A
x+
v are prime in
terms of solving a system of linear equations in prime numbers. Stated in this form,
the fewer variables one has, the more difficult the problem is. Thus for example,
one equation in two variables, say x − y = 2, is very difficult. If one allows an
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additional variable, namely one equation in three variables, then one can solve this
equation in primes (assuming no local obstructions) via methods of Vinogradov
(1937). Similar methods were used by A. Balog [Mathematika 39 (1992), no. 2,
367–378; MR1203292] for some special cases of systems of linear equations. There
was almost no progress on this problem until the breakthrough of the authors [Ann.
of Math. (2) 167 (2008), no. 2, 481–547; MR2415379], establishing the existence
of arbitrarily long arithmetic progressions in primes. The methods there provided
a lower bound of the correct order of magnitude for the number of such progres-
sions, but could not provide asymptotics, nor could they handle nonhomogeneous
equations (they rely on E. Szemerédi’s theorem [Acta Arith. 27 (1975), 199–245;
MR0369312] which does not hold for nonhomogeneous equations and cannot pro-
vide asymptotics).

We now give a rough outline of the proof. The authors are counting prime solu-
tions to 
y = A
x+
v, A ∈ Mk×n(Z) by considering the solution counting expression

∑
�x∈[N ]n

Λ(y1) · · ·Λ(yk),

where Λ is the von-Mangoldt function. Studying this function directly is difficult
due to the irregular behavior of Λ modulo small primes. Instead they study the same

average for the modified functions ΛW,b(n) =
φ(W )
W Λ(Wn+ b), where w : N → N is

a slow growing function, W =
∏

p≤w p, and (W, b) = 1. The authors show that

1

Nn

∑
�x∈[N ]n

ΛW,b1(y1) · · ·ΛW,bk(yk) = 1 + o(1).

When no two rows of A are linearly dependent, the average above is “controlled”
by the so-called Gowers uniformity norms, introduced by W. T. Gowers in [Geom.
Funct. Anal. 11 (2001), no. 3, 465–588; MR1844079], in the sense that the estimate
above holds if ‖ΛW,b − 1‖Us = o(1) for some integer s depending on A. This is where
GI(s) kicks in.

The Inverse Theorem for the Gowers norms Us (GI(s)) [B. Green, T. Tao and T.
Ziegler, op. cit.] states that a bounded function f : [N ] → C satisfies ‖f‖Us = o(1)
if and only if f does not correlate with bounded (s− 1)-step nilsequences, namely

∑
n≤N

f(n)g(n) = o(N)

for any bounded function g : Z → C of the form g(n) = F (anx) where F : G/Γ → C

is a Lipschitz continuous function, G/Γ is an (s− 1)-step nilmanifold, and a ∈ G.
Using the transference principle introduced by the authors in [Ann. of Math. (2)
167 (2008), no. 2, 481–547; MR2415379], one can transfer this criterion to functions
bounded by pseudorandom measures, thus it applies to the (non-bounded) function
ΛW,b − 1. It follows that it suffices to check that ΛW,b − 1 does not correlate with
an (s− 1)-step nilsequence; namely

∑
n≤N

(ΛW,b − 1)(n)g(n) = o(N),
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where g is as described above. This condition in turn can be translated to a
similar condition replacing ΛW,b − 1 by the Möbius function μ(n); but this is the
statement of the Möbius Nilsequence Theorem (MN(s)) [B. Green and T. Tao, op.
cit., arXiv:0807.1736].

Tamar Ziegler

From MathSciNet, October 2016

MR2912706 11B75; 05D10, 37A45

Polymath, D. H. J.

A new proof of the density Hales-Jewett theorem.

Annals of Mathematics. Second Series 175 (2012), no. 3, 1283–1327.

The following standard notation is used: For any integers k ≥ 1 and n ≥ 0,
[k] := {1, . . . , k} and [k]n is the set of all words of length n on the alphabet [k]. If w
is a word on the alphabet [k] ∪ {x} in which at least one x appears (x is sometimes
called a wildcard letter), then for i ∈ [k], w(i) denotes the word obtained from w by
replacing each x by i. A combinatorial line is a set of the form {w(i) : i = 1, . . . , k}.

The density Hales-Jewett (DHJ) theorem states that for all k and ε > 0, there
exists n such that if A is any subset of [k]n with |A| > εkn, then A contains a
combinatorial line.

Here is a long quotation from the paper under review, which gives the motivation
for finding a new proof:

“Why is it interesting to give a new proof of the density Hales-Jewett theorem?”
There are two main reasons. The first is connected with the history of results
and techniques in this area. One of the main benefits of Furstenberg’s proof of Sze-
merédi’s theorem was that it introduced a technique—ergodic methods—that could
be developed in many directions, which did not seem to be the case with Szemerédi’s
proof. As a result, several far-reaching generalizations of Szemerédi’s theorem were
proved [V. Bergelson and A. Leibman, J. Amer. Math. Soc. 9 (1996), no. 3, 725–
753; MR1325795; H. Furstenberg and Y. Katznelson, J. Analyse Math. 34 (1978),
275–291 (1979); MR0531279; J. Analyse Math. 45 (1985), 117–168; MR0833409;
J. Anal. Math. 57 (1991), 64–119; MR1191743], and for a long time nobody could
prove them in any other way than by using Furstenberg’s methods. In the last few
years that has changed, and a programme has developed to find new and finitary
proofs of the results that were previously known only by infinitary ergodic meth-
ods; see, e.g., [V. Rödl and J. Skokan, Random Structures Algorithms 25 (2004),
no. 1, 1–42; MR2069663; B. Nagle, V. Rödl and M. Schacht, Random Structures
Algorithms 28 (2006), no. 2, 113–179; MR2198495; V. Rödl and J. Skokan, Ran-
dom Structures Algorithms 28 (2006), no. 2, 180–194; MR2198496; V. Rödl and
M. Schacht, Combin. Probab. Comput. 16 (2007), no. 6, 833–885; MR2351688;
Combin. Probab. Comput. 16 (2007), no. 6, 887–901; MR2351689; W. T. Gow-
ers, Combin. Probab. Comput. 15 (2006), no. 1-2, 143–184; MR2195580; Ann. of
Math. (2) 166 (2007), no. 3, 897–946; MR2373376; T. C. Tao, Electron. J. Com-
bin. 13 (2006), no. 1, Research Paper 99, 49 pp.; MR2274314; J. Anal. Math. 103
(2007), 1–45; MR2373263]. Giving a nonergodic proof of the density Hales-Jewett
theorem was seen as a key goal for this programme, especially since Furstenberg
and Katznelson’s ergodic proof was significantly harder than the ergodic proof of
Szemerédi’s theorem. Having given a purely finitary proof, we are able to obtain
explicit bounds for how large n needs to be as a function of δ and k in the density
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Hales-Jewett theorem. Such bounds could not be obtained via the ergodic methods
even in principle, because these proofs rely on the Axiom of Choice. Admittedly,
our explicit bounds are not particularly good: we start with a tower-type depen-
dence for k = 3 and go up a level of the Ackermann hierarchy each time we go
from k to k + 1. However, they are in line with several other bounds in the area.
For example, the best known bounds for the multidimensional Szemerédi theorem
[W. T. Gowers, op. cit.; MR2373376; B. Nagle, V. Rödl and M. Schacht, op. cit.]
(which is an easy consequence of DHJ) are also of this type.

“A second reason that a new proof of the density Hales-Jewett theorem is in-
teresting is that it immediately implies Szemerédi’s theorem, and finding a new
proof of Szemerédi’s theorem seems always to be illuminating—or at least this has
been the case for the four main approaches discovered so far (combinatorial [E.
Szemerédi, Acta Arith. 27 (1975), 199–245; MR0369312], ergodic [H. Furstenberg,
J. Analyse Math. 31 (1977), 204–256; MR0498471; H. Furstenberg, Y. Katznel-
son and D. S. Ornstein, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 527–552;
MR0670131], Fourier [W. T. Gowers, Geom. Funct. Anal. 11 (2001), no. 3, 465–588;
MR1844079], hypergraph removal [W. T. Gowers, op. cit.; MR2195580; op. cit.;
MR2373376; V. Rödl and J. Skokan, op. cit.; MR2069663; B. Nagle, V. Rödl and
M. Schacht, op. cit.]). Surprisingly, in view of the fact that DHJ is considerably
more general than Szemerédi’s theorem and the ergodic-theory proof of DHJ is con-
siderably more complicated than the ergodic-theory proof of Szemerédi’s theorem,
the new proof we have discovered gives arguably the simplest proof yet known of
Szemerédi’s theorem. It seems that by looking at a more general problem we have
removed some of the difficulty. Related to this is another surprise. We started out
by trying to prove the first difficult case of the theorem, DHJ3 [the case k = 3].
The experience of all four of the earlier proofs of Szemerédi’s theorem has been
that interesting ideas are needed to prove results about progressions of length 3,
but significant extra difficulties arise when one tries to generalize an argument from
the length-3 case to the general case. Unexpectedly, it turned out that once we had
proved the case k = 3 of the density Hales-Jewett theorem, it was straightforward
to generalize the argument to the k ≥ 4 cases. We do not fully understand why our
proof should be different in this respect, but it is perhaps a sign that the density
Hales-Jewett theorem is at a ‘natural level of generality’.”

A paragraph further on are some crucial remarks regarding the origin of the
pseudonym “D. H. J. Polymath”. “Polymath” says:

“Before we start working towards the proof of the theorem, we would like briefly
to mention that it was proved in a rather unusual ‘open source’ way, which is
why it is being published under a pseudonym. The work was carried out by sev-
eral researchers, who wrote their thoughts, as they had them, in the form of blog
comments at http://gowers.wordpress.com. Anybody who wanted to could par-
ticipate, and at all stages of the process the comments were fully open to anybody
who was interested. . . . The blog comments are still available, so although this
paper is a polished account of the DHJk argument, it is possible to read a record of
the entire thought process that led to the proof. . . . The participants in the project
also created a wiki, michaelnielsen.org/polymath1, which contains sketches of
the arguments, links to the blog comments, and a great deal of related material.”

This reviewer would have preferred to see, rather than the pseudonym “Poly-
math”, a list of authors. In other fields there are papers with a hundred co-authors.

http://gowers.wordpress.com
michaelnielsen.org/polymath1
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Why not in mathematics a paper with twenty or thirty co-authors, with extra credit
for the person(s) who wrote the exposition?

In any case, the blog comments make interesting reading, and one can see there
(given enough effort!) names associated with some of the major and minor steps in
the proof.

When reading this extraordinary paper, it would no doubt be helpful to have
at hand the clear outline of the proof in Gowers’ paper [in An irregular mind,
659–687, Bolyai Soc. Math. Stud., 21, János Bolyai Math. Soc., Budapest, 2010;
MR2815619].

T. C. Brown

From MathSciNet, October 2016
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Tao, Terence

Higher order Fourier analysis. (English)

Graduate Studies in Mathematics, 142.
American Mathematical Society , Providence, RI , 2012, x+187 pp.,
ISBN 978-0-8218-8986-2

Recent progress in additive combinatorics has shown the need for higher-order
analogues of Fourier analysis. Where classical Fourier analysis considers functions
in terms of linear phase functions such as n �→ e(αn), higher-order Fourier analysis
also allows quadratic and higher-order phase functions such as n �→ e(αn2). The
need for analysing such functions was first raised in the seminal work of W. T.
Gowers [Geom. Funct. Anal. 8 (1998), no. 3, 529–551; MR1631259; Geom. Funct.
Anal. 11 (2001), no. 3, 465–588; MR1844079] on Szemerédi’s theorem and also
arose naturally in parallel, but related, work in ergodic theory [B. Host and B. Kra,
Ann. of Math. (2) 161 (2005), no. 1, 397–488; MR2150389]. More recently, it has
played a key role in the work of B. Green, Tao and T. D. Ziegler on linear equations
in the primes [B. Green and T. C. Tao, Ann. of Math. (2) 171 (2010), no. 3, 1753–
1850; MR2680398; Ann. of Math. (2) 175 (2012), no. 2, 541–566; MR2877066; B.
Green, T. C. Tao and T. D. Ziegler, Ann. of Math. (2) 176 (2012), no. 2, 1231–1372;
MR2950773]. This book serves as an introduction to this nascent field.

The book is split into two parts. The first part is the core of the book and
discusses the origins and applications of higher-order Fourier analysis, building to-
wards a discussion of the author’s work, with Green and Ziegler, on asymptotics for
linear equations in the primes. Along the way, he discusses a number of topics of
interest, including the classical theory of equidistribution (from multiple perspec-
tives), Roth’s theorem on three-term arithmetic progressions in dense subsets of
the integers (again from multiple perspectives), and the inverse theorems for the
Gowers uniformity norms. These inverse theorems play a key role both in proving
Szemerédi’s theorem and in deriving the correct asymptotics for linear equations in
the primes, and their study has been one of the key factors behind the development
of a higher-order Fourier analysis.

The second part of the book consists of edited versions of a number of related
posts taken from Tao’s blog. There is a lengthy discussion of ultralimit analysis
(which was used in the work of Green, Tao and Ziegler on inverse theorems for
the uniformity norms) and its applications to quantitative algebraic geometry, in
particular a quantitative version of a theorem of Gromov on groups of polynomial
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growth. The author also discusses higher-order analogues of Hilbert spaces, where
the usual binary inner product is replaced by a 2d-ary inner product between 2d

functions, and the classical uncertainty principle.
David Conlon

From MathSciNet, October 2016


