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THE CLASSICAL ARTIN APPROXIMATION THEOREMS

HERWIG HAUSER

To Michael Artin

Abstract. The various Artin approximation theorems assert the existence of
power series solutions of a certain quality Q (i.e., formal, analytic, algebraic)
of systems of equations of the same quality Q, assuming the existence of power
series solutions of a weaker quality Q′ < Q (i.e., approximated, formal). The
results are frequently used in commutative algebra and algebraic geometry.
We present a systematic argument which proves, with minor modifications, all
theorems simultaneously. More involved results, such as, e.g., Popescu’s nested
approximation theorem for algebraic equations or statements about the Artin
function, will only be mentioned but not proven. We complement the article
with a brief account of the theory of algebraic power series, two applications
of approximation to singularities, and a differential-geometric interpretation
of Artin’s proof.

Contents

1. What is the problem? 1
2. The various approximation theorems 3
3. Proof of the analytic and algebraic approximation theorems 9
4. Proofs of the parametrization theorem and the four strong approximation

theorems 13
5. Weierstrass division theorems 18
6. Algebraic power series 21
7. Formal and analytic relations between convergent series 25
8. Two applications of approximation 27
9. The geometry behind Artin’s proof 30
Acknowledgments 35
About the author 35
References 35

1. What is the problem?

Let f(t, y1, . . . , ym) be a polynomial in one distinguished variable t and m other
variables y1, . . . , ym, with coefficients in a field K. Assume that we wish to find all
power series solutions y(t) = (y1(t), . . . , ym(t)) of the equation f(t, y) = 0. Expand
yj(t) =

∑∞
i=0 yijt

i as a series in t with unknown coefficients yij , for j = 1, . . . ,m
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and i ≥ 0. Substitution of y(t) into f(t, y) yields a series f(t, y(t)) in t. Setting in
this series the coefficients of t� equal to 0 we get, for � = 0, 1, 2, . . . , the polynomial
equations

F0(y01, . . . , y0m) = 0,

F1(y01, . . . , y0m, y11, . . . , y1m) = 0,

. . .

F�(y01, . . . , y0m, . . . , y�1, . . . , y�m) = 0,

each depending on the first � m-tuples of the coefficients yij . Of course, F0 coincides
with f . The successive other polynomials F� are obtained from the preceding F�−1

by applying to F�−1 the universal derivation Δ of the polynomial ring K[yij ] in
countably many variables yij . It is given by applying the shifts Δ(yij) := yi+1,j to
the variables.

The natural approach to solving the above infinite system of equations in the
yij is to proceed stepwise, first solving F0 for y01, . . . , y0m, getting a set of solu-
tions α0 = (α01, . . . , α0m) ∈ Km. Any choice of α0 can be plugged into F2 for
y01, . . . , y0m, and results in the polynomial equation

F1(α01, . . . , α0m, y11, . . . , y1m) = 0

for y11, . . . , y1m. The solvability of this second equation may depend on the prior
choice of α0. Assume we have taken a good choice, so that we are able to find
a solution α1 = (α11, . . . , α1m) ∈ Km to the last equation. Now the game re-
peats. We wish to solve the next equation F2 = 0 for α2. But the solvability of
F2(α0, α1, y21, . . . , y2m) = 0 may depend not only on the choice of α1, but possibly
also on the earlier choice of α0. So things become more complicated.

One of Artin’s theorems (cited as “strong approximation theorem” in the lit-
erature) implies that for every f there is a bound, say e, so that if one can solve
F0, F1, . . . up to Fe, then all remaining equations F� can be solved automatically.
One says in this case that an approximate solution can be lifted to an exact solu-
tion. This is quite surprising, since it asserts that from a certain index on there
is no more obstruction to solving F�. A more precise version says that, for any
given c, there exists a bound e so that any solution α = (αij , i ≤ e, j = 1, . . . ,m)
for F0, . . . , Fe has to be modified only in the components αij with i ≥ c in order
to then admit a lifting to a solution of all F�. In general, a given solution α for
F0, . . . , Fe cannot be lifted directly: one has to go back to a smaller index c, take
α′ = (αij , i ≤ c, j = 1, . . . ,m) and lift it to a solution for all F�. So the values
of αij may have to be changed for the indices i between c + 1 and e in order to
construct the solution y(t) of f(t, y) = 0.

Of course, the formal solution y(t) of f(t, y) = 0 is then given by the components
yi(t) =

∑∞
i=0 αijt

i ∈ K[[t]] for the properly chosen coefficients αij .
It is a priori not clear whether a solution constructed in this way is convergent,

or whether one can modify a divergent solution so as to get a convergent solution.
One has to understand how divergence arises. Does it arise by “mistake”? Can one
always achieve convergence by smart choices of the values of αij?

To answer this, observe that the solutions αi1, . . . , αim chosen in the ith step are
not unique. Indeed, one may choose excessively large values for the αij so that one
still gets a solution of

Fi(α0, α1, . . . , αi−1, yi1, . . . , yim) = 0.
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Said differently, one picks a point of the algebraic subvariety of Km defined by
this equation which is very far away from the origin. Doing this again and again,
one may find a formal solution y(t) which is not convergent.

Artin’s analytic approximation theorem now asserts that these mistakes can
always be avoided: Whenever the system F�(y) = 0 admits a solution α (possibly
giving rise to a formal solution ŷ(t) of f(t, y) = 0), one may also find a solution
α̃ which does not tend too fast to infinity and thus defines a convergent solution
y(t). This is obviously a statement from analysis. The proof, however, is mostly
algebraic and only requires two results from analysis: the implicit function theorem
and the Weierstrass division theorem.

To get algebraic power series solutions, say, for a polynomial f , is more delicate.1

But again, the implicit function theorem and the Weierstrass division theorem hold
in this setting (see [Laf1], [Laf2], [Rui, Prop. 5.6]), and this gives the result.

Example. Let K have characteristic 0. Consider the equation

y(t)3 − t · z(t)2 = 0

in unknown series y(t) =
∑∞

i=0 yit
i and z(t) =

∑∞
i=0 zit

i. We have

F0 = y0,

F1 = 3y20y1 − z20 ,

F2 = 3y0y
2
1 + 3y20y2 − 2z0z1,

F3 = y31 + 3y1y2 − 2z0z2 − z21 ,

and so on. From F0 = F1 = 0, it follows that y0 = 0 and z0 = 0. Therefore, F2 is
identically 0. We may take y1 = 1 and z1 = 1. This is a permissible choice, though
not unique. We could also take y1 = 99 and z1 = 501. But as long as y1 �= 0, the
equality F3 = 0 will prescribe y2 completely as y2 = 1

3y1
(z21−y31), whereas z2 is free.

Continuing like this, one easily sees that and how divergent solutions may arise.
The example is so simple that we may also solve the equation y(t)3− t ·z(t)2 = 0

directly: Write z(t) = t+
∑

z̃(t) with z̃(t) of order ≥ 2. Then t · z(t)2 = t3 + 2t2 ·
z̃(t)+ · · · has order 3 as a series in t, so it admits three cubic roots 3

√
t · z(t)2 inside

K[[t]]. Any of these roots can be taken for y(t) and can give a solution (y(t), z(t)).
And if z(t) was formal, respectively convergent, y(t) will be also.

For more complicated examples, such shortcuts of direct computation of the so-
lutions are no longer possible. Nevertheless, general statements about the existence
and quality of the solutions can still be made. This will be the content of the next
section.

2. The various approximation theorems

General references on Artin approximation are, among others, [Te], [Ra1], [PfPo],
[Po4], [KMPPR].

We will use two sets of variables, x = (x1, . . . , xn) and y = (y1, . . . , ym), and
power series vectors f(x, y) in both of them, with coefficients in a field K. The
rings of formal, convergent, and algebraic power series in x will be denoted by
K[[x]], K{x}, and K〈x〉. They will be equipped with the Krull topology for which
a system of neighborhoods of 0 is given by the powers (x)k of the maximal ideal

1A power series y(x) is called algebraic if it satisfies a univariate polynomial equation with
polynomial coefficients in x; see section 6 for more detail.
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(x) = (x1, . . . , xn). We say that two series y(x) and z(x) agree up to degree c if
y(x)− z(x) ∈ (x)c.

Whenever we have a power series vector y(x) = (y1(x), . . . , ym(x)) vanishing
at 0, we may substitute in f(x, y) the y-variables by y(x) and get a power series
vector f(x, y(x)) in the x-variables. The question is, When do we get 0 or any other
prescribed series h(x)?

To simplify the exposition, we assume throughout that the ground field is al-
gebraically closed of characteristic 0. Most results hold for quite arbitrary fields.
Whenever we talk about convergent power series, the field K is assumed to be
equipped with an absolute value (multiplicative norm) | · | : K → R as, e.g., R, C,
or Qp. Our valued fields are not to be confused with the valued fields in valuation
theory (fields equipped with a valuation).

We start with the classical implicit function theorem from analysis. It is funda-
mental for most of the proofs related to Artin approximation.

Implicit Function Theorem. Let f be a vector of formal, convergent, or algebraic
power series in two sets of variables x and y. Assume that f(0, 0) = 0, that the
number of components of f equals the number of y-variables, and that the relative
Jacobian matrix ∂yf of f with respect to y has evaluation ∂yf(0, 0) at (0, 0), which
is an invertible matrix. There exists a unique vector of formal, convergent, or
algebraic power series y(x) with y(0) = 0 such that f(x, y(x)) = 0.

Proof. Replacing f(x, y) by the pair h(x, y) = (x, f(x, y)) we may assume that
∂xyh(0, 0) is invertible. The solution y(x) of f(x, y) = 0 is given by y(x) = g2(x, 0),
where g(x, y) = (g1(x, y), g2(x, y)) is the inverse to h(x, y) at (0, 0). This is the
setting of the inverse function theorem. After composition of h with a linear iso-
morphim, we may assume that ∂xyh(0, 0) is the identity matrix, so that h = Id+ q
where q is a power series vector which is at least quadratic in the variables. Then
g is constructed by approximation. Define g0 = Id, and set

gk+1 = Id− gk ◦ q.

It is easy to see that the sequence gk converges in the Krull topology to a vector g
of formal power series satisfying h ◦ g = g ◦h = Id. This gives the formal inverse to
h. For the convergent case, one needs to control the size of the coefficients of the
power series expansions of the vectors gk; we refer to [HM1, Thm. 6.2, p. 111] for
detail. For the algebraic case, see [LT]. �

Here is Artin’s first theorem on approximation as it appeared in his 1968 paper:

Analytic Approximation Theorem (Artin [Ar1, Thm. 1.2]). Let K be a valued
field of characteristic 0, and let f(x, y) be a vector of convergent power series in
two sets of variables x and y. Assume given a formal power series solution ŷ(x)
vanishing at 0,

f(x, ŷ(x)) = 0.

Then there exists, for any c ∈ N, a convergent power series solution y(x),

f(x, y(x)) = 0,

which coincides with ŷ(x) up to degree c,

y(x) ≡ ŷ(x)modulo (x)c.



THE CLASSICAL ARTIN APPROXIMATION THEOREMS 5

In view of the congruence, one also says that the convergent solutions are dense
with respect to the Krull topology in the space of formal solutions. The statement
of the theorem was conjectured by S. Lang in 1954 in the complex case K = C (cf.
[Lan], last paragraph of p. 372). Special cases have been proven, among others, by
Greenberg and Spallek for the case of one variable n = 1, and by Hironaka and
Rossi for equations resulting from isomorphisms between germs of analytic varieties
[Gre], [Spa], [HiRo]. Grauert gave a different version of the approximation theorem
[Gra], [dJP, p. 291].

An interesting instance is the case where the formal solution is unique. Then,
if the system of equations is analytic, the formal solution must already be, by the
theorem, convergent.

In the case of linear equations,
∑m

i=1 hi(x) · yi = h0(x), for given convergent
series hi(x), the statement of the theorem is equivalent to the faithful flatness of
the formal power series ring K[[x]] over the convergent power series ring K{x}.
For homogeneous equations h0 = 0, the flatness ensures that the ideal of formal
linear relations between h1, . . . , hm is generated by the convergent relations. The
nonhomogeneous case is then covered by the faithfulness [Bou, Prop. 9, p. 33]. A
simple proof for the linear case goes as follows (cf. [Rui, p. 118]): Choose e > c,
and decompose the given formal solution ŷ(x) into

ŷ(x) = y0(x) + y1(x) + y2(x),

where y0(x) is the truncation of ŷ(x) at degree c − 1, y1(x) is the truncation
of ŷ(x) − y0(x) at degree e − 1, and y2(x) is the remaining series of order ≥ e.
Substituting into the linear equation yields

m∑
i=1

hi(x) · [y0i (x) + y1i (x)]− h0(x) ≡ 0modulo (x)e ·K[[x]].

But the left-hand side is convergent, so that it actually belongs to (x)e · K{x}.
Therefore, since y1(x) has order ≥ c, we have

m∑
i=1

hi(x) · y0i (x) ∈ (x)c · (h1(x), . . . , hm(x)) + (x)e ·K{x}.

Krull’s intersection theorem [AMD, 10.19] now implies that
∑m

i=1 hi(x) · y0i (x) al-
ready belongs to the ideal (x)c · (h1(x), . . . , hm(x)) inside K{x}. Writing the sum
as a linear combination of h1(x), . . . , hm(x) with coefficients ỹi(x) in (x)c · K{x}
provides the convergent solution y(x) = y0(x)− ỹ(x) as required.

Algebraic Approximation Theorem (Artin [Ar2, Thm. 1.10]). Let K be an
arbitrary field, and let f(x, y) be a vector of polynomials or algebraic power series
in two sets of variables x and y. Assume given a formal power series solution ŷ(x)
vanishing at 0,

f(x, ŷ(x)) = 0.

Then there exists, for any c ∈ N, an algebraic power series solution y(x),

f(x, y(x)) = 0,

which coincides with ŷ(x) up to degree c,

y(x) ≡ ŷ(x)modulo (x)c.
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In the two approximation theorems above one may omit the requirement y(x) ≡
ŷ(x) modulo (x)c and still get an equivalent statement: Indeed, write ŷ(x) = y0(x)+
ẑ(x), where y0(x) is the truncation of ŷ(x) at degree c−1 and where ẑ(x) is a power
series vector of order ≥ c. Write ẑ(x) as ẑ(x) =

∑
α v̂α(x) · xα, where α ∈ Nn runs

over the n-tuples of total degree α1 + · · · + αn = c, with formal series v̂α(x).
Substituting in f(x, y) the variables y by y0(x) +

∑
vα · xα gives a new system of

equations f ′(x, v) = 0 for variables v = (vα)α. Clearly, v̂(x) is a formal solution
of f ′(x, v) = 0. Then the existence of a convergent or algebraic solution v(x) of
f ′(x, v) = 0 (without any approximation property with respect to v̂(x)) yields the
required convergent or algebraic solution y(x) of f(x, y) = 0 satisfying y(x) ≡ ŷ(x)
modulo (x)c.

Nested Algebraic Approximation Theorem (Popescu, Spivakovsky, [Po1],
[Po2], [Rot], [Spi2], [Og], [Te], [Sw], [Qu], [BDLv], [CPR]). Let K be an arbitrary
field, and let f(x, y) be a vector of polynomials or algebraic power series in two sets
of variables x and y. Assume given a formal power series solution ŷ(x) vanishing
at 0,

f(x, ŷ(x)) = 0

so that each component ŷi(x) of ŷ(x) only depends on the first ni variables
x1, . . . , xni

, for some 1 ≤ ni ≤ n. Then there exists, for any c ∈ N, an algebraic
power series solution y(x),

f(x, y(x)) = 0

which coincides with ŷ(x) up to degree c,

y(x) ≡ ŷ(x)modulo (x)c,

and for which yi(x) again only depends on the first ni variables x1, . . . , xni
.

This theorem is much harder than all the other theorems in this text, and it
will not be proven here. It follows from Popescu’s General Néron Desingulariza-
tion Theorem [Po1], [Po2], [Spi2], [Sw], [Te]: Any regular ring morphism between
Noetherian rings is the inductive limit of smooth morphisms. A direct elementary
proof of nested approximation seems to be unknown. Nested approximation does
not hold if the power series vector f is just analytic but not algebraic. A coun-
terexample to this was given by Gabrielov [Ga1], [Ga2]; see section 7 on formal and
analytic relations.

In a similar vein, Becker gave an example of a polynomial equation which admits
a formal solution whose components depend on disjoint sets of variables and which
does not admit a convergent solution with the same property [Be].

Parametrized Approximation Theorem (P�loski [Pl1], [Pl2], [Pl3]). Let K be a
valued field of characteristic 0, and let f(x, y) be a vector of convergent power series
in two sets of variables x and y. Assume given a formal power series solution ŷ(x)
vanishing at 0,

f(x, ŷ(x)) = 0.

Then there exists a convergent power series solution y(x, z) depending on x1, . . . , xn

and new variables z = (z1, . . . , zs),

f(x, y(x, z)) = 0,
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and a vector of formal power series ẑ(x) = (ẑ1(x), . . . , ẑs(x)) vanishing at 0 such
that

ŷ(x) = y(x, ẑ(x)).

This statement can be understood as follows. The vector y(x, z) induces, for any
choice of z(x) ∈ K[[x]]s with z(0) = 0, a solution y(x, z(x)) of f(x, y) = 0. This

gives a map α̂ : (x) · K[[x]]s → Ŷ(f), where Ŷ(f) ⊂ (x) · K[[x]]m denotes the set
of all formal solutions of f(x, y) = 0. It maps the vector ẑ(x) to the given formal
solution ŷ(x). As y(x, z) is convergent, α̂ induces a map α : (x) ·K{x}s → Y(f) =

Ŷ(f) ∩K{x}m into the set of convergent solutions.

The solution sets Ŷ(f) and Y(f) are hence only partially parametrized, in the
first case nearby the formal solution ŷ(x). A more detailed description of these sets
in the case of one x-variable is provided in [HW].

Strong Approximation Theorem I. Let f(x, y) be a vector of formal power
series in two sets of variables x and y. Assume given a sequence {y(k)(x)}k≥1 of
approximate solutions of f(x, y) = 0 up to degree k and vanishing at 0, i.e., such
that

f(x, y(k)(x)) ∈ (x)k ·K[[x]]m for all k ≥ 1.

Then there exists an exact formal solution ŷ(x) of f(x, y) = 0, say

f(x, ŷ(x)) = 0.

For a similar statement, see Grauert’s approximation theorem [Gra], [dJP, Thm.
8.2.2].

Strong Approximation Theorem II. Let f(x, y) be a vector of formal power
series in two sets of variables x and y. For any c ∈ N, there exists an integer e ∈ N

such that if f(x, y) = 0 admits an approximate solution y(x) up to degree e and
vanishing at 0,

f(x, y(x)) ∈ (x)e ·K[[x]]m,

then there exists an exact formal solution ŷ(x) to f(x, y) = 0, say

f(x, ŷ(x)) = 0,

and such that ŷ(x) ≡ y(x) modulo (x)c.

In concrete applications, the two statements are of equal use, since the existence
of the bound e of version II in dependence of c is most often only of theoretical
nature, so in any case one has to find approximate solutions up to arbitrary degree
as in version I to ensure the existence of an exact formal solution. We give an
application of strong approximation in a later section.

Notice also that in the assumption of the Strong Approximation Theorem I it is
not required that the approximate solutions y(k)(x) coincide with each other up to

a certain degree, i.e., that, for k′ ≥ k, the truncation of y(k
′)(x) at degree k need

not equal y(k)(x). Otherwise, if we always had y(k
′)(x) ≡ y(k)(x) modulo (x)k, the

limit ŷ(x) = limk y
(k)(x) would trivially exist in the Krull topology and give the

exact formal solution. So it is this more general assumption which makes the result
very useful.

For linear equations, the value of e can be determined by the Weierstrass divi-
sion theorem for ideals [Gra], [Hir]. Indeed, consider an inhomogeneous equation
h0(x) =

∑m
i=1 hi(x) · yi with given formal power series h0(x) and h1(x), . . . , hm(x).
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There exists a solution ŷ(x) if and only if h0(x) belongs to the ideal I generated
by h1, . . . , hm. This is equivalent to saying that the remainder of the division of h0

by I is zero. If h0 �∈ I, the remainder is nonzero and has a certain order o. Hence
there exists no approximate solution y(x) up to degree e = o + 1. If h0 ∈ I, the
exact solution ŷ(x) exists and there is nothing to show.

Uniform Strong Approximation Theorem. Let n,m, � ∈ N be integers, and
fix variables x = (x1, . . . , xn) and y = (y1, . . . , ym). There exists a function β =
βn,m,� : N → N depending only on n, m, and � such that the following holds. For
all polynomial vectors f(x, y) of total degree ≤ � in x and y, for all c ∈ N, and for
all approximate solutions y(x) of f(x, y) = 0 up to degree β(c), say

f(x, y(x)) ∈ (x)β(c),

there exists an exact algebraic solution y(x) to f(x, y) = 0,

f(x, y(x)) = 0,

such that y(x) ≡ y(x) modulo (x)c.

Remarks. Greenberg has shown that in the one-variable case n = 1, one can choose
for β a linear function β(c) = ac + b in c, for suitable integers a, b ∈ N [Gre]. In
the general case, the smallest function β satisfying the conclusion of the theorem
is called the Artin function [Hic], [Spi1], [Ron1], [Ron2].

The three strong approximation theorems can be combined with the convergent,
respectively algebraic, approximation theorem to ensure from a sufficiently good
approximate solution the existence of a convergent, respectively algebraic, solution.
Artin himself mentions that he is not aware of applications where the first two
strong approximation theorems are not sufficient and where the uniform strong
version is really needed [Ar2, bottom of p. 51].

For one x-variable there is an analogous strong approximation theorem by Denef
and Lipshitz for ordinary differential equations with polynomial coefficients, but
which omits the density requirement y(x) ≡ y(x) modulo (x)c [DL2, Thm. 2.10
and Thm. 2.14]. Their argument is built on ultraproducts. A sufficient assumption
is that the ground field is real closed as R or algebraically closed as C. The result
does not hold for arbitrary fields. The ultraproduct technique also provides an
alternative proof for the original strong approximation theorem on the approximate
vs. formal solutions of formal power series equations.

Example (Denef and Lipshitz, [DL2, remarks 2.12 and 2.15]). Take for K the
ring of rational functions K = R(t) over R and consider the system of ordinary
differential equations

xy′ − (z + x)y − 1 = 0, z′ = 0,

in unknown series y(x) and z(x). Clearly, z(x) must be a constant α ∈ K. We
distinguish two cases: If α ∈ K \ N, the system has the solution

y(x) =

∞∑
i=1

(−1)i
xi−1

αi
,

with αi = α(α − 1) · · · (α − i + 1) the falling factorial. If α ∈ N, there is no exact
solution. Denef has shown that there exists a polynomial P ∈ K[w1, . . . , ws] so
that an element α ∈ K belongs to N if and only if there are w1, . . . , ws ∈ K so that
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P (α,w1, . . . , ws) = 0 (i.e., N is diophantine over R(t)) [Den]. Adding this equation
to the two differential equations, one gets a system which admits, for every c, an
approximated solution (y(x), z(x)) up to degree c, with z(x) = α ∈ N. But, by
the preceding observation, the system cannot have an exact solution. So strong
approximation does not hold for R(t).

In the case of several variables, the situation for systems of partial differential
equations splits. Even for the real case, strong approximation fails [DL2, Cor. 4.10].
Over an algebraically closed field and waiving the density condition, one has again
a strong approximation result, even in a more general setting than differential
equations. The proof we give is of a different flavor and was communicated to us
by S. Mori. Call a map K[[x]]m → K[[z]]q between power series spaces textile if the
coefficients of the image series are polynomials in the coefficients of the input series.
See [HM1], [BH], [HW] for a detailed discussion of such maps.

Strong Approximation Theorem for Textile Maps. Assume that K is an
algebraically closed field, and let x denote again a vector of variables. Let G :
K[[x]]m → K[[z]]q be a textile map. There exists an � ∈ N depending on G such
that, if G = 0 admits an approximate solution y(x) ∈ K[[x]]m up to degree �,

G(y(x)) ≡ 0mod(x)�,

then there exists an exact solution y(x) ∈ K[[x]]m,

G(y(x)) = 0.

Remark. For the case of partial differential equations with polynomial coefficients
over C (which induce textile maps), this result appears in [DL2, Thm. 2.10 and
Rem. 2.11]. It is in general not possible to find a solution y(x) which coincides with
y(x) up to a prescribed degree, just take the two differential equations from the
example before, but now over C [DL2, Rem. 2.12 and 2.15]. It seems to be an open
problem to find sufficient conditions on G beyond the case where G(y(x)) is given
by substitution of y by y(x) in a power series vector f(x, y) which ensures that the
exact solution can be chosen to coincide with the approximated solution up to a
prescribed degree.

3. Proof of the analytic and algebraic approximation theorems

We shall provide a proof that applies, with minor modifications, also to the other
approximation theorems. The necessary changes are described in the next section.
Artin’s original proof of the analytic case in [Ar1] is somewhat shorter, though
more computational. All ideas and constructions presented below already appear
in Artin’s papers [Ar1], [Ar2], complemented by an additional idea due to P�loski
[Pl1].

The proof goes by induction on the number n of x-variables. So let x =
(x1, . . . , xn), y = (y1, . . . , ym), and f = (f1, . . . , fr). If n = 0, the series ŷ(x)
is a vector of constants in the field K and there is nothing to prove. So let n ≥ 1.

Here is the strategy. We will construct from f (and using also a small amount
of information about the formal solution ŷ(x)) a new vector of convergent power
series f ′ = f ′(x′, w) in the first n − 1 components x′ = (x1, . . . , xn−1) of the x-
variables and in new variables w = (w0, . . . , wd−1) such that the existence of a
formal or convergent solution y(x) to f(x, y) = 0 is equivalent to the existence
of a formal or convergent solution w(x′) of f ′(x′, w) = 0. We will show that the
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formal solutions ŷ(x) of the first system are in one-to-one correspondence with the
formal solutions ŵ(x′) of the latter system, and that the same correspondence holds
for the convergent solutions ỹ(x) and w̃(x′). Therefore, induction applies: by the
existence of the formal solution ŵ(x′) and the induction hypothesis, the system
f ′(x′, w) = 0 admits a convergent solution w̃(x′), and going backwards we get the
required convergent solution ỹ(x) of the original system f(x, y(x)) = 0.

Step 1. Reduction to the case where an (r × r)-minor g of the relative Jacobian
matrix ∂yf of f with respect to y does not vanish at ŷ(x), say g(x, ŷ(x)) �= 0 (recall
that r is the number components of the vector f). This step is necessary to be able
to apply the Jacobian criterion of regularity.

Let I be the ideal of K{x, y} generated by f1, . . . , fr. We may clearly enlarge
I and replace it by the ideal of all series vanishing at ŷ(x). This will allow us to
assume that I is a prime ideal. We may consider this ideal as the saturation of the
ideal generated by the original series f1, . . . , fr with respect to the formal solution
ŷ(x).

Let s be the height of I, i.e., the codimension of the germ of the analytic varietyX
defined by I in (Kn+m, 0). It is well known that X equals an irreducible component
of the germ of a complete intersection variety X∗ in (Kn+m, 0); see, e.g., [Mu, Cor.
4, p. 44]. Therefore there exists an ideal I∗ ⊂ I generated by a regular sequence
f∗ = (f1, . . . , fs) of length s of elements of I such that I is a prime component of
I∗. Denoting by J the intersection of the other prime components of I∗, we have
I∗ = I ∩ J .

By the Jacobian criterion [Mu, Cor. 1 to Prop. 2, p. 168], there exists an
(r × r)-minor g of the Jacobian matrix ∂xyf

∗ which does not belong to I∗. Hence
g(x, ŷ(x)) �= 0 for our given formal solution ŷ(x). Taking the partial derivatives of
f∗(x, ŷ(x)) = 0 with respect to x1, . . . , xn we get

∂xi
f∗(x, ŷ(x)) = −

r∑
k=1

∂xi
ŷk(x) · ∂yk

f∗(x, ŷ(x)).

The equality shows that the minor g can actually be chosen within the relative
Jacobian matrix ∂yf

∗ of f∗ with respect to the y-variables.
Assume now that we have a convergent or algebraic solution y(x) of f∗(x, y) = 0

approximating the given formal solution ŷ(x) up to a prescribed degree. We claim
that then y(x) is also a solution of f(x, y) = 0 for all f ∈ I. But g(x, y(x)) �= 0
because g(x, ŷ(x)) �= 0 and because y(x) approximates ŷ(x) to high order. Moreover
g vanishes on the singular locus ofX and hence belongs, by Rückert’s Nullstellensatz
[Rui], to the radical of the ideal I + J defining the intersection of the component
of X defined by I with the union of the other components, say gb ∈ I + J for some
b ∈ N. It follows that gb · I ⊂ I · J ⊂ I ∩ J = I∗. Hence gb(x, y(x)) · f(x, y(x)) = 0
for all f ∈ I. From g(x, y(x)) �= 0, we conclude that actually f(x, y(x)) = 0 for all
f ∈ I. Therefore f(x, y(x)) = 0 for all f ∈ I is equivalent to f(x, y(x)) = 0 for
all f ∈ I∗. Consequently, we may replace I by I∗ and assume henceforth that the
number r of generators f1, . . . , fr of I equals the height of I. This establishes the
first reduction step.

Step 2. Let y(x) be a vector of formal, convergent, or algebraic power series such
that g(x, y(x)) is nonzero of order d. We show for all such vectors that the system
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of equations f(x, y(x)) = 0 is equivalent to a system of ideal memberships

hj(x, z(x)) ∈ (g(x, z(x))2)

for a suitable vector h = (h1, . . . , hr) of convergent, respectively algebraic, power
series in x1, . . . , xn and z = (z1, . . . , zm), and where z(x) is a vector of formal,
convergent, or algebraic power series which are polynomial in the last variable xn

of degree < d. Here, (g(x, z(x))2) denotes the ideal in K[[x]], respectively K{x},
generated by g(x, z(x))2, according to the setting. Therefore, z(x) is determined by
its finitely many coefficient vectors in front of xj

n, which are now power series vectors
in the n − 1 variables x′ = (x1, . . . , xn−1). The vector h is constructed explicitly
from f and g. The proof of the equivalence is the same for formal, convergent, and
algebraic series.

After a linear generic coordinate change in the x-variables, it can be assumed
that g(x, y(x)) is xn-regular of order d.

2 The idea then is to divide the components
yi(x) of y(x) by g(x, y(x)), respectively its square g(x, y(x))2, using Weierstrass
division

yi(x) = vi(x) + zi(x),

where vi(x) is a power series in the ideal generated by g(x, y(x)), respectively
g(x, y(x))2, and where zi(x) is a polynomial in xn of degree ≤ d − 1, respectively
≤ 2d − 1, with coefficients power series in x′ = (x1, . . . , xn−1). The distinction
between g(x, y(x)) and g(x, y(x))2 was suggested by P�loski and is well suited for
technical reasons appearing later in the proof: Split the y-variables into two groups
y′ and y′′, where the first indicates the columns of ∂yf used for the minor g, and y′′

the remaining components. We may assume, after renumeration of the components
of y, that y = (y′, y′′). Then all components of y′(x) will be divided by g(x, y(x)),
and those from y′′(x) by g(x, y(x))2. Denote by v(x) and z(x) the resulting vectors,
y(x) = v(x) + z(x), with components vi(x) and zi(x).

Lemma. The series g(x, y(x)) and g(x, z(x)) generate the same ideals of K[[x]],
K{x}, or K〈x〉, according to the setting.

Proof. Taylor expansion of g(x, z(x)) = g(x, y(x) − v(x)) shows that all resulting
terms are multiples of g(x, y(x)), the first one being g(x, y(x)) itself. Factoring
g(x, y(x)) from these terms produces a unit u(x) as the quotient, g(x, z(x)) =
g(x, y(x)) · u(x), and this shows the claim.

Let us from now on write y and z for y(x) and z(x). To further ease the notation,
we will also often omit in expressions like f(x, z) the reference to the x-variable
and simply write f(z). By the lemma, we have v = a · g(z) with some vector
a = (a′, a′′) ∈ K[[x]]m whose latter components a′′ are multiples of g(z) (here, a′′

collects the same group of components of a as y′′ did for y). The partial derivatives
(∂y1

fj , . . . , ∂ym
fj) of the components fj of f are taken as a row vector, while f is

written as a column vector.
Substituting the decomposition y = a · g(z) + z in f(y) = 0 gives by Taylor

expansion the equivalent system of equations,

f(z) + g(z) · ∂yf(z) · a+ g(z)2 · q(a, g(z)) = 0,

2A series in x1, . . . , xn is xn-regular of order d if a pure xn-monomial xd
n appears in its expan-

sion with a nonzero coefficient.
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where q(w, t) = q(x,w, t) ∈ K{x,w, t}r is a convergent power series vector in the
variables x = (x1, . . . , xn), w = (w1, . . . , wm) and a single variable t. Note that q is
at least quadratic in w. We now use that g is a maximal minor of ∂yf , of size r, and
that g is given by the columns of ∂yf corresponding to the y′-variables. Therefore
we can write the diagonal matrix g · �r as a product g · �r = ∂y′f · ∂∗

y′f , where

∂∗
y′f ∈ K{x, y}r×r is the adjoint matrix of the submatrix ∂y′f of ∂yf defining g. It

follows that

g(z)2 · q(a, g(z)) = g(z) · ∂y′f(z) · ∂∗
y′f(z) · q(a, g(z)).

But recall that the components of a′′ are multiples of g(z), say a′′ = ã′′ · g(z) for
some ã′′. Hence, by the same trick, we also have

g(z) · ∂y′′f(z) · a′′ = g(z) · ∂y′f(z) · ∂∗
y′f(z) · ∂y′′f(z) · ã′′.

Combining these two formulas gives the equivalent system of equations

f(z) + g(z) · ∂y′f(z) · φ(a, z) = 0

for z and a, where

φ(x,w, z) = w′ + ∂∗
y′f(z) · q(w, g(z)) + ∂∗

y′f(z) · ∂y′′f(z) · w̃′′

with w = (w′, w̃′′). Observe that φ is a convergent, respectively algebraic, power
series vector with r components vanishing at 0 for which ∂w′φ(0, 0, 0) is an invert-
ible (r × r)-matrix. By the implicit function theorem there is a unique conver-
gent, respectively algebraic, power series vector ψ(x,w, z) vanishing at 0 such that
ψ(x, φ(x,w, z), z) = w′. Setting b(x, z) = φ(x, a, z), we may therefore rewrite the
system from before as

f(x, z) + g(x, z) · ∂y′f(x, z) · b(x, z) = 0

with a convergent, respectively algebraic, power series vector b defined uniquely
by f . Conversely, any choice of z and b satisfying this system produces, going
backwards, a solution y of f(x, y) = 0.

We now multiply the preceding system from the left with the matrix ∂∗
y′f . Since

∂∗
y′f(z) is not a zero divisor in the ring of (r × r)-matrices, we get the equivalent

system

∂∗
y′f(z) · f(z) + g(z) · ∂∗

y′f(z) · ∂y′f(z) · b = 0.

In this system we can replace ∂∗
y′f · ∂y′f by g · �r yielding finally

∂∗
y′f(z) · f(z) + g(z)2 · b = 0.

Setting h = (h1, . . . , hr) = ∂∗
y′f ·f , we get the equivalent ideal membership condition

hj(z) ∈ (g(z)2)

in K[[x]], respectively K{x} or K〈x〉, for j = 1, . . . , r. This is valid simultaneously
for the formal, convergent, and algebraic setting, while h and g are both convergent,
respectively algebraic, power series. The equivalence claimed at the beginning of
this step is established. This transcription of the original problem to an ideal
membership is often referred to as the reduction to the setting of Tougeron’s implicit
function theorem [Tou].

Note here for later use that if f is a polynomial vector, say of total degree � in x
and y, then h is also a polynomial vector whose total degree in x and z is bounded
from above by �+ (�− 1)r−1 ≤ �+ (�− 1)m−1.
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Step 3. Reduction of the membership hj(x, z(x)) ∈ (g(x, z(x))2) for j = 1, . . . , r
to an equivalent system of convergent, respectively algebraic, equations for power
series in n − 1 variables. Again we work simultaneously with formal, convergent
and algebraic power series vectors z(x).

Recall that z = z(x) is a vector of polynomials in xn of degree < d with coeffi-
cients wi = wi(x

′) which are formal, convergent, or algebraic power series vectors in
x′ = (x1, . . . , xn−1) and that g(x, z(x)) is xn-regular of order d. The passage from
the above membership condition for z(x) to an equivalent system of convergent
or algebraic equations f ′(x′, w) = 0 for unknown series w(x′) in n − 1 variables
is ensured by the Weierstrass division theorem stated after the proofs of the ap-
proximation theorems. Again, going backwards, a solution w(x′) of the latter will

provide a solution of the former by setting z(x) =
∑d−1

i=0 wi(x
′) · xi

n.
We note here for later use in the proof of the uniform strong approximation

theorem that if h and g are polynomial vectors of total degree �, respectively k, in
x and z, then f ′ will also be a polynomial vector since then the division algorithm is
finite. Its total degree in x and z will be bounded from above by �+(�−d+1)(k−d) ≤
�(1 + k).

Step 4. The proof of the analytic and algebraic approximation theorems finishes by
induction: Starting with our formal solution ŷ(x) of f(x, y) = 0, we get, following
the preceding constructions, a formal solution ŵ(x′) of an equivalent convergent

system f ′(x′, w) = 0 in n− 1 variables, for some convergent vector f ′ ∈ K{x′, w}r′ .
By induction on the number of variables there exists, for any c ∈ N, a vector w̃(x′) of
convergent solutions in K{x′}d to the system f ′(x′, w) = 0, and such that w̃i(x

′) ≡
ŵi(x

′) modulo (x′)c. It now suffices to go backwards through all equivalences to
find the required convergent solution ỹ(x) of f(x, y) = 0 with ỹ(x) ≡ ŷ(x) modulo
(x)c. This proves the analytic and algebraic approximation theorems. �

4. Proofs of the parametrization theorem

and the four strong approximation theorems

We now indicate how to modify the proof of the analytic and algebraic approx-
imation theorems to establish the other theorems (aside from the nested approxi-
mation theorem which is more difficult to prove).

(a) The proof of the parametrization theorem in both settings, the convergent
and the algebraic one, does not need any substantial changes, provided that one
refers in the induction step also to the stronger assertion as indicated in the theorem.
The partial parametrization of the solution set of f(x, y) = 0 nearby a formal
solution ŷ(x) is then constructed by working again backwards from the partial
parametrization of the system f ′(x′, w) = 0.

(b) The strong approximation theorem I is proven by taking in Step 1 the sat-
uration with respect to all sequences of approximate solutions. To this end, let I
be the ideal of convergent power series h(x, y) for which the order of h(x, y(k)(x))
tends towards infinity for all sequences y(k)(x) of power series vectors for which
the order of f(x, y(k)(x)) tends towards infinity. This is a prime ideal and the
constructions of Step 1 (on page 10) apply again to I. One may therefore start
from the beginning with a vector f whose components generate a prime ideal I
and assume, after possibly passing to a subsequence, that f(x, y(k)(x)) ≡ 0 modulo
(x)k for all k. Denote by r the height of I. As in Step 1 the ideal I is replaced by
an ideal I∗ generated by r series f1, . . . , fr and such that a minor g of ∂xyf does
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not belong to I∗ and hence also not to I. Taking partial derivatives with respect
to the x-variables of the congruence f(x, y(k)(x)) ≡ 0 modulo (x)k, one sees that
this minor can actually be chosen from the relative Jacobian matrix ∂yf .

The key point then is to observe that there is an integer d so that g(x, y(k)(x))
has the same order d for infinitely many k: By definition of I and since g �∈ I, there
is a subsequence of y(k)(x) for which the order of g(x, y(k)(x)) remains bounded.
Upon passing possibly to a further subsequence, we may assume that this order is
actually constant, say d. From this moment on, the proof is essentially identical to
the given one. A linear coordinate change in the x-variables allows us to assume
that g(x, y(k)(x)) is xn-regular of order d (this requires that K is infinite; if K is
finite, one has to use a nonlinear coordinate change, also known as Nagata’s trick,
see [Mu, p. 2], yielding an order d′ of g(x, y(k)(x)) in xn possibly larger than d).
Then, the vectors y(k)(x) are divided componentwise by g(x, y(k)(x)). In the rest
of the proof all equations of type [· · · ] = 0 for series y(x) have to be replaced by
the respective congruences of type [· · · ] ≡ 0 modulo (x)k for the sequence y(k)(x).
The same modifications have to be applied to the ideal membership conditions. In
this way one reduces to a system of equations in one variable less which admits
approximate solutions up to any degree. Induction applies to ensure the existence
of an exact formal solution of this system, and going backwards one obtains the
exact formal solution of the original system.

(c) The strong approximation theorem II is proven as follows. We first reduce
again to prime ideals. So let I be the ideal generated by the components f1, . . . , fr
of f . Choose an irredundant primary decomposition I = I1 ∩ · · · ∩ It, and let
Ji =

√
Ii be the associated prime ideals. As K[[x]] is Noetherian, there exists an

integer u such that Ju
i ⊂ Ii for all i. Let ei be the bound associated to Ji by

the theorem in case of prime ideals. Then e = u · (e1 + · · · + et) will work for I,
cf. [Wa, proof of Lemma 5, p. 133]. Namely,

Ju
1 · · · Ju

t ⊂ I1 · · · It ⊂ I1 ∩ · · · ∩ It = I,

so that any approximate solution y(x) for I up to degree e is also an approximate
solution of some Ii up to degree ei, for some i. By assumption, Ii then admits an
exact formal solution ŷ(x) with ŷ(x) ≡ y(x) modulo (x)c. From I ⊂ Ii it follows
that ŷ(x) is also an exact formal solution for I.

So we may assume that I is prime. Let s be its height, and choose again an
(s × s)-minor g of the Jacobian matrix so that g �∈ I. We will now determine a
suitable value for e. So fix some e, and consider an approximate solution y(x) of
f(x, y) = 0 up to degree e. If g(x, y(x)) ≡ 0 modulo (x)e, increase e by 1 and
repeat. If this continues indefinitely, replace I by the ideal I ′ = I + (g). It has
height > s and satisfies again the assumption of the theorem. So we can apply
induction on the height of I. Otherwise, if g(x, y(x)) �≡ 0 modulo (x)e for some e,
we may apply a generic linear triangular coordinate change to turn g(x, y(x)) into
an xn-regular series of order e. Now we are in the situation where the proof of the
analytic approximation theorem applies and can be repeated with the modifications
as indicated in part (b) above. This proves version II of the strong approximation
theorem. �

(d) The proof of the uniform strong approximation theorem requires more effort.
We follow Artin’s original line of arguments in [Ar2]. For a model-theoretic proof
using ultraproducts, see [BDLv]. Let us say that a polynomial ideal has degree � if
it can be generated by polynomials of degree ≤ � but not of degree < �. Also, we
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call y(x) a solution for the ideal I if h(x, y(x)) = 0 holds for all h ∈ I, and similarly
for approximated solutions.

Step 1. Reduction to prime ideals. Assume that the theorem holds whenever the
components of f generate a prime ideal. Let β′ denote the associated function
for prime ideals as described in the theorem. We will construct from these data a
function β which works for all ideals.

Let I be the ideal generated by the components of the given vector f . This is
not necessarily a prime ideal nor a radical, so let I = I1∩ · · ·∩ It be an irredundant
primary decomposition. By the work of Hermann [Her], the number t and the
degrees �j of the primary components Ij and associated primes Jj =

√
Ij of I are

bounded by a function λ : N → N depending only on n, m, and the degree � of I.
Moreover, Ju

j ⊂ Ij for some u ≤ λ and all j.

Now argue as follows: Let b′ = β′
n,m,�′(c) be the value of the function β′ at

c, with respect to the parameter values n, m, and �′ = λ(n,m, �). If y(x) is an
approximate solution for I up to degree u · t · b′, then, because of the inclusion

I1 · · · It ⊂ I1 ∩ · · · ∩ It = I,

y(x) is also an approximate solution for each Ij up to degree u ·b′, and consequently
for each Jj up to degree b′. Pick one such Jj . Assuming the result to be true for
prime ideals with respect to the function β′, we get an exact formal solution ŷ(x)
for Jj . But I ⊂ Jj , so ŷ(x) is also a solution for I.

In view of these considerations, we are led to define β as β = λ2 · β′. This
function will then work for all ideals, establishing the claimed reduction to the case
of prime ideals.

Step 2. Reduction to complete intersection ideals. This goes as follows. Fix an
integer s ≤ n. Assume by induction that the theorem holds for all ideals of height
> s (not just the prime ideals). Assume also that it holds for complete intersection
ideals, i.e., ideals generated by a regular sequence. Let β′ denote the associated
function for these two cases as described in the theorem. We will construct from
these data a function β which works for all prime ideals of height s.

Now let I be a prime ideal, and let s be its height. Let f = (f1, . . . , fr) generate
I, for some r ≥ s. The height s equals the codimension of the irreducible subvariety
X of An

K
× Am

K
defined by f . Among the generators f1, . . . , fr one can choose s

polynomials which form a regular sequence, i.e., so that the subvariety X∗ defined
by them in An

K
× Am

K
is a complete intersection (which means that X∗ can be

defined by as many equations as the codimension indicates, and X is an irreducible
component of X∗); see again [Mu, Cor. 4, p. 44].

We may of course assume that the first s polynomials f1, . . . , fs are these ele-
ments. Denote by I∗ the ideal generated by them. In the prime decomposition of
I∗, the ideal I appears as a prime component. Denote by J the intersection of the
other ideals, so that I∗ = I ∩ J , and set Y = V (J) ⊂ An

K
× Am

K
. As I is prime

of height s, the Jacobian criterion [Mu, Cor. 1 to Prop 2, p. 168] ensures that
there exists an (s× s)-minor g of the Jacobian matrix ∂xyf of f = (f1, . . . , fr) such
that g �∈ I. Choose such a minor, and let �′ = max{�, (� − 1)s}. Assume given an
approximate solution y(x) for I up to degree β′(c) = β′

n,m,�′(c). We distinguish two
cases.

(i) If y(x) is also an approximate solution of g(x, y) = 0 up to degree β′(c),
we may replace I by the ideal I ′ generated by I and g. This ideal has height
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s + 1 since I is prime of height s, by Krull’s principal ideal theorem. And it is
generated by polynomials of degree �′ ≤ max{�, (� − 1)s}, since g has degree at
most (� − 1)s. So we may apply, by induction on the height, the assertion of the
theorem to I ′: There exists an exact formal solution ŷ(x) of f(x, y) = g(x, y) = 0
with ŷ(x) ≡ y(x) modulo (x)c. This suggests defining βn,m,�(c) in this case as

β′
n,m,�′(c) with �′ = max{�, (�− 1)λ(n,m,�)}.
(ii) We now assume that y(x) is not an approximate solution of g(x, y) = 0 up

to degree β′(c). Denote by f∗ = (f1, . . . , fs) the vector whose components generate
the ideal I∗.

The intersection X ∩ Y of the component X of X∗ with the union Y = V (J) of
the other components of X∗ is contained in the singular locus Sing(X∗) of X∗. As
X∗ is pure dimensional of codimension s, the singular locus is defined by the ideal
of (s×s)-minors of f∗. It follows that the minor g vanishes identically on X∩Y . As
our ground field K is assumed to be algebraically closed, Hilbert’s Nullstellensatz
tells us that g belongs to the radical of the ideal I+J defining X∩Y . By Hermann’s
result, the degree of I + J is bounded by a function λ in �, m, and n. Moreover,
there exists an integer u bounded by λ so that gu ∈ I + J .

Choose β(c) = β′(c′) with c′ = u · β′(c) + 1, where u is such that gu ∈ I + J and
β′(c) = β′

n,m,�′′(c) with �′′ = λ(n,m, �). As y(x) is not an approximate solution of

g(x, y) = 0 up to degree β′(c), it is not an approximate solution of gu(x, y) = 0
up to degree u · β′(c). But gu ∈ I + J and y(x) is an approximate solution of
f(x, y) = 0 (say, for I) up to degree β(c) ≥ u · β′(c) + 1. Therefore there exists
an element h ∈ J so that y(x) is not an approximate solution of h(x, y) = 0 up to
degree u · β′(c).

Recall that y(x) is an approximate solution of f(x, y) = 0 up to degree β(c) ≥
β′(c). Applying the theorem to I∗ with β′(c′), we get an exact solution ŷ(x) for I∗

with ŷ(x) ≡ y(x) modulo (x)c
′
with c′ = u · β′(c) + 1. Now observe that h · I ⊂

J · I ⊂ I ∩ J = I∗. Hence ŷ(x) is also an exact solution for h · f . But ŷ(x) ≡ y(x)

modulo (x)c
′
and h(x, y(x)) �≡ 0 modulo (x)u·β

′(c), so that h(x, ŷ(x)) �= 0. It follows
that f(x, ŷ(x)) = 0 as required. From c′ ≥ c follows also that ŷ(x) ≡ y(x) modulo
(x)c.

Combining (i) and (ii), we see that βn,m,�(c) has to be chosen larger than or

equal to β′
n,m,�′(c), with �′ = max{�, (� − 1)λ(n,m,�)}, and also β′

n,m,�′′(c
′), with

c′ = u · β′
n,m,�′′(c) + 1 and �′′ = λ(n,m, �).

Step 3. Proof in the complete intersection case. We can now assume we have an
ideal I of height r which is generated by r polynomials f1, . . . , fr for which an
(r × r)-minor g of ∂xyf does not belong to I. By the same reasoning as in case (i)
of Step 2, we may suppose additionally that the given approximated solution y(x)
of f(x, y) = 0 is so that g(x, y(x)) is nonzero up to degree β(c) + 1.

We derive f(x, y(x)) ≡ 0 modulo (x)β(c) with respect to the x-variables. We get
the congruence

∂xi
f(x, y(x)) ≡ −

r∑
k=1

∂xi
yk(x) · ∂yk

f(x, y(x))

modulo (x)β(c)−1. This shows that we can choose the minor g from the relative
Jacobian matrix ∂yf .
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We then follow the proof of the convergent and algebraic cases until we arrive at
the equivalent system of polynomial equations in x′ = (x1, . . . , xn−1) in new unkown
series w0(x

′), . . . , wd−1(x
′). We have already mentioned that the polynomial vector

h of Step 3 of the proof will have a degree bounded by a function in the degree of
f and m, namely by deg(f) +m · (deg(f)− 1)m−1 ≤ �+m · (�− 1)m−1.

Now let β′
n−1,m,�(c) denote the function of the theorem given by induction in

dimension n − 1. It then suffices to set βn,m,�(c) = β′
n−1,m,�′(c) with �′ = � +m ·

(� − 1)m−1 to establish the case of dimension n. This concludes the proof of the
uniform strong approximation theorem. �

(e) The proof of the strong approximation theorem for textile maps only relies
on the Noetherianity of the polynomial ring and on Chevalley’s theorem on the
images of constructible sets under polynomial maps [Ma, p. 42]. It is this latter
result which requires that we work over algebraically closed fields.

We adapt an argument that was used by Mori to prove a theorem of Gurjar and
Parameswaran on the boundedness of Milnor numbers in families of hyperplane
sections [Mo], [Gu]. Set M = K[[x]]m and Mk = M/(x)kM for k ≥ 0, with
projection maps πk : M → Mk. We identify the elements of Mk with vectors
of polynomials of degree < k and consider Mk as affine space Amnk

K
. As G is

continuous with respect to the Krull topology, there exists an increasing sequence
of natural numbers ck tending to infinity such that if y and y′ are congruent modulo
(x)k, then G(y) and G(y′) are congruent modulo (x)ck . Fix such a sequence. We
consider the subsets

Vk = πk({y ∈ M, ordG(y) ≥ ck}).
of Mk. They are nonempty by assumption. As G is textile, these are constructible
subsets of Mk.

3 This will be used later on. For � ≥ k, let π�,k : M� → Mk

denote the canonical projections. If y ∈ M� has image y ∈ Mk, then y and y are
congruent modulo (x)k, and therefore G(y) and G(y) are congruent modulo (x)ck .
In particular, if y belongs to V� and hence G(y) has order ≥ c�, then, due to c� ≥ ck,
we get that G(y) has order ≥ ck. Thus y ∈ Vk. This shows that π�,k maps V� into
Vk, for � ≥ k.

For each k, the descending chain of Zariski-closures π�,k(V�) in Vk, with � ≥ k,
stabilizes by the Noetherianity of the Zariski-topology for large �, say for � ≥ λk.
For k ≥ 0 and � ≥ λk, we set

Wk = π�,k(V�) ⊂ Vk.

Let � ≥ k, and write W� = π�′,�(V�′) for some �′ ≥ �. Choosing �′ ≥ λk, we get

π�,k(W�) = π�,k(π�′,�(V�′)) = π�,k(π�′,�(V�′)) = π�′,k(V�′) = Wk.

Hence the induced projections τ�,k : W� → Wk are dominant for � ≥ k (i.e., have
dense images).

Let us now put ourselves in the situation of the theorem. We claim that taking
k = 0, any value � ≥ cλ0

will be sufficient for the conclusion of the theorem. By
assumption, there then exists an element y(x) ∈ M such that G(y(x)) ≡ 0 modulo
(x)�, say ordG(y(x)) ≥ � ≥ cλ0

. This implies that the image πλ0
(y(x)) of y(x) in

Mλ0
belongs to Vλ0

. By the definition of λ0, the image πλ0,0(πλ0
(y(x))) = π0(y(x))

3A subset is constructible if it is a finite union of differences of Zariski-closed sets. We invoke
here Chevalley’s theorem.
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of y(x) in M0 belongs to W0. It follows that W0 and, consequently, all Wk are
nonempty.

We now construct the exact solution y(x) by lifting a sufficiently general element
ofW0 suitably to allW� and then toM . The element y(x) is not used for this lifting.

We have seen above that the images τ�,0(W�) are Zariski-dense in W0. As our
ground field is algebraically closed, these images contain a Zariski-open subset of
W0, by Chevalley’s theorem. Therefore the countable intersection

⋂
�≥0 τ�,0(W�) is

again Zariski-dense in W0.
As the image of V�′ in Mk is constructible and Zariski-dense in Wk for �′ ≥

λk, the same argument shows that the intersection of all images of the sets V�′

in Wk, with �′ ≥ λk, is dense in Wk for all k. Call this intersection Uk, say
Uk =

⋂
�′≥λk

π�′,k(V�′). Let λ� be the corresponding index for W�. We may assume

that λ� ≥ λk. As the sequence of images π�′,k(V�′) is decreasing in Wk, we also
have Uk =

⋂
�′≥λ�

π�′,k(V�′). This shows that the restriction U� → Uk of πk,� is
onto for � ≥ k. Therefore any element of Wk which lies in the dense subset Uk lifts
successively to all U� ⊂ V� (successively in the sense that the limit exists as a formal
power series). This limit will give, by definition of V� and since c� tends to infinity,
an exact solution y(x) of G(y(x)) = 0. The proof of the strong approximation
theorem for textile maps is completed. �

5. Weierstrass division theorems

In the division theorems below, x and z denote two sets of variables x =
(x1, . . . , xn) and z = (z1, . . . , zm), and x′ is set equal to (x1, . . . , xn−1). Fix d ∈ N.
Let wi = (wi1, . . . , wim) denote additional sets of variables, for i = 1, . . . , d, and
write w for the collection of all wi. Denote by

z(w, xn) =

d∑
i=1

wi · xi
n ∈ K[w][xn]

m,

with nonitalic letter z, the universal polynomial vector in xn of degree ≤ d with
variable coefficients wi = (wi1, . . . , wim) and vanishing for xn = 0. Any choice of
formal power series vectors wi(x

′) ∈ K[[x′]]m then induces, writing w(x′) for the
collection of all wi(x

′), a polynomial vector

z(x) = z(w(x′), xn) =

d∑
i=1

wi(x
′) · xi

n ∈ K[[x′]][xn]
m

in xn of degree ≤ d with coefficients the formal power series vectors wi(x
′).

Classical Weierstrass Division Theorem. Let g be a nonzero formal, conver-
gent, or algebraic power series in n variables x1, . . . , xn. Assume that g is xn-
regular of order e. Then there exist, for any formal, convergent, or algebraic power
series f , unique formal, convergent, or algebraic power series p and q, with q poly-
nomial in xn of degree < e, such that

f(x) = p(x) · g(x) + q(x).

The algebraic case was originally proven by Lafon [Laf1], [Laf2]; see also [Hir],
[AMR], [ACH], [Rui, Prop. 5.6]. We give below an elementary, more constructive
proof of the theorem in all three settings.
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Proof. (a) We first treat the formal case. Write g = xe
n+h with h ∈ [(x′)+(xe+1

n )] ·
K[[x]]. Consider the map

w : K[[x]]×K[[x′]][xn]<e → K[[x]], (p, q) → p · g + q.

We have to show that w is an isomorphism. For this it suffices to decompose w into
w = u−v where u(p, q) = p ·xe

n+q is trivially an isomorphism, and v(p, q) = −p ·h.
Hence it suffices to show that wu−1 = IdK[[x]] − vu−1 is an isomorphism. Equip

the variables x1, . . . , xn−1 with weight 1 and xn with weight 1
e+1 . Then xe

n is the

monomial with smallest weight of the expansion of g. It follows that vu−1 increases
the weighted order of power series, which, in turn, shows that the geometric series∑∞

k=0(vu
−1)k induces a well-defined map K[[x]] → K[[x]]. It is clearly the inverse

to wu−1.
(b) In the convergent case, write K{x} as the union of the rings K{x}r of power

series whose radius of convergence is at least r > 0. The rings K{x}r are Banach
spaces with the norm |

∑
α cαx

α| =
∑

α |cα| · r|α|. It is easy to show that the
restriction of vu−1 to K{x}r maps K{x}r into itself for sufficiently small r > 0
and has operator norm < 1. Therefore

∑∞
k=0(vu

−1)k induces a well-defined map
K{x}r → K{x}r which will be the inverse to the restriction of wu−1 to K{x}r.

(c) The algebraic case is more complicated. We give the main line of arguments,
for detail see [AMR], [ACH]. It can be shown, by the Artin–Mazur lemma [AM,
p. 88], that for given algebraic series f and g there exists a polynomial vector
H = (H1, . . . , Hp) in variables x1, . . . , xn and y1, . . . , yp for which H(0, 0) = 0 and
∂yH(0, 0) is an invertible matrix, and such that the unique power series solution
h(x) = (h1(x), . . . , hp(x)) to H(x, y(x)) = 0 given by the implicit function theorem
is algebraic and so that f and g can be expressed as polynomials f(x) = F (x, h(x))
and g(x) = G(x, h(x)) in h(x) [AM], [AMR], [ACH]. These polynomials H, F , and
G are called the codes of f , respectively g. Set

Bi = yi +
e−1∑
j=0

uij · xj
n

and

B = xe
n +

e−1∑
j=0

uj · xj
n

with new variables uij and uj , for i = 1, . . . ,m. We may consider these polynomials
equipped with the leading terms yi and xe

n. It is not hard to see that the ideals
in the ring of algebraic series generated by y1 − h1, . . . , yp − hp and g, respectively
by H1, . . . , Hp and G, coincide. The division of the polynomials Hk and G by
B1, . . . , Bm and B yields polynomial remainders

Rk(uij , uj , x) =
e−1∑
�=0

Uk�(uij , uj , x
′) · x�

n,

R(uij , uj , x) =
e−1∑
�=0

U�(uij , uj , x
′) · x�

n,

which do not depend on y. One then shows that the system given by Uk�(uij ,uj ,x
′)=

0 and U�(uij , uj , x) = 0, for k = 1, . . . ,m and � = 0, . . . , e− 1, satisfies with respect
to uij and uj the assumptions of the implicit function theorem. Therefore there
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exist unique algebraic series uij(x
′) and uj(x

′) such that Uk�(uij(x
′), uj(x

′), x′) = 0
and U�(uij(x

′), uj(x
′), x) = 0 for all k and �. By construction, the series b(x) =

B(uj(x
′), xn) is then algebraic and generates in K[[x]] the same ideal as g(x), for

being its Weierstrass normal form.
It now suffices to divide F polynomially by B1, . . . , Bm and B,

F =
m∑
i=1

Ai ·Bi +A ·B + C

with polynomials A1, . . . , Am, A and C in K[uij , uj , x, y], where C = C(uij , uj , x)
does not depend on y and is polynomial in xn of degree ≤ e. Upon replacing in
this equation yi by hi(x), respectively uij and ui by uij(x

′) and uj(x
′), one gets

f =

m∑
i=1

ai · bi + a · b+ c

with algebraic series a1, . . . , am, a and c obtained from A1, . . . , Am, A and C by
substitution. Here, c is a polynomial in xn of degree ≤ e−1. To conclude the proof,
it suffices to observe that b1, . . . , bm are algebraic multiples of b, hence of g, so that
the required Weierstrass division f = p · g + q follows by substitution. Note that
this proof is constructive as it gives the codes of the quotient p and the remainder
q from the codes of f and g. �

Universal Weierstrass Division Theorem. Fix d, and let z(w, xn) denote the
universal polynomial in xn of degree d as before. Assume given a formal power
series g(x, z) so that g(x, z(w, xn)) is nonzero and xn-regular of order e.

(a) For every formal power series f(x, z) there exist a unique formal power series
p ∈ K{x,w} and a unique polynomial q ∈ K{x′, w}[xn] in xn of degree < e with
formal power series coefficients in x′ and w such that

f(x, z(w, xn)) = p(x,w) · g(x, z(w, xn)) + q(x,w)

is the Weierstrass division of f(x, z(w, xn)) by g(x, z(w, xn)).
(b) For every evaluation z(x) = z(w(x′), xn) ∈ K[[x′]][xn]

m of z(w, xn) at formal
power series vectors wi(x

′) for which g(x, z(x)) is nonzero and xn-regular of order
e, the induced decomposition

f(x, z(x)) = p(x,w(x′)) · g(x, z(x)) + q(x,w(x′))

is the formal Weierstrass division of f(x, z(x)) by g(x, z(x)).
(c) The same statements as in (a) and (b) hold for convergent, respectively alge-

braic, power series f and g, in which case q and p are again convergent, respectively
algebraic.

(d) If f and g are polynomials of total degree in x and y less than or equal to �,
the quotient p and the remainder q are again polynomials and the total degree in x′

and w of the coefficients of q is bounded by �+ �2.

Proof. Assertion (a) follows from the classical formal Weierstrass division theorem
in the case of two sets of variables x and w. Assertion (b) follows from (a) since
w(x′) does not depend on xn, so that q(x,w(x′)) is again a polynomial in xn of
degree < e. The convergent and algebraic versions of the classical Weierstrass
division theorem then yield assertion (c).

Finally, for assertion (d), observe that the degree of the polynomial f(x, z(w, xn))
in xn is bounded by t = degx f+d·degy f . The Weierstrass division of f(x, z(w, xn))
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by g(x, z(w, xn)) coincides with the respective polynomial division with respect to
the leading monomial xe

n of g(x, z(w, xn)). It consists in replacing eth powers of
xn by lower degree powers. Such substitutions occur at most t − e times. In each
step the degree of the intermediate remainders in the w-variables increases by 1, so
that the final remainder q will have degree in w at most t− e. Similarly, the degree
of q in x′ will be less than or equal to degx′ f + (t − e) · degx′ g. Combining these
estimations yields for the total degree of q in x′ and w the upper bound

t− e+ degx′ f + (t− e) · degx′ g = degx′ f + (t− e) · (degx′ g − 1).

This can be bounded from above by �+ �2, giving the required estimate. �

6. Algebraic power series

These series play a prominent role in the approximation theorems, especially in
the nested case. They also appear in Azumaya’s and Nagata’s theory of Henselian
rings and Grothendieck’s étale topology. Above all, they represent a fascinating
research topic with many facets, linking commutative algebra with complex and
asymptotic analysis, diophantine approximation, counting problems in combina-
torics, and specific phenomena over fields of characteristic p. We propose giving a
brief (and rather incomplete) account of them. Our main sources are lectures by
Bostan [Bos], the survey paper [BD] of Banderier and Drmota, and an article by
Adamczewski and Bell [AB].

A formal power series y(x) in n variables x1, . . . , xn over K is called algebraic if
there exists a (nonzero) polynomial P (x, t) = cd(x)t

d+ · · ·+ c1(x)t+ c0(x) ∈ K[x, t]
so that P (x, y(x)) = 0. Typical examples are rational power series as, e.g., fractions

1
1+z(x) , or roots

√
1 + z(x) with z(x) a polynomial with constant term z(0) �= −1.

Functions such as 1
x or

√
x are not algebraic (since they are not even formal power

series). The components of the local formal inverse at 0 of a polynomial map
F : Kn → Kn with F (0) = 0 and det(∂xF (0)) �= 0 are algebraic series [LT], as
are the components of the solutions y(x) vanishing at 0 of an implicit polynomial
system G(x, y) = 0 with G(0, 0) = 0 and ∂yG(0, 0) invertible, for a polynomial map
G : Kn+m → Km. The set of algebraic series forms a subring K〈x〉 of K[[x]] which
is closed under derivation but not under composition with other algebraic series.

The logarithmic series log(1−x) =
∑

i≥1
xi

i and the exponential series exp(x) =∑
i≥1

xi

i! in one variable (charK = 0) are clearly transcendental (i.e., not algebraic)

as well as the lacunary series h(x) =
∑∞

i=0 x
2i . The latter is, however, algebraic

over a field K of characteristic 2 (apply the linearity of squaring to the Mahler
equation h(x2)− h(x) = x satisfied by h).

In general, it is easier to prove that a series is transcendental than to show that
it is algebraic. Over a valued field, an algebraic series is automatically convergent.
So the coefficients cannot grow faster than polynomially. Otherwise the series is
transcendental. Similarly, over a valued field of characteristic 0, a series y(x) is also
transcendental if the coefficients tend too fast to 0 (as is the case with exp(x)).

We list a few results (mostly for series in one variable with coefficients in Q, C,
or a field of positive characteristic).

Eisenstein 1852 [Eis], Heine 1853 [Hei]: Univariate algebraic series
∑

cit
i over

Q admit a common “denominator”—there is a d ∈ N so that cid
i ∈ Z for all i ≥ 1.
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In particular, the denominators of the coefficients ci have only finitely many
prime divisors. Eisenstein was the first to observe the phenomenon. He proved the
statement in the case where the minimal polynomial of the series satisfies at 0 the
assumption of the implicit function theorem; Heine then did the general case.

Abel 1827 [Abe, p. 287], Cockle 1860 [Coc], Harley 1862 [Harl], Tannery 1874
[Tan], [Sta], [Lip]: Univariate algebraic series h(t) =

∑
cit

i are D-finite, i.e., their
coefficients satisfy a linear recursion ci = a1ci−1 + · · · + adci−d, for i ≥ d, with
ai rational functions in i. Equivalently, h(t) satisfies a linear differential equation
with polynomial coefficients.

If f(x) =
∑

α∈Nn cαx
α is a formal power series in variables x1, . . . , xn, define its

diagonal as the series in one variable z given by diag(f)(z) =
∑

i c(i,...,i)z
i [Sta],

[Lip].
Pólya 1922 [Pol]: Diagonals of bivariate rational power series over C are alge-

braic.
This can be seen as follows. Let f(x, y) be rational. Then we can interpret its

diagonal diag(f)(z) as the coefficient of the series 1
xf(x,

z
x ) at x

−1. This coefficient
is an integral, namely

diag(f)(z) =
1

2πi

∫
|x|=ε

1

x
f(x,

z

x
)dx.

The integral can be computed via residues and is hence algebraic. The striking
fact is that Pólya’s statement is actually an equivalence in characteristic p.

Furstenberg 1967 [Fur, Thm. 1 and 2]: Over a field of positive characteristic
p > 0, the diagonal of a rational function in several variables is an algebraic series,
and every algebraic power series in one variable over C is the diagonal of a bivariate
rational function.

Example ([Bos, part II]). Let f(z) be algebraic in one variable over Q, with
minimal polynomial P (z, y). Assume that P (0, 0) = 0 and ∂yP (0, 0) �= 0, i.e., that
P satisfies at 0 the assumption of the implicit function theorem. Then

f(z) = diag

(
y2 · ∂yP (xy, y)

P (xy, y)

)
.

The equivalence need not hold for more than two variables, as is seen from
the diagonal of 1

1−x−y−z , which equals the transcendental hypergeometric series

2F1(1/3, 2/3; 1; 27z).
Deligne extended Pólya’s and Furstenberg’s results to diagonals of algebraic se-

ries.

Deligne 1983 [Del], [DL3], [Hara], [ShW,Chr]: Over a field of positive character-
istic, the diagonal of an algebraic series in n variables is again algebraic.

Denef and Lipshitz 1987 [DL3]: Regardless of the characteristic of the ground
field, every univariate algebraic function is the diagonal of a bivariate rational func-
tion. (This is even true for any number of variables, taking the large diagonal.)

Example ([AB, p. 3]). In characteristic 0, the statement of Deligne’s result is no
longer valid. The real series

h(x) =

∞∑
i=0

1

24i

(
2i

i

)2

xi =
2

π

∫ π/2

0

dt√
1− x sin2 t
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can be realized as the diagonal of two rational power series in four, respectively
three, variables 2

2−u−v · 2
2−wz and 4

4−(u+v)(1+w) , but is not algebraic.

We now come briefly to Grothendieck’s famous and wide open p-curvature con-
jecture (unpublished; see [Kat1], [Kat2], [dVRSZ]). It is on the reduction of systems
of ordinary differential equations modulo p.

Grothendieck 1969: Let A ∈ Q(t)m×m be a square matrix whose entries aij(t)
are univariate rational functions over Q. Consider the system of ordinary linear
differential equations

(∗) y′(t) = A(t) · y(t),

for unknown functions y(t) = (y1(t), . . . , ym(t)). Then (∗) has a fundamental sys-
tem of solutions in the algebraic closure of Q(x) if and only if, for almost all primes
p, the reduction of (∗) modulo p has a fundamental system of solutions consisting
of algebraic power series over Fp (or, equivalently, rational power series over Fp).

Here, by a fundamental system we understand a basis of the solution space. One
may take, instead of (∗), also a single ordinary differential equation in y(t) ∈ Q[[t]]
with polynomial coefficients,

(#) ak(t) · y(k) + ak−1(t) · y(k−1) + · · ·+ a1(t) · y′ + a0(t) · y = 0.

The name p-curvature stems from the following equivalent statement of the con-
jecture. Define recursively matrices Ak by Ak+1 = A′

k + Ak · A, starting with the
identity matrix A0 = �m and letting A′ = ∂tA be the derived matrix. For p prime,
the matrix Ap is called the p-curvature of the system (∗). Then the assertion of
the conjecture is equivalent to the following: the matrices Ap are congruent to 0
modulo p for almost all primes p. Said differently, the p-curvature is the pth it-
erate Ψp = ( d

dt + A)p, taken modulo p. This is a linear operator, and Ψp = Ap.
The conjecture is open. The case of Picard–Fuchs equations was solved by Katz
in 1982 [Kat1], [Kat2]. There is also a discrete version of the conjecture, replacing
differentiation by the difference operator, by di Vizio [dV]. The long proof relies on
André’s theory of G-functions.

Within commutative algebra, the ring of algebraic power series can be alterna-
tively defined as the Henselization of the localization K[x](x) at 0 of the polynomial
ring at the maximal ideal (x) = (x1, . . . , xn). This goes as follows.

A Noetherian local ring (A,m) is called Henselian if every univariate polynomial
P (t) with coefficients in A admitting a simple approximate root α in A modulo
the maximal ideal m of A, say P (α) ≡ 0 modulo m, also admits a (simple) root α
in A lifting the approximate root, i.e., satisfying f(α) = 0 and α ≡ α modulo m.
It is equivalent to saying that every monic polynomial P (t) which factors modulo
m into two coprime monic polynomials Q and R, say P ≡ Q · R modulo m, also
factors exactly, P = R ·Q, with Q and R monic polynomials satisfying R ≡ R and
R ≡ R modulo m.

A local ring (A,m) always admits a Henselization, i.e., a smallest ring extension
A ⊂ Ah for which Ah is Henselian [Na]. More precisely, Ah is given by the following
universal property: every local ring homomorphism A → B to a Henselian ring B
extends uniquely to Ah → B. As an example take for instance for A the localization
K[x](x) of the polynomial ring K[x] at the maximal ideal (x), one obtains for Ah

precisely the ring K〈x〉 of algebraic power series.
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In a Henselian ring A, the characterization of algebraic series by implicit polyno-
mial equations G(y) = 0 in several variables with G ∈ A[y]m and ∂yG(0) invertible
is also known as the multivariate Hensel lemma; cf. [EGA, 18.5.11], [Ra2]. The
characterization uses the concept of the normalization of an algebraic variety. It
can also be expressed in the language of étale coverings.

Theorem (Artin and Mazur, [AM, p. 88]). A formal power series h(x1, . . . , xn)
with h(0) = 0 is algebraic if and only if it is the first (or any other) component of
the unique solution y(x) with y(0) = 0 of an implicit equation F (x, y) = 0 for a
polynomial map F : Kn+m → Km with F (0, 0) = 0 and det(∂yF (0, 0)) �= 0.

Proof. One direction is easy: Extend F to G = (x, F ) : Kn+m → Kn+m. It
satisfies at 0 the assumptions of the inverse function theorem, G(0, 0) = 0, and
det(∂xyG(0, 0) �= 0. By the inverse function theorem its inverseH(x, y) = G−1(x, y)

at 0 has algebraic components [LT]. We may write H(x, y) = (x, H̃(x, y)). Setting

y = 0 provides the solution y(x) = H̃(x, 0) to F (x, y) = 0.
Conversely, let h be given with minimal polynomial P (x, y). We notice for later

use that P is irreducible. Denote by X the algebraic hypersurface in An+1
K

defined
by P = 0. As P (x, h(x)) = 0, we see that X contains the graph of h (think either of
K = C and that h is holomorphic in a euclidean neighborhood of Cn or define the
graph scheme-theoretically). We may associate to X the germ X0 = (Xan, 0) at 0
of the analytic variety Xan defined by P (if K is a valued field) or, for arbitrary
fields K, the formal neighborhood X0 of X at 0 (defined by the ring K[[x, y]]/(P )).
In both cases, the graph of h lies inside one analytic component C of X0, which, by
comparison of dimensions, must hence be smooth. Nevertheless, X may be singular
at 0, since several analytic components could meet.

The idea now is to separate these components by normalization. It is given by
taking the integral closure A of the coordinate ring K[x, y]/(P ) inside its quotient
field (which is well-defined since P is irreducible). This closure is again a finitely
generated K-algebra [ZS], of Krull dimension n as X. It can therefore be written as
A = K[z1, . . . , zp]/I, for some ideal I. This ideal defines a variety Y in A

p
K
, called

the normalization of X. The inclusion K[x, y]/(P ) ⊂ A defines a (finite) morphism
π : Y → X. By the universal property of normalization, the map γ : x → (x, h(x))
from An

K
to X lifts to a map γ̃ : An

K
→ Y , i.e., so that π ◦ γ̃ = γ. By a precursor of

Zariski’s main theorem [Za], one knows that Y is analytically irreducible at every
point above 0. In particular, the map π separates the analytic components of X
at 0. So there is a unique point 0′ in C ′ = π−1(C) lying over 0. Without loss
of generality, we may assume that 0′ is the origin of Ap

0, and that π : Y → X is
given by the restriction to Y of the projection map A

p
K
→ An+1

K
on the first n + 1

components. In particular, γ̃ has first n + 1 components (x1, . . . , xn, h(x)). As C
is smooth at 0, this now also holds for C ′ at 0′.

To summarize, we have shown that the ideal I defines an algebraic subvariety
Y of A

p
K

of codimension p − n which is smooth at 0′. The Jacobian criterion
of smoothness now tells us that there are polynomial generators Q1, . . . , Qp−n of
I so that the matrix (∂ziQj)i,j=1,...,p−n has rank p − n at 0. In this situation,
the implicit function theorem applies. It shows that there is a (unique) formal
power series vector (actually, with components algebraic series) (h1, . . . , hp−n) ∈
K[[zp−n+1, . . . , zp]]

p−n so that, setting z′ = (zp−n+1, . . . , zp), one has hi(0) = 0 and
Qj(h1(z

′), . . . , hp−n(z
′), z′) = 0 for all i and j.
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It now suffices to define F : Ap
K
→ A

p
K
as F (z)=(z1, . . . , zn, Q1(z

′), . . . , Qp−n(z
′))

to recognize h1 and hence h as a component of the inverse of F . This proves the
theorem. �

7. Formal and analytic relations between convergent series

Let f1(x), . . . , fm(x) be given convergent power series vanishing at 0 in variables
x = (x1, . . . , xn) over a valued field K. We wish to compare the formal and analytic
relations r = r(y1, . . . , ym) between the fi, i.e., series r(y1, . . . , ym) so that

r(f1(x), . . . , fm(x)) = 0.

Grothendieck asked whether the ideal of formal relations I = {r, r(f) = 0} is
generated by the analytic ones. Gabrielov showed by means of a tricky example
that this is not the case [Ga1], [Ga2], [Izu]. We will have a closer look at Gabrielov’s
construction and explain the clue behind it. The details can be found in [ACHK].

The equation above is equivalent to saying that r(y) belongs to the ideal gener-
ated by the series yi − fi(x) for i = 1, . . . ,m. Therefore, there exist power series
a1(x, y), . . . , am(x, y) such that

r(y) =
m∑
i=1

ai(x, y) · (yi − fi(x)).

Here, the series ai are allowed to depend on both x and y, whereas the series
r must be independent of x. One may then ask more generally, Given analytic
functions e and f1, . . . , fm in n variables x1, . . . , xn such that the linear presentation

e(x) =

m∑
i=1

âi(x) · fi(x)

holds with formal power series âi(x) depending only on the variables x1, . . . , xni
,

for given ni ≤ n, does there exist a presentation

e(x) =
m∑
i=1

ai(x) · fi(x)

with analytic functions ai(x) depending on the same sets of variables as âi(x)? This
is the linear version of the nested approximation problem mentioned earlier.

Gabrielov gave in [Ga1] a counterexample to this assertion: Consider the series
f = 1, g = x · (ez − 1), and h = yz − x in three variables x, y, z. He then showed
that the convergent series

e(x, z) =

∞∑
i=1

∞∑
j=0

i!

(i+ j)!
· xizj+1

admits a presentation

e = â · f + b̂ · g + ĉ · h,
with formal series â(x, y), b̂(x, y), ĉ(x, y, z) but that there are no convergent series
a(x, y), b(x, y), c(x, y, z) representing e in this way. Let us explain why this is so.

It is easy to see that the series â, b̂, ĉ are unique. Set

Î = K[[x, y]] · f +K[[x, y]] · g +K[[x, y, z]] · h.
Subspaces of K[[x1, . . . , xn]] of the form

∑m
i=1 K[[x1, . . . , xsi ]]·fi, with 1 ≤ si ≤ n,

extend the notion of ideal in power series rings and are called echelons [ACHK].
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Now order the monomials xiyjzk lexicographically by their exponents so that z <
y < x. The initial monomial of a nonzero series s(x, y, z) is defined as the smallest
monomial in(s) = xiyjzk of its expansion. We have in(f) = 1, in(g) = xz, and
in(h) = yz. The K-subspace in(I) of K[[x, y, z]] spanned by all initial monomials of
I turns out to be the sum

in(Î) = K[[x, y]] · 1 +
∞∑
k=1

K[[x]] · xkzk +K[[x, y, z]] · yz.

Adapting Buchberger’s algorithm [Bu] for Gröbner bases to the present situation,

one constructs series g2, g3, . . . in Î with initial monomials xkzk, for k ≥ 2. The
computation gives

g2=
1

12
· [x2z2 +

1

2
· x2z3 +

3

20
· x2z4 +

1

30
· x2z5 +

1

168
· x2z6 +

1

1120
· x2z7 + · · · ],

g3=
1

720
· [x3z3 +

1

2
· x3z4 +

1

7
· x3z5 +

5

168
· x3z6 +

5

1008
· x3z7 + · · · ],

g4=
1

100800
· [x4z4 +

1

2
· x4z5 +

5

36
· x4z6 +

1

36
· x4z7 + · · · ],

g5=
1

25401600
· [x5z5 +

1

2
· x5z6 +

3

22
· x5z7 +

7

2461
· x5z8 + · · · ],

g6=
1

10059033600
· [x6z6 +

1

2
· x6z7 +

7

52
· x6z8 +

1

39
· x6z9 + · · · ].

The general formula for gk is

gk = xk ·
∞∑
i=k

qi,k · zi,

with coefficients qi,k given by

qi,k =
(i− 1)!

4k−1 · (i− k)! · (i+ k − 1)! · ( 12 )k−1
,

where ( 12 )
k−1 denotes 1

2 (
1
2 +1) · · · ( 12 + k− 2). The key observation here is that the

coefficients

qk,k =
(k − 1)!

4k−1 · (2k − 1)! · ( 12 )k−1

of the initial monomials xkzk of gk tend very fast to 0. Rewrite now the series gk
as linear combinations of the original generators f, g, h of Î,

gk = ak · f + bk · g + ck · h,
with uniquely defined series ak, bk ∈ K[[x, y]] and ck ∈ K[[x, y, z]]. They are given
by the recursions

ak=−y · ak−1 +
1

4(2k − 3)(2k − 5)
· x2 · ak−2,

bk=−y · bk−1 +
1

4(2k − 3)(2k − 5)
· x2 · bk−2,

ck=−y · ck−1 +
1

4(2k − 3)(2k − 5)
· x2 · ck−2 − z−1 · (ak−1 · f+bk−1 · g+ck−1 · h),

with a1 = 0, a2 = x2, b1 = 1, b2 = −y + 1
2x, c1 = 0, c2 = −z−1 · x · (1 − ez).

The preceding formulas imply that ak, bk are homogeneous polynomials in x and y
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of degree k, respectively k − 1, while ck is a polynomial in x, y, z, ez, z−1 without
poles. Note that in the expansions of ak, bk, and ck the monomials x2yk−2, yk−1,
and xyk−2, respectively, appear with coefficients ±1. The successive quotients

qk+1,k+1

qk,k
=

1

4 · (2k + 1) · (2k − 1)

of the coefficients of gk tend quadratically towards 0, so the qk,k themselves tend
very fast to 0. As

qi,k
qk,k

=
k! · (i− 1)!

(i− k)! · (i+ k − 1)!
≤ 1

for i ≥ k, all coefficients qi,k of the series gk become very small as k increases. This
then implies that infinite linear combinations of the series gk with rapidly increasing
coefficients may still produce convergent series. A typical example would be the
convergent series

e(x, z) :=
∞∑
k=1

1

qk,k
· gk(x, z).

By construction, e belongs to Î ∩K{x, y, z}. We show that it does not belong to
I. By uniqueness of the presentation, it suffices to write e as a linear combination

e = â ·f+ b̂ ·g+ ĉ ·h with divergent â, b̂, ĉ. Set rk = 1
qk,k

so that e =
∑∞

k=1 rk ·gk and

â =
∑

rk · ak, b̂ =
∑

rk · bk, ĉ =
∑

rk · ck with ak, bk and ck as defined above. As
we noted earlier, the monomials x2yk−2, yk−1, and xyk−2 appear with coefficients
±1 in the expansions of ak, bk, and ck, respectively. As the successive quotients

rk+1/rk tend quadratically to infinity, it follows that the series â, b̂, ĉ diverge. �

8. Two applications of approximation

To illustrate the usefulness of the approximation theorems, we give two applica-
tions of them to singularity theory.

Application of the analytic and strong approximation theorem. Let K be a val-
ued field. The group Aut(K{x}) of local K-algebra automorphisms Φ of K{x} =
K{x1, . . . , xn} is formed by vectors ϕ = (ϕ1, . . . , ϕn) of convergent power series
Φ(xi) = ϕi(x) ∈ (x) · K{x} so that the Jacobian matrix ∂ϕ ∈ K{x}n×n is in-
vertible, say det(∂ϕ(0)) �= 0. The group acts naturally on series f ∈ K{x} via
α · f = α(f) = f ◦ ϕ. Orbits of a series f consist of all power series g which differ
from f by an analytic coordinate change.

Alternatively, we may let the larger group K := K{x}∗�Aut(K{x}) act on K{x}
via (u,Φ) · f = u · Φ(f) = u · (f ◦ ϕ). If f, g ∈ K{x} define hypersurface germs
X and Y in Kn at the origin, then X and Y are isomorphic as germs of analytic
spaces if and only if f and g lie in the same K-orbit.

Now let ft be an analytic family of convergent power series in K{x}, say, a
power series ft(x) = f(t, x) ∈ K{t, x} in t and x1, . . . , xn. One may think of ft as
a family of germs of analytic functions on Kn at the origin, defined for t varying in
a sufficiently small euclidean neighborhood of 0 in K. Let (Xt, 0) ⊂ (Kn, 0) denote
the germs of analytic spaces defined by ft. An important concept in deformation
and singularity theory is analytic triviality: Assume that for all t close to 0, the
germ (Xt, 0) is isomorphic to the special germ (X0, 0). This condition is called
pointwise triviality of the family (Xt, 0). Does this imply that (Xt, 0) is already
an analytically trivial family in the sense that there exists a family ϕt of analytic
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automorphisms of the germ (Kn, 0) depending analytically on t and sending (Xt, 0)
onto (X0, 0)? In terms of equations, this can be rephrased as follows. Assume
that ft belongs to the K-orbit K · f0 of f0 for all t close to 0. Does there exist an
analytic family (ut, ϕt) in K so that (ut, ϕt) · ft = f0? By analytic we understand
here as before that ut(x) = u(t, x) and ϕt(x) = ϕ(t, x) for convergent power series
u ∈ K{t, x} and ϕ ∈ K{t, x}n.

The problem here is that the condition ft ∈ K · f0 only ensures that, for each t,
some (ut, ϕt) exists. But as these are not unique, there is no hope that an arbitrary
choice will ensure analytic dependence on the parameter t.

Theorem (Ephraim [Eph, Thm. 0.2], Hauser and Müller [HM2], [HM3]). Pointwise
triviality implies analytic triviality.

Proof. For e ∈ N, denote by Ke the group of e-jets of elements (u, ϕ) of K. This
means that we truncate u and the components of ϕ at degree e and consider the
action of Ke on the e-jets K[x]≤e of series f in K{x} by taking everything modulo
(x)e+1. It is easy to see that Ke is a (finite-dimensional) Lie group over K which
acts on the finite-dimensional vector space Ve = K[x]≤e. We therefore know from
classical differential geometry that the orbits of Ke are immersed analytic subman-
ifolds of Ve. Moreover, every germ of analytic curve β in Ve lying entirely in one
orbit Ke · v of an element v ∈ Ve lifts to an analytic curve γ in Ke inducing β, i.e.,
so that γ · v = β.

Let us transcribe this statement into equations for our family ft. We may view
ft as a curve in V = K{x}, and then take for β the composition of ft with the
canonical projection K{x} → K{x}/(x)e+1. As the image of β lies by assumption
in one orbit Ke · v = Ke · f(0, x) ⊂ Ve, it follows that for every integer e there exists
the germ of an analytic curve γ : t → (u(t, x), ϕ(t, x)) ∈ Ke (depending on e) so
that

u(t, x) · f(t, ϕ(t, x)) ≡ f(0, x) modulo (x)e+1.

This is an equation which is linear in u and analytic in ϕ, and which admits a
solution for every e. By the strong approximation theorem, there exists a formal

exact solution (û(t, x), ϕ̂(t, x)) ∈ K̂,

û(t, x) · f(t, ϕ̂(t, x)) = f(0, x).

Observe that we may require here that û and ϕ̂ coincide with u and ϕ up to
degree 1, respectively 2, so that û is indeed a unit, and ϕ̂ is an automorphism.
By the analytic approximation theorem, there then even exists an analytic exact
solution (u(t, x), ϕ(t, x)) ∈ K of the above equation. But the equality

u(t, x) · f(t, ϕ(t, x)) = f(0, x)

just signifies that the family ft is analytically trivial. This proves the theorem. �

Application of the nested algebraic approximation theorem. We consider reduced
analytic space germs (X, 0) over a valued field K. We call such a germ decomposable
if it is isomorphic to a cartesian product (X, 0) ∼= (Y, 0) × (Z, 0) of two positive-
dimensional analytic germs (Y, 0) and (Z, 0). It is clear that every germ admits
a factorization into indecomposables, the interesting question is uniqueness of the
factors.
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Theorem (Hauser and Müller [HM4, Thm. 3]). Assume that (X, 0) is an analytic
space germ in (Kn, 0) defined by algebraic power series. Then its indecomposable
factors are unique up to isomorphism.

The truly hard part in the proof is the formal case, i.e., the uniqueness of the
factorization for spaces defined by formal power series. It does not use any approx-
imation theorem, and we do not give it here. We only show how to deduce via the
nested approximation theorem the stated theorem from the formal case.4

Proposition. If an analytic space germ (X, 0) in (Kn, 0) defined by algebraic power

series decomposes formally into a cartesian product (X̂, 0) ∼= (Ẑ1, 0)× (Ẑ2, 0) with

(Ẑj , 0) formal spaces, then (X, 0) ∼= (Y1, 0)× (Y2, 0) itself decomposes with algebraic
space germs (Yj , 0).

Proof. Let f1, . . . , fp ∈ K〈x〉 define (X, 0) in (Kn, 0). By the implicit function
theorem for algebraic map germs [LT], we may assume that (X, 0) is minimally
embedded, i.e., that fi ∈ (x)2 for all i. Let J denote the ideal of K〈x〉 generated

by the fi, and denote by Ĵ ⊂ K[[x]] its completion. By assumption there exists a
nontrivial partition of the variables into x = (x1, x2) and a formal automorphism ϕ̂

of K[[x]] so that Φ̂(J)(x) = Î1(x1) + Î2(x2) for ideals Îj ⊂ K[[xj ]]. We may assume

without loss of generality that Φ̂ is tangent to the identity, i.e., that Φ̂ induces the

identity on K[[x]]/(x)2. Write ϕ̂ for the vector in K〈x〉n of components Φ̂(xi). The

equality is equivalent to the existence of a (2p× p)-matrix Â = (Â1, Â2) of rank p
with entries in K[[x]] so that

Â1 · f(ϕ̂(x)) = f(ϕ̂(x1, 0)),

Â2 · f(ϕ̂(x)) = f(ϕ̂(0, x2)).

The system looks like searching for solutions depending on disjoint sets of variables,
for which approximation is known not to hold [Be]. The loophole is to treat the two
equations separately. For each, the nested approximation theorem applies: for the
first with respect to {x1} ⊂ {x1, x2}; for the second with respect to {x2} ⊂ {x1, x2}.
As f is assumed to be algebraic, there exist automorphisms ϕ1, ϕ2 of K〈x〉, (p×p)-
matrices Aj with entries in K〈x〉, and algebraic power series vectors χj ∈ K〈xj〉n,
so that, for j = 1, 2,

Aj · f(ϕj(x)) = f(χj(xj)).

Let ψj be the inverses of ϕj , and decompose them into ψj = (ψj1, ψj2) according
to x = (x1, x2). Then

(Aj ◦ ψj) · f = f(χj ◦ ψjj).

As ψ1 and ψ2 are tangent to the identity, also (ψ11, ψ22) is an automorphism of
K〈x〉. Let ρ be its inverse. Then

(Aj ◦ ψj ◦ ρ) · (f ◦ ρ) = f ◦ χj .

But as f ◦ χj are algebraic power series vectors in K〈xj〉p, we have shown that
(X, 0) decomposes into a cartesian product of algebraic space germs. �

4The formal case also implies, via the (nonnested) analytic approximation theorem, that an-
alytic space germs have the cancellation property: if (X, 0) × (Z, 0) ∼= (Y, 0) × (Z, 0) holds, then
already (X, 0) ∼= (Y, 0) [HM4, Thm. 1]. Cancellation is a notoriously difficult problem, with much
activity in the case of algebraic varieties and biregular or birational morphisms.
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9. The geometry behind Artin’s proof

We conclude the article with the transcription of Artin’s method of proof to
a more differential-geometric setting, as it is developed in detail in [HW], [Wob].
We restrict to the case of one x-variable, which we call t, and one equation f .
The starting point is to look at the set of all formal power series solutions ŷ(t) of
f(t, y) = 0, and not just at one particular solution. This set will be considered

as an infinite-dimensional variety Ŷ(f). Understanding the geometry of Ŷ(f) will
then allow us to see how formal and convergent, respectively algebraic, solutions are
distributed over this variety. This, in turn, will show that for convergent/algebraic

f the formal solutions can be approximated in the Krull topology inside Ŷ(f) by
convergent/algebraic ones.

More explicitly, Ŷ(f) will be stratified into a countable union of locally closed

subsets so that each stratum Ŝ is isomorphic (in an appropriate sense) to a carte-

sian product Z × M̂ of a finite-dimensional variety Z and a K[[t]]-module M̂ , both

depending on Ŝ. Points in Z correspond to polynomial vectors of a prescribed

degree (a certain truncation of the formal solutions ŷ(t)), and M̂ is shown to be
generated by convergent, respectively algebraic, power series whenever f has this

quality. Moreover, the second component of the isomorphism towards M̂ sends
convergent, respectively, algebraic, power series to power series of the same quality
(the first component produces polynomials). The isomorphim thus transfers the

comparison of formal, convergent, and algebraic solutions in Ŷ(f) (more precisely,

in Ŝ) to a membership problem in M̂ , since the quality is not affected by the com-
ponent in Z. This is now a linear problem, for which the methods of commutative
algebra apply. The analytic and algebraic approximation theorem in one variable
follow immediately.

So let f(t, y) ∈ K[[t, y1, . . . , ym]] be a power series, either formal, convergent, or
algebraic. Write the components of vectors y(t) = (y1(t), . . . , ym(t)) ∈ K[[t]]m as
power series

yj(t) =
∞∑
i=0

αijt
i

with coefficients αij ∈ K. We have already mentioned in the introduction that, by
Taylor expansion and comparison of the coefficients of t�, the equation f(t, y(t)) = 0
induces an equivalent infinite system of polynomial equations

(∗∗) F�(xij) = 0, � = 0, 1, . . .

in countably many variables xij , for j = 1, . . . ,m and i ∈ N. Write K[xN
m

] for the
polynomial ring K[xij , j = 1, . . . ,m, i ≥ 0]. Then y(t) is a solution of f(t, y) = 0 if
and only if the coefficients αij satisfy the system (∗∗). This signifies that the space of
formal solutions of f(t, y) = 0 is the solution variety Ŷ(f) of a countable number of
polynomial equations inside the infinite-dimensional affine space AN

m

K
= (t)·K[[t]]m.

The convergent power series form a subspace BN
m

K
= (t) ·K{t}m inside AN

m

K
, and the

analytic version of Artin’s theorem aims at comparing Ŷ(f) with the intersection

Y(f) = Ŷ(f)∩BN
m

K
at a very rudimentary level: if Ŷ(f) is not void, then also Y(f)

is not void (and, in this case, the latter is dense in the former with respect to the
Krull topology).
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We go one step further and ask for the actual geometric shape of and for the
relation between these two varieties.

So let y(t) be a given formal solution of f(t, y) = 0 (to ease the reading, from now
on we write y(t) instead of ŷ(t)). If all partial derivatives ∂yi

f vanish at y(t), we
take them as part of the defining system of equations and start over again with the
extended system of equations. Solving several equations requires a more involved
argument without any further insight. We will therefore stick to the hypersurface
case and assume that some ∂yi

f(t, y(t)) is nonzero. By a permutation of the y-
variables, we may assume that ∂y1

f(t, y(t)) �= 0. We then have the following.

Theorem (Hauser and Woblistin [HW]). Associate to a given f ∈ K[[t, y1, . . . , ym]]
its “zero-set”

Y(f) = {y(t) ∈ (t) ·K[[t]]m, f(t, y(t)) = 0}
inside the space of power series vectors vanishing at 0. Fix d ∈ N, and set

Sd = {z(t) ∈ (t) ·K[[t]]m, ord(∂y1
f(t, z(t))) = d}.

There exists a quasi-affine subvariety Z ⊂ AN
K
, for some N , and an integer r so

that

Y(f) ∩ Sd
∼= Z ×K[[t]]r.

The isomorphism is polynomial in the coefficients of the involved power series and
a homeomorphism with respect to the Krull topology. The same statement holds for
convergent, respectively algebraic, power series.

Special cases or variants of this result appear at various places in the literature.
Denef and Loeser [DLo] treat the case of truncations of arc spaces. Grinberg and
Kazhdan [GK] and Drinfeld [Dri] prove a respective factorization for the formal
neighborhood of arc spaces. This has been globalized to a certain extent by Bouthier
and Kazhdan [BK]; see also [KN, conjecture 73].

Before we start with the proof, let us make some general observations. The
stratum Sd is a locally closed subset of an infinite-dimensional affine space AN

m

K

in the sense that it is defined by (infinitely many) polynomial equations (=) and
inequalities ( �=) in (infinitely many) variables (which correspond to the coefficients
of the power series). The series f ∈ K[[t, y]] induces a map

f∞ : (t) ·K[[t]]m → K[[t]],

z(t) → f(t, z(t)),

given by substitution. The variety Y(f) is of course just the inverse image f−1
∞ (0).

We will prove that the restriction of f∞ to Sd can be transformed into a family
of affine K[[t]]-linear maps parametrized by a finite-dimensional algebraic variety.
The transformation is carried out by composing f∞ with a suitable isomorphism of
the source space (t) ·K[[t]]m. This linearization technique—whose present version’s
origin lies in Artin’s proof—has been generalized in [BH] to an infinite-dimensional
constant rank theorem for maps between power series spaces. It has been exploited
successfully in [HW] and [Wob].

The first step consists in dividing the elements z(t) of Sd by ∂y1
f(t, z(t)) accord-

ing to Weierstrass division. We write henceforth g(t, y) for ∂y1
f(t, y). The division

gives

z(t) = a(t) · g(t, z(t)) + v(t),
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where a(t) is a power series that we assume to vanish at 0 (for technical reasons)
and where v(t) is a polynomial in t of degree ≤ d. A simple argument (see the
lemma below) shows that g(t, z(t)) and g(t, v(t)) generate the same ideal in K[[t]].
Hence v(t) again belongs to Sd. Moreover, the coefficients of v(t) are polynomials
in the coefficients of z(t).

In what follows, we just write v and z for z(t) and v(t) for short.

Lemma ([HW, Prop. 5.2]). Let Vd = (t) · K[t]m≤d denote the space of polynomial
vectors of degree ≤ d vanishing at 0. The map

ϕd : (t) ·K[[t]]m × (Vd ∩ Sd) → Sd,

(a, v) → z = v + a · g(t, v)

is bijective and is a homeomorphism for the Krull topology. The same statement
holds in the convergent and algebraic case.

Notice that Vd is a finite-dimensional K-vector space and consequently Vd ∩ Sd

is a quasi-affine variety.

Proof. We first show that ϕd is well-defined, i.e., has its image in Sd. For this we
have to show that g(t, z) has again order d. But, by binomial expansion, g(t, z) =
g(t, v+a ·g(t, v)) = u(t) ·g(t, v) holds for some unit u ∈ K[[t]]∗. In particular, g(t, z)
and g(t, v) generate the same ideals of K[[t]]. Hence g(t, z) has order d, i.e., z ∈ Sd.

It is then clear that ϕd is continuous. The inverse to ϕd is given by Weierstrass
division in each component of z ∈ Sd. Namely, as ord g(t, z) = d, each zi can be
written in a unique way as zi = bi · g(t, z)+ vi with bi ∈ (t) ·K[[t]] and vi ∈ (t) ·K[t]
a polynomial of degree ≤ d. Set v = (v1, . . . , vm) ∈ (t) · K[t]m≤d. By the same

argument as before, we have g(t, z) = u(t) ·g(t, v) for some unit u ∈ K[[t]]∗. Setting
a = (a1, . . . , am) with ai = u(t) · bi, we get z = v + a · g(t, v) as required. As the
Weierstrass division is continous; ϕ−1

d is also. This gives the lemma. �

Proof of the Theorem. Composing f∞ with ϕd, we get a map

h∞ := f∞ ◦ ϕd : (t) ·K[[t]]m × (Vd ∩ Sd) → K[[t]],

(a, v) → f(t, v + a · g(t, v)),

induced by h(t, y) = f(t, y+a·g(t, y)) ∈ K[[t, y]]. This h is the power series composi-
tion of f with v+a·g(t, v). By construction, ϕ−1

d maps Y(f)∩Sd homeomorphically
onto

Y(h) ∩ [(t) ·K[[t]]m × (Vd ∩ Sd)] = h−1
∞ (0).

The clue now is to show that this zero-set is homeomorphic to an affine K[[t]]-
module (i.e., the translate of a K[[t]]-module). But this is easy. Indeed, we may
again apply Taylor expansion to f(t, v + a · g(t, v)). It gives

h(t, a, v) = f(t, v + a · g(t, v)) = f(t, v) + ∂yf(t, v) · a · g(t, v) + · · · ,

where the dots collect the terms which are quadratic or of higher degree in the
components of a · g(t, v). Recall that g = ∂y1

f . So we may rewrite the last formula
as

h(t, a, v) = f(t, v) + (a1 + q(t, a)) · g(t, v)2 +
m∑
i=2

∂yi
f(t, v) · ai · g(t, v),
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where q(t, a) · g(t, v)2 collects all higher-order terms of the expansion, and q(t, a)
is at least quadratic in the components of a. By the inverse function theorem, the
map

χ : (t) ·K[[t]]m → (t) ·K[[t]]m,

a → (a1 + q(t, a), a2, . . . , am)

is a (global) isomorphism (it is here that we use that a(t) vanishes at 0). By defini-
tion, h(t, a, v) = k(t, χ(a), v), with k the power series associated to the substitution
map

k∞ : (t) ·K[[t]]m × (Vd ∩ Sd) → K[[t]],

(a, v) → f(t, v) + a1 · g(t, v)2 +
m∑
i=2

∂yi
f(t, v) · ai · g(t, v).

If we write e(t, v) for the vector g(t, v) · ∂yf(t, v) ∈ K[[t]]m, this reads more clearly
as

k∞(a, v) = f(t, v) + a · e(t, v),
where a · e(t, v) denotes the scalar product. The map k∞ is hence linear in a, and
the coefficients of the image series are polynomials in the coefficients of v.

As (a, v) → (χ(a), v) is a homeomorphism, it follows that Y(f) ∩ Sd is home-
omorphic to the kernel Ud of k∞. Consider now the projection Ud → Vd ∩ Sd on
the second factor. This defines an “affine K[[t]]-submodule bundle” over the finite-
dimensional variety Vd∩Sd. By this we understand that the fibers over v ∈ Vd∩Sd

are affine K[[t]]-modules Ud,v given as the solution spaces of an inhomogeneous
K[[t]]-linear equation, namely

Ud,v = {a ∈ (t) ·K[[t]]m, a · e(t, v) = −f(t, v)}.

The fibers are nonempty if and only if f(t, v) belongs to the ideal J(t, v) of K[[t]]
generated by the series ∂y1

f(t, v) · ∂yi
f(t, v), for i = 1, . . . ,m. Now define Z ⊂

Vd ∩ Sd as the vectors v satisfying this membership condition. Via the Weierstrass
theorem (this time with parameters), one can show that Z is a (closed) algebraic
subvariety of Vd ∩ Sd, given by setting the remainder of the division of f(t, v) by
the ideal J(t, v) equal to zero.

This bundle structure of Ud is not yet the required cartesian product. It can be
obtained by a slight modification of the division used in the preceding lemma.

Lemma′. Let V ′
d = (t) · K[t]≤d × (t) · K[t]m−1

≤2d denote the space of polynomial
vectors vanishing at 0 of degree ≤ d in the first component, and of degree ≤ 2d in
the remaining components. The map

ϕ′
d : (t) ·K[[t]]m × (V ′

d ∩ Sd) → Sd,

given componentwise by

(a1, v1) → z1 = v1 + a1 · g(t, v),
(ai, vi) → zi = vi + ai · g(t, v)2,

for i ≥ 2, is bijective and a homeomorphism for the Krull topology. The same
statement holds in the convergent and algebraic case.
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Proof of Lemma ′. The same argument as for the original lemma shows that ϕ′
d is

well-defined. The inverse to ϕ′
d is obtained by dividing the first component of a

vector z(t) by g(t, z(t)), and the other components by g(t, z(t))2. This gives the
claim. �

We finish the proof of the theorem. Using the modified isomorphism ϕ′
d instead

of ϕd yields, by the same arguments as before, the following equation defining the
modified Ud:

f(t, v) + (a1 +
m∑
i=2

∂yi
f(t, v) · ai) · g(t, v)2 = 0.

We compose with the isomorphism

a → (a1 −
m∑
i=2

∂yi
f(t, v) · ai, a2, . . . , am),

and we get a new set U ′
d defined by

f(t, v) + a1 · g(t, v)2 = 0.

This prescribes a1 uniquely for v varying in the set Z ′ ⊂ V ′
d ∩ Sd defined by

Z ′ = {v ∈ V ′
d ∩ Sd, f(t, v) ∈ (g(t, v)2)},

where (g(t, v)2) denotes the ideal of K[[t]] generated by g(t, v)2. Indeed, for these
v we have a1 = −f(t, v)/g(t, v)2. From all this we conclude that

Y(f) ∩ Sd
∼= Z ′ × (t) ·K[[t]]m−1.

This is the product decomposition asserted in the theorem. �

Remark. From a differential-geometric viewpoint, the preceding proof admits the
following interpretation. The first version of the lemma yields a decomposition
of power series vectors y(t) into pairs (v(t), a(t)) so that the map f∞ becomes a
map of constant rank in a, for each v. Composing it with a suitable isomorphism,
its fibers are shown to form a bundle over the space of v’s. The second lemma
defines a more refined decomposition which directly produces a trivial bundle, i.e.,
a cartesian product.

From the factorization theorem we immediately get the following.

Corollary. In one variable t, analytic and algebraic Artin approximation holds.

Proof. All isomorphisms appearing in the preceding construction restrict equally
to the spaces of convergent or algebraic power series. The second component v is
not affected by these restrictions since the components of v are polynomials. The
existence of a formal solution ŷ(t) of f(t, y) = 0 is equivalent, by the above, to say-
ing that the image (â(t), v̂(t)) of ŷ(t) has second component v̂(t) so that the fiber of

Ûd above v̂(t) is nonempty. But v̂(t) is a polynomial, so we may equivalently write
v(t) for v̂(t). As the fiber above v(t) is an ideal generated by convergent, respec-
tively algebraic, power series when f(t, y) is convergent, respectively algebraic, the
intersection of the fiber with the space of convergent, respectively algebraic, power
series is also nonempty. So we find a convergent a(t) in the fiber above v(t). Going
backwards, the convergent solution y(t) to f(t, y) = 0 is found. As all maps are
continuous in the Krull topology, we also get the density statement. �
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Études Sci. Publ. Math. 36 (1969), 23–58. MR0268188
[Be] J. Becker, A counterexample to Artin approximation with respect to subrings, Math.

Ann. 230 (1977), no. 2, 195–196, DOI 10.1007/BF01370664. MR0480508

http://www.ams.org/mathscinet-getitem?mr=1191901
http://www.ams.org/mathscinet-getitem?mr=3134685
http://www.ams.org/mathscinet-getitem?mr=0176482
http://www.ams.org/mathscinet-getitem?mr=0242802
http://www.ams.org/mathscinet-getitem?mr=0242802
http://www.ams.org/mathscinet-getitem?mr=1148270
http://www.ams.org/mathscinet-getitem?mr=0232018
http://www.ams.org/mathscinet-getitem?mr=0268188
http://www.ams.org/mathscinet-getitem?mr=0480508


36 HERWIG HAUSER

[BDLv] J. Becker, J. Denef, L. Lipshitz, and L. van den Dries, Ultraproducts and ap-
proximations in local rings. I, Invent. Math. 51 (1979), no. 2, 189–203, DOI
10.1007/BF01390228. MR528023

[BD] C. Banderier and M. Drmota, Formulae and asymptotics for coefficients of
algebraic functions, Combin. Probab. Comput. 24 (2015), no. 1, 1–53, DOI
10.1017/S0963548314000728. MR3318039

[BH] C. Bruschek and H. Hauser, Arcs, cords, and felts—six instances of the lineariza-

tion principle, Amer. J. Math. 132 (2010), no. 4, 941–986, DOI 10.1353/ajm.0.0134.
MR2663645

[BK] A. Bouthier, D. Kazhdan, Faisceaux pervers sur les espaces d’arcs I: Le cas d’égales
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[Pol] G. Pólya, Sur les séries entières, dont la somme est une fonction algébrique.
L’Enseign. Math. 22 (1921-22), 38-47.

[Qu] R. Quarez, The Artin conjecture for Q-algebras, Rev. Mat. Univ. Complut. Madrid 10
(1997), no. 2, 229–263. MR1605646

[Ra1] M. Raynaud, Travaux récents de M. Artin (French), Séminaire Bourbaki. Vol. 1968/69:
Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp.
No. 363, 279–295. MR3077132
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