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SYMPLECTIC EMBEDDING PROBLEMS, OLD AND NEW

FELIX SCHLENK

Abstract. We describe old and new motivations to study symplectic embed-
ding problems, and we discuss a few of the many old and the many new results
on symplectic embeddings.
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1. Introduction

Consider Table 1.1 where pk is the percentage of the volume of the box [0, 1]4 ⊂
R4 that can be filled by k disjoint symplectically embedded balls of equal radius.
What does symplectic mean? Why do we care about knowing these numbers? How
can one find them? How can one understand them? The first goal of this text is to
answer these questions.

Table 1.1

k 1 2 3 4 5 6 7 � 8

pk
1
2 1 2

3
8
9

9
10

48
49

224
225 1
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Symplectic geometry arose as the geometry of classical mechanics, but nowa-
days sits like a somewhat mysterious spider in the center of a spectacular web of
links, interactions, and cross fertilizations with many other fields, among them al-
gebraic, complex, contact, convex, enumerative, Kähler, Riemannian, and spectral
geometry,1 dynamical systems (Hamiltonian dynamics, ergodic theory, mathemat-
ical billiards), Lie theory, nonlinear functional analysis, PDEs, number theory and
combinatorics. Symplectic embeddings of simple shapes, such as (collections of)
balls, ellipsoids, and cubes, lie at the heart of symplectic geometry ever since Gro-
mov’s seminal Nonsqueezing Theorem from 1985. Symplectic embedding results
give a feeling for what symplectic means, and together with the techniques used
in their proofs lead to new connections to other fields, including those mentioned
above. After a very fruitful decade of research starting around 1989, not too much
happened in the subsequent decade. But since 2008 there has been much progress
in old and new questions on symplectic embeddings.2 This “third revolution” was
instigated by two ingenious constructions by Guth [51] and McDuff [79]. The sec-
ond goal of this text is to describe these and a few other highlights among the many
new advances on symplectic embeddings.

In the rest of this introduction we describe the solutions of the three problems

(1.1) E(1, a)
s
↪→ Z4(A), E(1, a)

s
↪→ C4(A), E(1, a)

s
↪→ T

4(A)

that will serve as a guiding thread through the text. For this we set some notation
used throughout.

Notation. The standard symplectic vector space of dimension 2n is R2n endowed
with the constant differential 2-form

ω0 =
n∑

j=1

dxj ∧ dyj .

A more geometric description of this structure can be found in §2. Open subsets
in R2n are endowed with the same symplectic form. Given two such sets U and V ,
a smooth embedding ϕ : U → V is called symplectic if ϕ∗ω0 = ω0 (again, see §2 for
a more geometric description of this property). We often write U

s
↪→ V instead of

“there exists a symplectic embedding of U into V ”. Whether there exists such an
embedding can be already hard to understand if U and V are a ball, an ellipsoid, or a
polydisc: We denote by D(a) the open disc in R

2 of area a, centred at the origin, and
by P(a1, . . . , an) = D(a1)× · · · ×D(an) the open polydisc in R2n whose projection
to the jth complex coordinate plane {zj = (xj , yj)} is D(aj). A special case is the

cube C2n(a) = P(a, . . . , a). Also write Z2n(a) = D(a)×C
n−1 = P(a,∞, . . . ,∞) for

the symplectic cylinder. Further,

E(a1, . . . , an) =

{
(z1, . . . , zn) ∈ C

n |
n∑

j=1

π|zj |2
aj

< 1

}
denotes the open ellipsoid whose projection to the jth complex coordinate plane
is D(aj). A special case is the ball B2n(a) = E(a, . . . , a) of radius

√
a
π . Finally,

T
4(A) = T

2(A)× T
2(A), where T

2(A) is the torus R2/(AZ⊕ Z) endowed with the
symplectic form dx ∧ dy inherited from R2. It is useful to think of the sets E(1, a),
Z4(A), and C4(A) appearing in (1.1) in terms of their images under the moment

1As Arnold [8, p. 3342] said, “symplectic geometry is all geometry”.
2The book [96] from 2005, for instance, is already completely outdated.
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Figure 1.1. The moment map images of E(1, a), Z4(A), and C4(A)

map μ : C2 → R2
�0, (z1, z2) �→

(
π|z1|2, π|z2|2

)
; see Figure 1.1. The torus T4(A) is a

compactification of C4(A).
The Euclidean volume of U ⊂ R2n is Vol (U) = 1

n!

∫
U
ωn
0 . Since symplectic

embeddings preserve ω0, they also preserve ωn
0 , and so U

s
↪→ V implies Vol (U) �

Vol (V ). We call this condition for the existence of a symplectic embedding the
volume constraint.

We only look at equidimensional embeddings. Symplectic immersions are not
interesting, since all of R2n symplectically immerses into any tiny 2n-ball.3 Sym-
plectic embeddings of domains into manifolds of larger dimensions are also flexi-
ble [36, 47]. (On the other hand, Lagrangian embeddings lead to many interesting
problems; see, e.g., [82, 83].)

The main results explained in this text are the solutions of the three prob-
lems (1.1). The solutions are described in Theorems 1.1, 1.2, and 1.3 below, and
the proofs are outlined in Sections 6–9.

1. E(1, a)
s
↪→ Z4(A) (Total rigidity). Consider the problem E(a1, a2)

s
↪→ Z4(A).

By this we mean that a1, a2 are given, and we look for the smallest A such that a
symplectic embedding exists. The coordinate permutation z1 ↔ z2 is symplectic,
and the conjugation of a symplectic embedding by a dilation is symplectic. We
thus lose nothing by looking at the special case E(1, a)

s
↪→ Z4(A) with a � 1 given.

The very first obstruction to symplectic embeddings beyond a volume constraint
was found by Gromov [46].

Nonsqueezing Theorem 1.1. B2n(1)
s
↪→ Z2n(A) only if A � 1.

The identity embedding is thus already the best possible symplectic embedding
for the problem B2n(1)

s
↪→ Z2n(A)! This result is the most basic expression of

what is called symplectic rigidity. Since B4(1) ⊂ E(1, a) ⊂ Z4(1), it follows that
E(1, a)

s
↪→ Z4(A) if and only if A � 1.

3Indeed, take a smooth bijection f : R → (0, ε) with positive derivative. Then (x, y) �→(
x/f ′(y), f(y)

)
symplectomorphically maps R2 to the band R × (0, ε), which can be wrapped

into the disc of diameter 2ε. Now take the n-fold product.
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The symplectic nonsqueezing phenomenon was first suggested by Fefferman in
his inspired text [40, p. 191], in which he proposed a link between symplectic
embeddings of cubes and the eigenvalues of differential operators.4

Let us see why the Nonsqueezing Theorem is a difficult result. If we would ask
the problem B2n(1) ↪→ Z2n(A) for Euclidean embeddings, then the answer “only
if A � 1” would be obvious, since a Euclidean embedding is the composition of a
rotation (that leaves B2n(1) invariant) and a translation (that does not help). But
the set of symplectic embeddings B2n(1) ↪→ Z2n(A) forms an infinite-dimensional
space: every compactly supported function H : R2n × [0, 1] → R gives rise to such
an embedding, namely the time-1 map ϕH of the flow generated by the (possibly
time-dependent) Hamiltonian vector field XH = −J0∇Ht; see §3. Here, J0 is
the standard complex structure on Cn. Determining the map ϕH from such a
function H is impossible in general.

Gromov found the obstruction A � 1 by using a generalization of holomorphic
curves: assume that ϕ : B2n(1)

s
↪→ Z2n(A) = D(A) × Cn−1. We first assume that

ϕ also preserves the standard complex structure J0 of Cn.5 Let Dz0(A) = D(A)×
{z0} be the disc that contains ϕ(0). Then S := ϕ−1

(
ϕ(B2n(1)) ∩ Dz0(A)

)
is a

proper 2-dimensional complex submanifold of B2n(1) passing through the origin;
see Figure 1.2. Hence the Euclidean area of S is at least 1, by the Lelong inequality
or by the monotonicity formula for minimal surfaces. Using also ϕ∗ω0 = ω0 and
ϕ(S) ⊂ Dz0(A), we find

1 � areaS =

∫
S

ω0 =

∫
S

ϕ∗ω0 =

∫
ϕ(S)

ω0 �
∫
Dz0

(A)

ω0 = A.

Assume now that ϕ is only symplectic. For technical reasons it is better to work
with holomorphic spheres than discs. We thus compactify the disc D(A) to the
round sphere S2(A) with area form ωS2 of total area A, and consider the manifold
M = S2(A)× C

n−1 with the product symplectic form ω = ωS2 ⊕ ω0.
Now let J be an almost complex structure on M (that is, a fiberwise endomor-

phism J of TM with J2 = −id) such that J = ϕ∗J0 on ϕ(B2n(1)) and such that ω
is nonnegative on J-invariant 2-planes in TM . Gromov showed that for (a suitable
choice of) such a J there exists a map u : S2 → M in the homology class [S2(A)×pt]
passing through ϕ(0) such that

(1.2) du ◦ i = J ◦ du,
where i is the usual complex structure on S2. With S := ϕ−1(ϕ(B2n(1)) ∩ u(S2)),
we then find as before

1 � areaS =

∫
S

ω0 =

∫
S

ϕ∗ω0 =

∫
ϕ(S)

ω0 �
∫
u(S2)

ω = A.

Maps u from a Riemann surface to an almost complex manifold (M,J) that
satisfy equation (1.2) are called J-holomorphic curves. We shall discuss Gromov’s
proof of the existence of a J-holomorphic curve u as above in §7. Later on, different
proofs of the Nonsqueezing Theorem were found, some of which are more elementary
than Gromov’s; see for instance [61, §3] and the recent [100]. In general, however,

4He asked whether C4(1)
s
↪→ Z4(A) for some A � 1, and whether Z4(1)

s
↪→ Z4(A) for some

A < 1.
5The reader may have noticed that then ϕ, preserving both ω0 and J0, preserves the Euclidean

metric, whence the theorem is obvious. But let’s overlook this for didactical reasons.
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ϕ
0
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B2n(1)

z0

Cn−1

ϕ(0)

ϕ(S)

ϕ(B2n(1))

D(A)

Figure 1.2. The geometric idea of the proof

J-holomorphic curves are by far the most important tool for establishing rigidity
results on symplectic embeddings, and Gromov’s proof is the model for every such
proof.

By the Nonsqueezing Theorem the function

cEZ(a) = inf
{
A | E(1, a) s

↪→ Z4(A)
}
, a � 1,

is constant equal to 1. This is a spectacular result, but it is “without structure”.
To find more structure on symplectic embeddings, we truncate the target cylinder
to a cube:

2. E(1, a)
s
↪→ C4(A) (The fine structure of symplectic rigidity). This is the

problem of computing the function

cEC(a) = inf
{
A | E(1, a) s

↪→ C4(A)
}
, a � 1.

This time, there is a volume constraint: cEC(a) �
√

a
2 . The Pell numbers Pn and

the half companion Pell numbers Hn are the integers recursively defined by

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2,

H0 = 1, H1 = 1, Hn = 2Hn−1 +Hn−2.
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Figure 1.3. The Pell stairs: the graph of cEP(a) on
[
1, σ2

]
Form the sequence

(γ1, γ2, γ3, . . . ) =

(
P1

H0
,
H2

2P1
,
P3

H2
,
H4

2P3
,
P5

H4
, . . .

)
=

(
1,

3

2
,
5

3
, . . .

)
.

This sequence converges to σ√
2
, where σ := 1 +

√
2 is the Silver Ratio. Define the

Pell stairs as the graph on [1, σ2] alternatingly formed by a horizontal segment
{a = γn} and a slanted segment that extends to a line through the origin and
meets the previous horizontal segment on the graph of the volume constraint

√
a
2 ;

see Figure 1.3. The coordinates of all the nonsmooth points of the Pell stairs can
be written in terms of the numbers Pn and Hn.

Theorem 1.2 (Pell stairs, [42]).

(i) On the interval
[
1, σ2

]
the function cEC(a) is given by the Pell stairs.

(ii) On the interval
[
σ2, 1

2 (
15
4 )2

]
we have cEC(a) =

√
a
2 except on seven disjoint

intervals where cEC is a step made from two segments. The first of these
steps has edge at (6, 74 ) and the last at (7, 158 ).

(iii) cEC(a) =
√

a
2 for all a � 1

2 (
15
4 )2.

Part (i) thus says that for a � σ2, the answer is given by a completely regular
staircase. By part (ii) there are a few more steps in the graph, but then by part
(iii) for a � 1

2 (
15
4 )2 = 7 1

32 there is no other obstruction than the volume constraint.
The first part of this answer (cEC(a) = 1 for a ∈ [1, 2]) still comes from the

Nonsqueezing Theorem because C4(A) ⊂ Z4(A). But the next steps in the graph
of cEC are smaller and smaller, and eventually there are no further steps; that is,
the embedding problem becomes flexible. This subtle transition from rigidity to
flexibility is an example for the “fine structure of symplectic rigidity”.

It’s quite a long way from the Nonsqueezing Theorem to Theorem 1.2: the

first step is the solution of the ball packing problem
∐k

i=1 B
4(ai)

s
↪→ C4(A) that

started with [81] in 1994, and the second step is the translation of the problem
E(1, a)

s
↪→ C4(A) to a ball packing problem [79] in 2009 (cf. §6). A first infinite
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staircase, which is determined by odd-index Fibonacci numbers, was then found
in [84] for the problem E(1, a)

s
↪→ B4(A). The proof of Theorem 1.2 and of one

more result on the fine structure of symplectic rigidity is explained in §8.1. As
in the proof of the Nonsqueezing Theorem, the embedding obstructions in these
results come from certain J-holomorphic spheres, which this time live in multiple
blowups of the complex projective plane. More surprisingly, J-holomorphic curves
are also the key tool to show that these obstructions are sharp, i.e., to prove the
existence of certain symplectic embeddings (cf. §7).

Theorem 1.2 from 2011 explains the packing numbers in Table 1.1 found in 1996
in [11]. To see this, first note that the open square ]0, 1[2⊂ R2 is symplectomorphic
to the disc D(1), and so the open box ]0, 1[4 ⊂ R4 is symplectomorphic to C4(1).
For k ∈ N, define the number

ck(C
4) = inf

{
A

∣∣∣∣ ∐
k

B4(1)
s
↪→ C4(A)

}
,

where
∐

k B
4(1) denotes any collection of k disjoint balls B4(1) in R

4. One readily
checks that these numbers are related to the packing numbers pk in Table 1.1 by
c2k(C

4) = k
2pk

. Table 1.1 thus translates to Table 1.2.

Table 1.2

k 1 2 3 4 5 6 7 � 8

ck(C
4) 1 1 3

2
3
2

5
3

7
4

15
8

√
k
2

The key point is now that
∐

k B
4(1)

s
↪→ C4(A) if and only if E(1, k)

s
↪→ C4(A), that

is, ck(C
4) = cEC(k) for all k ∈ N; see §6.2. In other words, the ball packing problem∐

k B
4(1)

s
↪→ C4(A) is included in the 1-parametric problem E(1, a)

s
↪→ C4(A).

Hence Theorem 1.2 implies Table 1.2.

3. E(1, a)
s
↪→ T

4(A) (Total flexibility). We can compactify the cube C4(A) to
both S2(A)× S2(A) and T4(A). It follows from the proof of Theorem 1.2 that the
embedding problems E(1, a)

s
↪→ C4(A) and E(1, a)

s
↪→ S2(A)×S2(A) are equivalent.

For the second compactification, however, essentially all rigidity beyond the volume
constraint disappears:

Theorem 1.3 ([37, 70]). E(1, a)
s
↪→ T

4(A) whenever Vol(E(1, a)) < Vol(T4(A)).

The main reason for this phenomenon is that there are no J-holomorphic spheres
in T4. The proof nonetheless uses a deep understanding of holomorphic curves in
tori; see §9. As we shall also see in §9, symplectic embeddings of ellipsoids into
tori are, contrary to what Theorem 1.3 suggests, much less flexible than volume-
preserving embeddings.

Summary. Theorems 1.1, 1.2, and 1.3 exhibit the many forms of rigidity for sym-
plectic embeddings: total rigidity, a subtle transition from rigidity to flexibility,
and seemingly total flexibility under which other forms of rigidity are hidden.

In the recent study of symplectic embedding problems, unexpected algebraic,
combinatorial, and numerical structures and questions appear: “perfect” solutions
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to certain Diophantine systems that correspond to special holomorphic spheres in
blowups of the complex projective plane ([84] and §8.1); the Cremona and Picard–
Lefschetz transformations [26,84]; continued fraction expansions (§6.2) and a vari-
ant of the Hirzebruch–Jung resolution of singularities ([79] and §8.1); Fibonacci
and Pell numbers with ratios converging to the Golden and Silver Means [42, 84];
elementary but intricate combinatorial problems and discrete isoperimetric inequal-
ities [62,64]; relations to the lengths of closed billiard orbits [45]; Fourier–Dedekind
sums and new examples of lattice point counting functions with period collapse [27],
and the dawning of an irrational Ehrhart theory [28]; Newton–Okounkov bod-
ies [39]; a link to the Mahler conjecture from convex geometry asking for the min-
imal volume of K ×K◦, where K◦ is the polar body of the convex body K ⊂ R

n

[10]; etc. At the time of this writing it is not clear which of these structures and
connections are superficial and which will lead to deeper results. At any rate, we
find them fascinating and refreshing.

This text only touches upon a few of these connections and a few of the new
results on symplectic embeddings. Among the unforgivable omissions are the break-
through in the problem of ball packing stability in higher dimensions by Buse and
Hind [17,18] and Hutchings’s ECH capacities [62], which form a whole sequence of
symplectic embedding invariants of 4-dimensional domains, that provide a complete
set of obstructions for many embedding problems. Excellent surveys on ECH ca-
pacities are [63,64], and a quite comprehensive survey on the new results produced
by the third revolution is [98].

Structure of the text. In the next section we give a very geometric definition of
symplectic. In §3 we recall the origins of symplectic geometry in classical mechanics
and give a few examples useful later on (the harmonic oscillator, the pendulum,
and Moser’s regularization of the planar Kepler problem). In §4 we give various
motivations for studying symplectic embedding problems that are maybe more
entertaining than the other sections. In §5 we compare these problems with their
neighbors: Euclidean and volume-preserving embedding problems. The next four
sections describe the proofs of the three main results: In §6 we clarify Figure 1.1
and explain the canonical decomposition of an ellipsoid into balls, which is used in
§8 to prove Theorem 1.2 and its extension to the problem E(1, a)

s
↪→ P(A, bA). In

§7 we complete Gromov’s proof of the Nonsqueezing Theorem and further describe
the role of J-holomorphic curves for symplectic embedding problems. In §9 we
discuss the proof of Theorem 1.3. Finally, §10 explains Guth’s result that there
are no intermediate symplectic capacities, and its variant on the nonexistence of
intermediate shadows, that sheds light on the Nonsqueezing Theorem from yet
another angle.

2. Meanings of “symplectic”

Since already “Hamiltonian mechanics cannot be understood without differential
forms” [7, p. 177], we start with the classical

Definition 1 (Differential forms). A symplectic structure on a smooth manifold M
is a nondegenerate closed 2-form ω.6 A symplectomorphism ϕ of (M,ω) is a diffeo-
morphism preserving this structure: ϕ∗ω = ω.

6Nondegenerate means that ωx(u, v) = 0 for all v ∈ TxM implies u = 0, and closed means that
the exterior derivative vanishes, dω = 0.
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+ −

Figure 2.1. The sign of the signed area of an embedded closed
curve in R

2

This definition may not be very appealing at first sight.7 We thus give a more
geometric definition. Let γ be a closed oriented piecewise smooth curve in R2. If γ is
embedded, assign to γ the signed area of the disc D bounded by γ, namely area(D)
or − area(D), as in Figure 2.1. If γ is not embedded, successively decompose γ into
closed embedded pieces, as illustrated in Figure 2.2, and define A(γ) as the sum of
the signed areas of these pieces.

Figure 2.2. Splitting a closed curve into embedded pieces

Definition 2 (Signed area of closed curves). The standard symplectic structure
of R2n is the map

A(γ) =
n∑

i=1

A(γi), γ = (γ1, . . . , γn) ⊂ C
n.

A symplectomorphism ϕ of R2n is a diffeomorphism that preserves the signed area
of closed curves,

A(ϕ(γ)) = A(γ) for all closed curves γ ⊂ R
2n.

A symplectic structure on a manifold M is an atlas whose transition functions are
(local) symplectomorphisms, and a symplectomorphism of M is then a diffeomor-
phism that preserves this local structure.

The standard symplectic structure of R2n is thus given by assigning to a closed
curve γ the sum of the signed areas of the projections of a disc spanning γ onto
the n coordinate planes R2(xi, yi). And a symplectic structure on a manifold is a
coherent way of assigning a signed area to sufficiently local closed curves.

Definitions 1 and 2 are equivalent because for an oriented smooth disc D ⊂ R2n

with oriented boundary γ = (γ1, . . . , γn) and with Πi : C
n → C(zi) the projection

on the ith coordinate,

(2.1)

∫
D

ω0 =
n∑

i=1

∫
D

dxi ∧ dyi =
n∑

i=1

∫
ΠiD

dxi ∧ dyi =
n∑

i=1

A(γi) = A(γ),

7In particular not to students at universities where both classical mechanics and exterior
calculus have been removed from the syllabus.
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and because a symplectic structure on a manifold (in Definition 1) is the same thing
as an atlas whose transition functions are local symplectomorphisms of R2n, by

Darboux’s Theorem 2.1. Around every point of a symplectic manifold (M,ω)
there exists a coordinate chart ϕ such that ϕ∗ω0 = ω.

The author learned Definition 2 from [7, §44 D] and [59]. In many texts, such
as Arnold’s book [7], the quantities A(γ) are called Poincaré’s relative integral in-
variants. The invariance of A(γ) under Hamiltonian flows was known to Lagrange,
who also knew of Hamilton’s equations, the symplectic form, and Darboux’s theo-
rem; see [6, p. 273] and [75,99]. This is in accordance with Arnold’s Principle that
mathematical results are almost never called by the names of their discoverers.

Examples of symplectic manifolds are the following: any surface endowed with
an area-form; products thereof, such as the torus T2n = R2n/Z2n with the symplec-
tic structure induced by ω0; the complex projective space CPn endowed with the
Study–Fubini form ωSF (namely the U(n+1)-invariant Kähler form that integrates
to π over a complex line CP1), and, more generally, Kähler manifolds.

Basic facts in symplectic geometry, including Theorem 2.1, are covered in the
classic textbooks by Abraham and Marsden [4], Hofer and Zehnder [61], and McDuff
and Salamon [82]. The encyclopedic [4] contains many explicit and basic examples,
and while the focus of [61] is more on dynamics, that of [82] is more on topol-
ogy. Our text is on symplectic embeddings. This is just one of many topics in
symplectic geometry (but one connected to many other topics inside and outside
symplectic geometry; see the end of the introduction and §4). Among the sur-
vey articles on different aspects of symplectic geometry are Weinstein’s early [102],
Eliashberg’s survey on symplectic flexibility [34], and Pelayo’s survey on symplectic
symmetries [88].

Etymology. The word symplectic was coined by Hermann Weyl in his book [103,
p. 165] as the Greek form of “com-plex”.8 Literally, συμπλεκτ óς means twined
together. This was a felicitous choice, given the central position that symplectic
geometry nowadays takes in a large web of mathematical theories.

3. From Newtonian mechanics to symplectic geometry

Since Felix Klein’s 1872 Erlanger Programme we are used to studying a geometry
by its automorphism group, and we often put the group in front of the geometry
it defines. For symplectic geometry this is even the course history has chosen:
symplectic geometry emerged as the geometry defined by symplectic mappings that
arose as the time-t maps of Hamiltonian flows and as the diffeomorphisms, which
leave Hamilton’s equations invariant.

Consider a particle moving in R
n, subject to a potential force ∇Vt(x) that may

depend on time. Here, n may be large, since by “a particle” we mean k particles in
the plane R2 or in space R3, and then n = 2k or n = 3k. According to Newton’s
law, the evolution curve x(t) of our particle (whose masses are scaled to 1) satisfies
the second-order ordinary differential equation on R

n

ẍ(t) = ∇Vt(x(t)).

8“The name ‘complex group’ formerly advocated by me [. . .] has become more and more
embarrassing through collision with the word ‘complex’ in the connotation of complex number. I
therefore propose to replace it by the corresponding Greek adjective ‘symplectic’.”
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There is nothing peculiarly geometric about this equation. But now convert this
second-order equation into a first-order differential equation (i.e., a vector field)
on R

2n, {
ẋ(t) = y(t),

ẏ(t) = ∇Vt(x(t))

and introduce the function Ht(x, y) =
1
2‖y‖2 − Vt(x) on R× R2n to obtain

(3.1)

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) =

∂Ht

∂y
(x(t), y(t)),

ẏ(t) = −∂Ht

∂x
(x(t), y(t)).

The whole evolution is thus determined by a single function Ht, that for fixed t
represents the total energy. The beautiful skew-symmetric form of this system leads
to a geometric reformulation. Recall that the differential 2-form

ω0 =
n∑

i=1

dxi ∧ dyi

on R
2n is nondegenerate: ω0(u, v) = 0 for all v ∈ R

2n implies u = 0. Hence, with
z = (x, y) ∈ R2n, the equation

(3.2) ω0(XHt
(z), ·) = dHt(z)

defines a unique time-dependent vector field XHt
on R2n, and one sees that XHt

=(
∂Ht

∂y ,−∂Ht

∂x

)
. Hence the flow of XHt

yields the solution curves of (3.1).

The coordinate-free reformulation (3.2) of Hamilton’s equations (3.1) by means
of the symplectic form ω0 has the advantage that it generalizes to symplectic mani-
folds (M,ω): Given a smooth function H : R×M → R (the Hamiltonian function),
the vector field XHt

is defined by ω(XHt
, ·) = dHt(·), and its flow ϕt

H is called the
Hamiltonian flow of H. A diffeomorphism of M is said to be Hamiltonian if it is of
the form ϕt

H .

Lemma 3.1. Hamiltonian diffeomorphisms are symplectic.

Proof. d
dt (ϕ

t
H)∗ω = (ϕt

H)∗LXH
ω = 0 since by Cartan’s formula,

LXH
ω = (dιXH

+ ιXH
d)ω = d(dH) + 0 = 0. �

The Hamiltonian reformulation of Newtonian (and Lagrangian) mechanics has
very many advantages; see [7, p. 161]. For us, the key advantage is that the Hamil-
tonian formulation leads to a profound geometrization of classical mechanics. The
first two simple but important examples for this are:

Preservation of energy. If H does not depend on time, then H is constant along
the flow lines.

Proof. d
dtH(ϕt

H(x)) = dH(XH(ϕt
H(x))) = ω(XH , XH) ◦ ϕt

H(x) = 0. �

Recall that the volume of an open set U in (M,ω) is defined as Vol (U) =
1
n!

∫
U
ωn.
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Liouville’s theorem. The volume in phase space is invariant under Hamilton-
ian flows: Vol (ϕt

HU) = Vol (U) for every (possibly time-dependent) Hamiltonian
function H, every open set U , and every time t.

Proof. By Lemma 3.1, ϕt
H is symplectic, and ϕ∗(ωn) = (ϕ∗ω)n = ωn for any

symplectomorphism.9 �

But note that preserving the 2-form ω is a much stronger requirement than pre-
serving just the volume form ωn, as the Nonsqueezing Theorem illustrates. (All
of R2n can be mapped to Z2n(1) by a volume-preserving embedding.) The transfor-
mations underlying Hamiltonian dynamics are thus much more special than those
underlying (smooth) ergodic theory.

Example 3.2 (Harmonic oscillators). One of the simplest Hamiltonian systems
is the harmonic oscillator H(x, y) = 1

2 (x
2 + y2), corresponding to the differential

equation

(3.3)

{
ẋ(t) = y(t),

ẏ(t) = −x(t)

with initial conditions (x(0), y(0)) = (x0, y0) ∈ R2. In complex notation z = x+ iy,
this becomes H(z) = 1

2 |z|2 and ż(t) = −i z(t) with z(0) = z0 ∈ C. The solu-

tion is z(t) = e−itz0; that is, all solutions turn in circles with the same period 2π
and frequency 1. For Hω(z) = ω

2 |z|2 the solutions are z(t) = e−iωtz0 with fre-
quency ω. These systems describe, for instance, the oscillation of a spring, accord-
ing to Hooke’s law.

Now consider two independent harmonic oscillators Hω1
and Hω2

. These two
systems can be described by the single system H(z1, z2) = Hω1

(z1) + Hω2
(z2)

on C2. The solutions (z1(t), z2(t)) = (e−iω1tz1(0), e
−iω2tz2(0)) are all periodic if

ω1

ω2

is rational; otherwise, the only periodic solutions are the origin and the solutions
(e−iω1tz1, 0) and (0, e−iω2tz2) in the coordinate planes. The energy level

H(z1, z2) =
ω1

2
|z1|2 +

ω2

2
|z2|2 = 1

is the boundary of the ellipsoid E(a1, a2) with aj = π
2ωj . For a1 = a2 = π the

above Hamiltonian flow is the (negative) Hopf flow on the unit sphere S3.

Example 3.3 (The pendulum). In suitable units, the differential equation for the
planar pendulum is ẍ(t) = − sinx(t), where now x is the oriented angle from the
negative y-axis. The Hamiltonian is H(x, y) = 1

2y
2−cosx. The linearized equation

of the corresponding Hamiltonian system is the harmonic oscillator (3.3). Near
the stable equilibrium, this yields a good approximation of the Hamiltonian flow
of the pendulum, but away from it this flow is far from a rotation; see Figure 3.1.
Preservation of energy gives the invariant lines 1

2y
2 − cosx = const. But their

parametrization is given by elliptic integrals, and so the flow is hard to understand.
Liouville’s theorem (preservation of area) gives some information. �

By Lemma 3.1, Hamiltonian flow maps are symplectomorphisms. Such maps
arise in Hamiltonian dynamics in yet another way: The group Symp(M,ω) of
symplectomorphisms of (M,ω) is the invariance group of Hamilton’s equations:

9In texts that refuse the use of differential forms, such as [69], one can find long proofs of
special cases of Liouville’s theorem that are hard to understand.
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Figure 3.1. The phase flow of the pendulum (Figure 2.2, p. 173,
from Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geo-
metric numerical integration. Structure-preserving algorithms for
ordinary differential equations, Springer Series in Computational
Mathematics, vol. 31, 2002. With permission of Springer Nature.)

a diffeomorphism ϕ of M satisfies ϕ∗XH = Xϕ∗H for all Hamiltonian functions
H : M → R if and only if ϕ is symplectic. Already for (R2n, ω0), this group is
much larger than the invariance group of Newton’s equation (the isometries of
Rn), and it is also larger than the invariance group of Lagrange’s equation (the
diffeomorphisms ψ of Rn, which correspond to the physical symplectomorphisms of
the form (x,y) �→ (ψ(x), (dψ(x))∗ y)). This larger symmetry group is often useful
to uncover hidden symmetries.

Example 3.4 (Moser regularization). Recall that the planar Kepler problem at
fixed energy has three integrals: the obvious angular momentum and the two com-
ponents of the “hidden” Runge–Lenz vector. Compose the very unphysical sym-
plectomorphism (x,y) �→ (y,−x) of R4 (that up to a sign interchanges positions
and momenta!) with the symplectic embedding R

4 = T ∗
R

2 s
↪→ T ∗S2 induced by

the embedding R2 → S2 given by stereographic projection. This symplectic embed-
ding embeds the Kepler flow at energy − 1

2 into the geodesic flow on the unit-circle
bundle of the round 2-sphere (up to a time-change). A similar construction can be
done at any other negative energy, corresponding to elliptical orbits. The annoying
collision orbits of the Kepler flow are thereby included into a smooth flow, and (at
least the existence of) the Runge–Lenz vector becomes clear, since the geodesic flow
is invariant under the action of the 3-dimensional group SO(3); see [41, 86].

A historical remark. While the founding fathers of Hamiltonian mechanics
clearly knew about the underlying symplectic geometry, they did not bring it out.
For instance Lagrange, a great geometer, completely formalized his geometric in-
sights. In the preface of the first edition of his Méchanique analitique (1788), he
proclaims,

On ne trouvera point de Figures dans cet Ouvrage. Les méthodes
que j’y expose ne demandent ni constructions, ni raisonnements
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géométriques ou mécaniques, mais seulement des opérations algé-
briques, assujetties à une marche régulière et uniforme.”10

The reconstruction of symplectic geometry started only a century later with Poin-
caré and was then further developed by Arnold who introduced many geometric
concepts, such as Lagrangian and Legendrian submanifolds, most prominently in
his books [7, 9].11 Next, Gromov’s introduction of J-holomorphic curves in sym-
plectic manifolds [46] and Floer’s invention of his homology led to a further level
of geometrization, and finally Hofer [58] introduced a bi-invariant Finsler metric
on the group of Hamiltonian diffeomorphisms. The geometrization of classical me-
chanics thus happened at many levels: in the space (symplectic form, Lagrangian
submanifolds, etc.), in the dynamics (Hofer’s metric), and in the tools (J-curves).

4. Why study symplectic embedding problems

In this section we give a few motivations for the study of symplectic embedding
problems. We refer to [13] and [71, §5] for motivations coming from algebraic geom-
etry, and in particular from an old conjecture of Nagata in enumerative algebraic
geometry, which was in turn motivated by Hilbert’s fourteenth problem.

4.1. Numerical invariants and the quest for symplectic links. Symplectic
manifolds have no local invariants by Darboux’s theorem. This is in stark con-
trast to Riemannian geometry, where the curvature tensor gives a whole field of
invariants. Symplectic embedding problems come to a partial rescue, providing nu-
merical invariants. The simplest and oldest of these invariants of a 2n-dimensional
symplectic manifold (M,ω) is the Gromov width

(4.1) cB(M,ω) = sup
{
a | B2n(a)

s
↪→ (M,ω)

}
.

This is a symplectic analogue of the injectivity radius of a Riemannian manifold.
For instance, B4(2) and E(1, 4) are not symplectomorphic because the Gromov
widths are different (namely 2 and 1). The numbers defined by maximal packings
of k equal balls give infinitely many discrete invariants, and symplectic embeddings
of ellipsoids E(1, . . . , 1, a), for instance, provide continuous invariants.

Very often, the appearance of “something symplectic” in a mathematical the-
ory means that a core structure has been found, which better explains the whole
theory and puts it into new contexts. This is the case for classical mechanics (§3)
and quantum mechanics, and for the theory of linear partial differential operators
with variable coefficients [56, §XXI]. Such symplectic underpinnings are usually
found by geometrization and through formal analogies. A more recent way to find
symplectic features and links is more experimental, namely through symplectic em-
bedding problems, whose algebraic, combinatorial, or numerical solutions suggest
new connections (see the list at the end of the introduction).

10No figures will be found in this work. The methods I present require neither constructions
nor geometrical or mechanical arguments, but solely algebraic operations subject to a regular and
uniform procedure.

11As many of us still experienced as students and in Polterovich’s words [90], “before Arnold’s
era, classical mechanics had been a vague subject full of monsters such as virtual displacement”;
see, e.g., [43].
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4.2. Pinpointing the boundary between rigidity and flexibility. The co-
existence of flexibility and rigidity (called soft and hard in [48]) is a particular
and particularly interesting feature of symplectic geometry. Rigidity has many
incarnations: the Arnold conjecture on the number of fixed points of Hamilton-
ian diffeomorphisms,12 C0-rigidity for Hamiltonian diffeomorphisms, Hofer’s met-
ric, the rigidity of the Poisson bracket [91], etc. Flexibility is manifest in several
h-principles, of which new ones have been found recently [34], and in Donaldson’s
theorem on symplectic hypersurfaces [30]. Both rigidity and flexibility are om-
nipresent in symplectic embedding problems. The advantage here is that due to
the fact that embedding problems give rise to numbers, they can quantify sym-
plectic rigidity and flexibility, and localize the boundary between them. In the
Nonsqueezing Theorem there is only rigidity, for the problem E(1, a)

s
↪→ C4(A)

there is a subtle proximity of rigidity and flexibility (§1 and §8.1), and for ball
packings of linear tori there is only flexibility (§9).

4.3. Once again: What does symplectic mean? We are familiar with Eu-
clidean, and hence Riemannian, geometry by evolution and everyday training: We
do feel distances and angles and areas and curvature. To feel at home in the sym-
plectic world takes longer. It is hard to “feel a symplectic form”. The only thing we
can measure here are areas, and a further complication comes from the nonhomo-
geneity of this geometry: While for any two equidimensional linear subspaces V1, V2

of a Euclidean Rd there exists an isometry (rotation) of Rd mapping V1 to V2, there
are very different linear subspaces of (R2n, ω0)—isotropic (on which ω0 vanishes),
symplectic (on which ω0 is nondegenerate), and neither isotropic nor symplectic
ones. A first help may be Definition 2 in §2. The best way to become familiar with
“symplectic” is to study problems in this geometry, or, with Gromov [50]:

Mathematics is about “interesting structures”. What makes a
structure interesting is an abundance of interesting problems; we
study a structure by solving these problems.

Notice how wonderfully efficiently this works for Euclidean geometry: one may
think one knows everything about this geometry, but if one considers Euclidean ball
packing problems (as in §5.1), a whole world of hard and beautiful mathematics
opens up [25]. Similarly, the constant 2-form ω0 on R2n looks rather boring, but
there are very many interesting and subtle problems in this geometry, such as
packing problems.

4.4. What can one do with a Hamiltonian flow? The flow ϕt of a dynamical
system tells us the past and the future z(t) = ϕt(z0) of every initial condition z0.
Assume now that our system is Hamiltonian, ϕt = ϕt

H . If H is autonomous,
then preservation of energy gives much information about the possible positions
of z(t). But often the initial condition z0 can be determined only approximately:
z0 ∈ U for some domain U ⊂ M . One then only knows that z(t) ∈ ϕt

H(U). Since
every map ϕt

H is symplectic by Lemma 3.1, Liouville’s theorem gives a first a priori
information on the set ϕt

H(U). Every symplectic embedding obstruction for U gives
more information.

12Its proof for surfaces by Eliashberg [33] and for tori R2n/Z2n by Conley and Zehnder [24]
were the first results on rigidity.
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Examples 1. Nonsqueezing. If U is a ball B2n(a), then no Hamiltonian flow
map can bring B2n(a) into a cylinder Z2n(A) with A < a by the Nonsqueezing
Theorem 1.1. In other words, no Hamiltonian flow map can improve our knowledge
of the quantity x2

k + y2k for any 1 � k � n.

2. Short term super-recurrence. Let H be a (possibly time-dependent)
Hamiltonian system on R

2n that preserves the ball B2n(1); that is, XHt
is tan-

gent to the boundary of the ball. Then ϕt
H restricts to a flow on B2n(1). Consider

the discrete time system (ϕk)k∈Z on B2n(1), where ϕk := ϕk
H . Take a subset

U ⊂ B2n(1) that is symplectomorphic to a ball B2n(a) with a > 1
2 . What can

we say about the smallest k ∈ N for which ϕk(z) ∈ U for some z ∈ U? Since
2n Vol (U) > Vol (B2n(1)), the sets U,ϕ1(U), . . . , ϕ2n−1(U) cannot be disjoint, say
ϕi(U) ∩ ϕj(U) �= ∅ for some i < j, and so U ∩ ϕj−i(U) �= ∅. Hence the first return
time k1 is � 2n − 1. (This is a baby version of the Poincaré recurrence theorem.)
But in fact U ∩ ϕ(U) �= ∅ by Gromov’s

Two Ball Theorem 4.1. If B2n(a)
∐

B2n(a)
s
↪→ B2n(A), then 2a � A.

Hence k1 = 1. In the same way, any obstruction to symplectically embedding
a domain into a symplectic manifold of finite volume that is stronger than the
volume constraint gives an estimate on the first return time that is better than
the one coming from the volume constraint. For long term super-recurrence, these
bounds for U symplectomorphic to a ball are not better than those from the volume
constraint in view of packing stability—there are constants k0(2n) such that B2n

can be fully filled by k symplectically embedded equal balls for every k � k0(2n);
see [11, 17].

3. Size of wandering domains in T ∗Tn. Consider the cotangent bundle T ∗Tn =
Tn×Rn of the torus Tn = Rn/Zn endowed with the symplectic form inherited from
(R2n, ω0). A wandering domain for a diffeomorphism ϕ of T ∗

T
n is a nonempty open

connected set U such that ϕk(U) ∩ U = ∅ for all k ∈ N. An integrable diffeomor-
phism (i.e., the time-1 map ϕH of a Hamiltonian H on T ∗Tn which depends only
on y ∈ Rn) has no wandering domains, because the Hamiltonian flow of such a
function is linear on each torus Ty = {(x, y) | x ∈ T

n}. On the other hand, there
are arbitrarily small perturbations of such Hamiltonian functions that have wan-
dering domains; see [72]. The size of such a wandering domain U is a measure for
the instability of the flow, and one measure for the size of U is its Gromov width
cB(U). For an arbitrary Hamiltonian diffeomorphism ϕH on T ∗

T
n, the Gromov

width of the complement of the invariant tori of ϕH is thus an upper bound for the
“symplectic size” of any of its wandering domains. The structure of the set of in-
variant tori can be intricate. Following [72, §1.4.2], we therefore consider the model
case in which the only invariant tori for ϕt

H are at the points y ∈ Z
n. Abbreviate

cnB = cB(T
n × (Rn \ Zn)). Of course, c1B = 1. Further, cnB � 2 for n � 2 because

B2n(2)
s
↪→ (0, 1)n ×

◦
�n(2) by the higher-dimensional version of (6.6) and since the

open simplex
◦
�n(2) = {y ∈ Rn | yi > 0,

∑
yi < 2} is contained in Rn \ Zn.

Open Problem 4.2. Compute cnB for n � 2. Is it finite? �
While Hamiltonian diffeomorphisms are symplectic, not every symplectic em-

bedding U
s
↪→ V between open sets in R2n can be realized by a Hamiltonian evolu-

tion. For instance, the annulus D(2) \D(1) is symplectomorphic to the punctured
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disc D(1) \ {0}, by a radial mapping, but no Hamiltonian diffeomorphism of the
plane can take D(2)\D(1) strictly into D(2). For star-shaped domains, “Hamilton-
ian” and “symplectic” nevertheless are essentially the same thing:

Extension after Restriction Principle 4.3 ([32]). Consider a bounded domain
D ⊂ R2n such that λD ⊂ D for all λ ∈ [0, 1), and let ϕ : D → R2n be a symplectic
embedding. Then for every λ ∈ [0, 1) there exists a Hamiltonian diffeomorphism ϕH

of R2n such that ϕH = ϕ on λD.

The proof is a nice application of Alexander’s trick. This principle can be gen-
eralized to finite collections of star-shaped domains; see [97, Proposition E.1].

Summarizing, we see that obstructions to symplectic embeddings provide restric-
tions to Hamiltonian evolutions, while flexibility results for symplectic embeddings
of collections of star-shaped domains yield existence results for Hamiltonian flows
with certain properties.

4.5. A global surface of section for the restricted three-body problem.
Consider the restricted three-body problem, modeling, for instance, the dynamics
of the Earth, the Moon, and a satellite whose mass is neglected. For every energy e
below the first critical value of the corresponding Hamiltonian function H, the
energy surface Σe = {H = e} has three connected components: the bounded
components Σe

E and Σe
M that correspond to the motion of the satellite near the

Earth and the Moon, respectively, and an unbounded component far away from
the Earth and the Moon. The components Σe

E and Σe
M are noncompact because of

collision orbits, but by Levi-Civita regularization (a double cover of a regularization
very similar to the Moser regularization in Example 3.4) they embed, together with

their dynamics, into compact energy surfaces Σ̃e
E and Σ̃e

M in (R4, ω0) that are
diffeomorphic to S3.

Denote by Σ̃e either Σ̃e
E or Σ̃e

M. Birkhoff [14] conjectured around 1915 that the

dynamics on Σ̃e has a disc-like global surface of section, namely an embedded closed

disc D ⊂ Σ̃e bounding a closed orbit γ such that any other orbit on Σ̃e intersects the

interior
◦
D of D infinitely many times in forward and backward time. The existence

of such a surface of section would tremendously improve our understanding of the

Hamiltonian flow ϕt
˜H
on Σ̃e and hence on Σe

E and Σe
M. Indeed, given such a disc D

define the diffeomorphism ϕ :
◦
D →

◦
D by following a point along the solution until

the first time it hits
◦
D again. This Poincaré section map encodes much of the

dynamics of ϕt
˜H
on Σ̃e. For instance, periodic orbits of ϕt

˜H
on Σ̃e different from γ

correspond to the fixed points of ϕ. The map ϕ preserves the area form ω0| ◦
D
.

Hence Brouwer’s translation theorem shows that ϕ has a fixed point, and if ϕ has
yet another fixed point, then it has infinitely many fixed points by a theorem of J.
Franks. It would thus follow that the original flows on Σe

E and Σe
M have either two

or infinitely many periodic or collision orbits.

It was shown in [5] that Σ̃e is star-shaped; i.e., there is a point p in the bounded

domain Ue bounded by Σ̃e such that the straight line from p to q belongs to Ue

for every q ∈ Ue. It is an open problem whether Σ̃e or even every star-shaped
hypersurface in R4 admits a disc-like global surface of section. On the other hand,
such a surface of section exists for every hypersurface in R4 that bounds a strictly

convex domain [60]. We may thus find a disc-like global surface of section for Σ̃e

by solving a symplectic embedding problem: if we can find a symplectic embedding
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ψ : N (Σ̃e) → R4 of a neighborhood of Σ̃e such that ψ(Σ̃e) bounds a strictly convex
domain, then the preimage ψ−1(D) of a disc-like global surface of section D for

ψ(Σ̃e) will be such a surface of section for the flow on Σ̃e. Such an embedding ψ
may be best found by looking for a symplectic embedding ψU : Ue → R4 with a
strictly convex image. While there are obstructions to symplectically mapping a
star-shaped hypersurface to a strictly convex hypersurface (for instance, for every
periodic orbit the “winding number” of nearby orbits must be � 3), no obstruc-

tion is known for Σ̃e. We refer to the forthcoming book [41] for much more on
this and several other classical problems in celestial mechanics in which symplectic
embeddings may prove useful.

4.6. Global behaviour of Hamiltonian PDEs. Consider the periodic nonlinear
Schrödinger equation

(4.2) i ut + uxx + |u|2 u = 0, u(t, x) ∈ C, t ∈ R, x ∈ S1 = R/Z.

Identify L2(S1,C) with �2 = �2(Z,C) via the Fourier transform

u =
∑
k∈Z

ûk e
2πix �→ (ûk)k∈Z

.

Endow �2 with the symplectic form ω that restricts to ω0 on each subspace

{u ∈ �2 | ûk = 0 for |k| > N} ≡ C
2N+1.

There is a symplectic flow ϕt on (�2, ω) such that ϕtu0 = ut for every solution
ut = u(t, x) of (4.2) with initial condition u0 = u(0, ·). Let B(r, u) ⊂ �2 be the
open ball of radius r centred at u, and for each k ∈ Z consider the open cylinder

Zk(R, v) =
{
w ∈ �2 | |ŵk − v̂k| < R

}
.

Theorem 4.4 ([15]). If ϕt(B(r, u)) ⊂ Zk(R, v) for some t ∈ R and some k ∈ Z,
then r � R.

(For u = 0 this follows from the fact that ϕt preserves the L2-norm, but not
otherwise.) For u = v this result says that during the evolution, we cannot obtain a
better determination of the value of a single Fourier coefficient than the one we have
for t = 0, even if we are willing to lose control on the value of all the other Fourier
coefficients. The theorem also shows that ϕt cannot move a ball into a smaller ball
(which is nontrivial in infinite dimensions where there is no Liouville volume), and
so there are no uniform asymptotically stable equilibria. Another application is to
the impossibility of energy transfer from lower to higher modes; see [67].

The investigation of nonsqueezing results for infinite-dimensional Hamiltonian
systems was initiated by Kuksin [67], and by now such results have been obtained
for several classes of nonlinear PDEs [15,16,23,65,67,93]. We refer to [2,23,65] for
excellent short descriptions of these results.

These works all apply Gromov’s finite-dimensional Nonsqueezing Theorem. But
in fact, in all these works the full solution map ϕt is shown to be well approximated
by a finite-dimensional flow constructed by cutting the solution off to frequencies
|k| � N for some large N (see the given references or [98, §16] for the precise
statement). Therefore, many symplectic rigidity results for subsets of R2n that
hold for all large n have an application to the Hamiltonian PDEs considered in
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Figure 4.1. The image of C(r) ⊂ Z�N (r) under the map u �→ (|ûi|, |ûj |)

these papers! For instance, consider the sets

C(r) =
{
u ∈ �2 | |ûk| < r for all k ∈ Z

}
,

Z�N (R) =
{
u ∈ �2 | |ûk| < R for at least one k with |k| � N

}
.

Thus C(r) is a cube in �2, and the projection ZN
�N (R) of Z�N (R) to C2N+1 is the

union
⋃

|k|�N Zk(R, 0) of the coordinate cylinders in C2N+1. Figure 4.1 shows the

image of C(r) and Z�N (r) under the map u �→ (|ûi|, |ûj |), where i, j is any pair of
integers with i, j ∈ [−N,N ].

Consider the translates C(r, u) = C(r) + u and Z�N (R, v) = Z�N (R) + v, and
let ϕt be the time-t map of the symplectic flow ϕt on �2 that describes the global
evolution of (4.2) or of any of the Hamiltonian PDEs studied in [15,16,23,65,67,93].

Theorem 4.5. If ϕt(C(r, u)) ⊂ Z�N (R, v), then r � R.

For u = v this says that for every t ∈ R and ε > 0 and for every N ∈ N there
exists a point x ∈ C(r, u) such that for y = ϕt(x),

|ŷk − ûk| > r − ε for all k with |k| � N .

In other words, none of the quantities

dN (x;u) = min
|k|�N

|x̂k − ûk|, N ∈ N,

can be improved uniformly over C(r, u) by ϕt. In contrast, the Nonsqueezing The-
orem only implies that none of the quantities |x̂k− ûk|, k ∈ Z, can be improved uni-
formly over C(r, u) by ϕt. Or, in terms of Figure 4.1, the projection of ϕt(C(r, u))
to the (|ûi|, |ûj |) quadrant intersects every ε-neighborhood of the unbounded white
quadrant, while the Nonsqueezing Theorem does not exclude that this projection
lies in a tiny neighborhood of the two axes.

The proof of Theorem 4.5 follows from the recent result of Gutt and Hutch-
ings [52] that the cube {z ∈ C

2N+1 | |zk| < r for all k} symplectically embeds into
ZN

�N (R) only for r � R. We refer to [98, §16] for details and for other applications
of symplectic rigidity results to Hamiltonian PDEs.
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4.7. New geometric algorithms from explicit symplectic packings. Eu-
clidean ball packings play an important role for geometric algorithms [53, §2.9].
Can symplectic ball packings play a similar role for algorithmic and combinatorial
problems?

Figure 4.2. Symplectic puzzle pieces

One can think of a ball B4(a) as the product of the simplex �2(a) in R
2(x) and

the unit square �2 in R2(y); see §6. More generally, one can represent a ball B4(a)
by various explicit polygons in the plane [97, §9]. Since the cube C4(1) is symplecto-
morphic to �2(x)×�2(y), packings of �2(x) by k translates of (possibly different)
such polygons thus correspond to a symplectic packing

∐
k B

4(a)
s
↪→ C4(1). A few

such shapes are shown in the left three drawings of Figure 4.2, that realize maximal
packings of the cube C4(1) by k � 5 balls (cf. Table 1.1). These puzzle pieces can
also be broken horizontally and vertically as in the right (enlarged) drawing, which
shows a maximal packing of C4(1) by six balls [104]. The algorithms finding optimal
polygon packings of this kind will be different from those used for Euclidean ball
packings. The construction of such algorithms of reasonably low complexity is a
challenge that may lead to new insights in combinatorial optimization. First steps
were made in [73,104], and better algorithms are under construction by Jünger and
Vallentin in Cologne.

These explicit constructions readily generalize to higher dimensions where ball
packings are much less understood. For instance, it is not known how much of C6

can be filled by k equal symplectic balls if 7 � k � 47.13 Explicit shapes in R3

(such as simplices, octahedra, etc.) may thus be used, directly or by a computer
algorithm, to find good lower bounds for these problems.

5. Euclidean � symplectic � volume preserving

In this section we first compare three ways of packing a box with balls. We then
explain why symplectic packings of all of R2n are not interesting, and finally we
solve the symplectic covering problem.

5.1. Three ways to pack a box. Recall that in R2n translations are symplectic
and symplectic mappings are volume preserving. To see “on which side” symplectic
mappings are, we look at the same problem for all three classes of mappings: Take

13It is known that pk(C
6) = k

6
for k � 6 [66] and that pk(C

6) = 1 for k of the form 6�3 [81] or

for k � k0 with a nonexplicit constant k0 [18].
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the box14 Cd = [0, 1]d in Rd, and for each k ∈ N consider the problem of filling
as much as possible of the volume of Cd by k balls. Here, by “filling” we mean
by Euclidean embeddings (E), symplectic embeddings (S), or volume-preserving
embeddings (V ), and accordingly we define the three packing numbers

pdk,∗ = sup
a

{
kVol Bd(a) |

∐
k

Bd(a)
∗
↪→ Cd

}
,

where ∗ = E, S, or V . In the case ∗ = S we must assume that d is even, of course.
Notice that pdk,S = pk(C

d).
Euclidean embeddings are compositions of rotations and translations, and thus

they are not symplectic, in general. But on balls what matters is only the transla-
tion, and so p2nk,E � p2nk,S for all k, n. Further, pdk,V = 1 for all k, d, as we remember

from the time we played in sandpits or with modeling. (A proof follows readily
from Moser’s trick [85].) Summarizing, we have

(5.1) p2nk,E � p2nk,S � p2nk,V = 1.

The numbers pdk,E are very hard to understand. Already for d = 2, the numbers

p2k,E are known only for k � 30; see [74, 87]. Figure 5.1 shows maximal packings

of the square C2 by k = 7 and k = 10 discs. Note that the first packing has a
symmetry and a free disc, while the second packing has no symmetry.

Figure 5.1. Maximal Euclidean packings of a square by 7 and 10 discs

Anyway, for small k the numbers pdk,E are certainly not too close to 1, and for
large k we have

(5.2) lim
k→∞

pdk,E � (d+ 2)2−(d+2)/2;

see below. In particular, this limit tends to 0 as d → ∞.
On the symplectic side, p2k,S = 1 for all k, since for 2n = 2 symplectic is the same

as volume (and orientation) preserving. The numbers p4k,S are given in Table 1.1.

In general, p2n1,S = 1
n! . (For the lower bound, take the inclusion B2n(1) ⊂ C2n(1)

and note that C2n(1) is symplectomorphic to C2n since a disc is symplectomorphic
to the square of the same area. The upper bound follows from the Nonsqueezing
Theorem.) This is not so far from p2n1,E = (π4 )

n 1
n! . For 2n � 6 the numbers p2nk,S are

not known in general, but by packing stability [18] there are constants k0(2n) such
that p2nk,S = 1 for all k � k0(2n). This is very much larger than p2nk,E for large k

by (5.2).

14A less practical reader may choose the more aesthetical box Bd. This leads to a similar
discussion [96, §9.1.3].
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This pattern occurs for many targets: While for a small number k of balls
there are often packing obstructions, these completely disappear for k large. Hence
for k small the symplectic packing problem often shows some rigidity, like the
Euclidean packing problem, but for large k it resembles the completely flexible
volume-preserving packing problem. In each such example, the transition from rigid
to flexible behavior helps pinpoint the boundary between rigidity and flexibility of
symplectic mappings.

A remarkable difference between Euclidean and symplectic packings is that Eu-
clidean packing numbers are usually only known if a maximal packing is explicitly
found. Whereas given a symplectic packing number, usually no explicit maximal
packing is known. In other words, to know pdk,E , one has to “see” a maximal pack-
ing; whereas for many known symplectic packing numbers nobody has an idea what
a corresponding packing may look like. For exceptions to this rule, see §4.7.

Euclidean packings by balls, ellipsoids, and cubes are related to many branches of
pure and applied mathematics (finite simple groups, quadratic forms, the geometry
of numbers, combinatorics, coding, data transmission and storage, etc.) and to
problems in physics and chemistry [25]. On the other hand, volume packings are
related to nothing, since they are completely flexible. In this regard, the many links
between symplectic packing problems and other fields move symplectic packings
closer to Euclidean packings.

5.2. And the symplectic packing density of R2n? For Euclidean packings,
a different and intensively studied problem is to find the maximal density of ball
packings of all of Rd: For � > 0, let m(�, d) be the maximal number of balls Bd

of radius 1 that one can pack into the cube Id(�) := [−�, �]d. Define the packing
density of Rd by

δd := lim
�→∞

m(�, d)
∣∣Bd

∣∣
|Id(�)| .

The limit exists, and clearly
δd = lim

k→∞
pdk,E .

Then δ1 = 1 of course, δ2 = π√
12

≈ 0.907 (as known to bees and proved by Thue

in 1892), δ3 = π√
18

≈ 0.7405 (as known to fruit sellers, conjectured by Kepler

in 1611, and proved by Hales around 2005). And, by the recent breakthrough due

to Viazovska et al. [22, 101], it is now also known that δ8 = π4

384 ≈ 0.254, attained

by packing R8 by balls whose centers form the E8 lattice{
(x1, . . . , x8) ∈ Z

8 ∪ (Z+ 1
2 )

8 | x1 + · · ·+ x8 ≡ 0 mod 2
}
,

and that δ24 = π12

12! ≈ 0.0019, attained by the Leech lattice. (A very readable

account on this and packings of Rd in general is Cohn’s short survey in the Notices
of the AMS [21].) For all other dimensions d the value of δd is not known. One has
the obvious lower bound 2−d � δd and Blichfeldt’s estimate δd � (d+ 2)2−(d+2)/2

already used in (5.2), and for large d the essentially best upper and lower bounds
are exponentially far apart:

2−d � δd � 2(−0.599+o(1))d.

The symplectic version of this problem is not interesting, because one always gets 1.
This is easy to see for R4, since the cube [0, 1]4 can be fully filled by two symplec-
tically embedded balls of the same size (see the left drawing in Figure 4.2), and it
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follows in all dimensions from

lim
k→∞

p2nk,S = lim
k→∞

pk(C
2n) = 1;

see [81, Remark 1.5.G].

5.3. And covering numbers? Euclidean covering problems are almost as inter-
esting as packing problems [53, Part 3]. The basic problem is to cover a given
bounded set U ⊂ Rd with as few d-balls of radius 1 as possible. Symplectic cov-
ering problems “do not exist”. More precisely, they essentially reduce to the first
packing problem (the computation of the Gromov width) and topological data. To
fix the ideas, we assume that (M,ω) is a closed symplectic manifold of dimension 2n.
How many Darboux charts ϕi : B2n(ai) → (M,ω) does one need to cover M? De-
note the minimal number by β(M,ω). This is the number of pages of the smallest
symplectic atlas for (M,ω). The minimal number β(M) of smoothly embedded
balls needed to cover M is quite well understood:

n+ 1 � cup-length(M) + 1 � β(M) � 2n+ 1

where the cup-length is the length of a longest nonvanishing word α1 · · ·αk ∈
H2n(M ;R) of nonzero degree elements αi of the cohomology ring of M . Fur-
ther, β(M) = n + 1 if M is simply connected, and β(M) = 2n + 1 if the class [ω]
of ω vanishes on all spherical classes in H2(M). For instance, β(S2 × S2) = 3 and
β(T 2n) = 2n + 1. But there is also a symplectic obstruction to efficient coverings,
because if (M,ω) has volume 15, or 15.1, and the largest symplectic ball in (M,ω)
has volume 1, then one needs at least 16 symplectic balls to cover (M,ω). Formally,
set

γ(M,ω) =

⌊
Vol(M,ω)

Vol(B2n(cB))

⌋
+ 1,

where cB is the Gromov width of (M,ω), and where �15.1� = 15 and �15� = 15,
and finally abbreviate Γ(M,ω) = max{β(M), γ(M,ω)}. Then β(M,ω) � Γ(M,ω),
and the following result from [94] says that this is an equality up to a factor of at
most 2.

Theorem 5.1. Assume that (M,ω) is a closed symplectic manifold of dimen-
sion 2n.

(i) If Γ(M,ω) � 2n+ 2, then β(M,ω) = Γ(M,ω).

(ii) If Γ(M,ω) � 2n+ 1, then n+ 1 � Γ(M,ω) � β(M,ω) � 2n+ 1.

Idea of the proof (Gromov). Assume first that Γ(M,ω) � 2n + 1. We then need
to cover M with 2n + 1 Darboux balls. Denote the volume of a Borel set A ⊂ M
by μ(A) = 1

n!

∫
A
ωn. Since γ(M,ω) � Γ(M,ω) � 2n + 1, we find a Darboux chart

ϕ : B2n(a) → B ⊂ M such that

(5.3) μ (B) >
μ(M)

2n+ 1
.

As one knows from looking at a brick wall or from dimension theory, one can find
a cover of M by 2n+ 1 subsets C1, . . . , C2n+1 such that each set Cj is essentially a
disjoint union of small cubes. In view of (5.3) we can assume that μ (Cj) < μ(B)
for each j. We can thus take for each j a Hamiltonian isotopy Φj of M that moves
Cj into B; see Figure 5.2. Then the 2n+ 1 Darboux charts

(Φj)
−1 ◦ ϕ : B2n(a) → M

cover M . If Γ(M,ω) � 2n+2, we do the same, using Γ(M,ω) > 2n+1 sets Cj . �
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Φj

Figure 5.2. The map Φj

Examples 5.2. 1. Let S2(k) be the 2-sphere with an area form of total area k ∈ N.
By the (proof of the) Nonsqueezing Theorem 1.1, B4(a) does not symplectically
embed into S2(1) × S2(k) for a > 1, and B4(1) ⊂ D(1) × D(1)

s
↪→ S2(1) × S2(k).

Hence Γ
(
S2(1)× S2(k)

)
= 2k + 1, and so β(S2(1)× S2(k)) = 2k + 1 if k � 2.

2. The torus T 2n = R2n/Z2n with the usual symplectic form ω0 admits a full
symplectic packing by one ball (see §9), and so β(T 2n, ω0) = 2n+ 1.

6. Symplectic ellipsoids

Symplectic ellipsoids are the main heroes of this story. This is clear for this
text in view of our choice (1.1), but also for other recent advances on symplectic
embeddings, such as packing stability in higher dimensions [17,18] and the connec-
tions between symplectic embedding problems and lattice point counting [27, 28],
ellipsoids play a key role.

By the first drawing in Figure 4.2 and the Pell stairs, the cube C4(1) can be
symplectically fully filled by both

∐
2 B

4(1) and E(1, 2). Similarly, by the second

drawing in Figure 4.2 and the Pell stairs, C4( 32 ) can be symplectically fully filled

by both
∐

4 B
4(1)

∐
2 B

4( 12 ) and E(1, 9
2 ). As we shall see in this section, this is not

a coincidence.
Let E ⊂ Rd be an open ellipsoid, namely E =

{
x ∈ Rd | q(x) < 1

}
, for a positive

definite quadratic form q on Rd. Then there exists an isometry of Rd that maps E
to its normal form {

x ∈ R
d | x2

1

r21
+ · · ·+ x2

d

r2d
< 1

}
with radii r1 � · · · � rd uniquely determined by E. In other words, a Euclidean
ellipsoid in R

d is given, up to isometry, by d positive numbers.
If d = 2n, then there exists a symplectic linear mapping of R2n taking E to

(6.1) E(a1, . . . , an) =
{
z ∈ C

n | π|z1|2
a1

+ · · ·+ π|zn|2
an

< 1
}

with areas a1 � · · · � an uniquely determined by E. In other words, a symplectic
ellipsoid in R2n is given, up to linear symplectomorphism, by just n positive num-
bers; see [61, §1.7] or [82, Lemma 2.4.6]. From now on, a symplectic ellipsoid will
be a set of the form (6.1).

The difference between the Euclidean and symplectic normal form of E ⊂ R2 is
illustrated in Figure 6.1: the ellipsoid E can be rotated so that the coordinate axes
become principal axes, while there exists a linear symplectic mapping (for instance
this rotation composed by a diagonal matrix) that takes E to a disc of the same
area.
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xxx

yyy

E

Figure 6.1. The normal forms of a Euclidean and a symplectic
ellipsoid E ⊂ R2

6.1. Toric pictures. It is very useful to think of E(a1, . . . , an), in terms of an n-
simplex, in two ways. For notational convenience we assume that n = 2. The first
way goes under many names, including symplectic polar coordinates, action-angle
variables, or moment polytope: Consider the map μ : C2 → R2

�0 given by

(6.2) μ(z1, z2) =
(
π|z1|2, π|z2|2

)
.

Then μ(E(a1, a2)) =: �(a1, a2) is the half-open simplex drawn in Figure 6.2. More
precisely, the segments [0, a1) and [0, a2) on the axes belong to �(a1, a2), while the
slanted edge does not. Note that the preimage μ−1(p) of a point in the interior
◦
�(a1, a2) of �(a1, a2) is a 2-torus, while μ−1(p) is a circle for p �= (0, 0) on one of
the axes, and μ−1(0, 0) = (0, 0) is a point.

Let W =
{
(z1, z2) ∈ C

2 | z1 = 0 or z2 = 0
}
, and let T 2 = R

2/Z2. The map

(z1, z2) �→ (μ(z1, z2), θ1, θ2) restricts to a diffeomorphism Φ: C2 \W → R
2
>0 × T 2.

With coordinates (A1, A2) = (πr21, πr
2
2) on R2

>0, its inverse is given by

(6.3) Φ−1(A1, A2, θ1, θ2) =

(√
A1

π e2πiθ1 ,
√

A2

π e2πiθ2
)
,

and if we endow R
2
>0 × T 2 with the symplectic form

∑
j dAj ∧ dθj , then Φ is a

symplectomorphism. Summarizing, we have that
◦
�(a1, a2)× T 2 s

↪→ E(a1, a2).(6.4)

The second way is to view the ellipsoid E(a1, a2) as
◦
�(a1, a2) × �2, where

�2 = (0, 1)2 ⊂ R2(y1, y2). For this, we follow [96, §3.1] and construct for a > 0
an area- and orientation-preserving embedding σa of the disc D(a) ∈ C into the

a1

a2

A1

A2

Figure 6.2. The moment polytope �(a1, a2) of E(a1, a2)
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z

σa x

y

1

a

Figure 6.3. The embedding σa : D(a) → (0, a)× (0, 1)

rectangle (0, a)× (0, 1) as in Figure 6.3, namely

x(σa(z)) � π |z|2 for all z ∈ D(a).

Here we denote by � an inequality that holds up to a mistake that can be made
arbitrarily small. For (z1, z2) ∈ E(a1, a2), we now find

1
a1

x1(σa1
(z1)) +

1
a2

x2(σa2
(z2)) � π|z1|2

a1
+ π|z2|2

a2
< 1,

and so the product map σa1
×σa2

essentially embeds E(a1, a2) into
◦
�(a1, a2)×�2.

Note that if we choose σa such that the segment
(
−
√

a
π , 0

)
×{0} is mapped to the

segment (0, a)× { 1
2}, then for most points z ∈ E(a1, a2), the points (σa1

× σa2
)(z)

and Φ−1(z) are very close.
Summarizing, we have

E(a1, a2)
s
↪→ λ

◦
�(a1, a2)× �2 for all λ > 1.(6.5)

The exhaustion technique from [89] now implies that such an embedding even exists
for λ = 1:

E(a1, a2)
s
↪→

◦
�(a1, a2)× �2.(6.6)

Remark 6.1. The same constructions show that (6.4) and (6.6) hold for all n � 2.

But for n = 2, the sets E(a1, a2) and
◦
�(a1, a2) × �2 are in fact symplectomor-

phic. This follows from the embeddings (6.5) and from the result in [79] that in
dimension 4 the space of symplectic embeddings of a closed ellipsoid into an open
ellipsoid is connected; cf. [70, Lemma 4.3]. �

As an application we show that

(6.7)
∐
2

B4(1)
∐
2

B4( 12 )
s
↪→ E( 52 , 1).

Let �1,�2,�3 ⊂
◦
�(1, 5

2 ) be the open triangles in Figure 6.4. In view of (6.6)
and (6.4), it suffices to show that

◦
�(1, 1)× �2 s

↪→ �i × T 2 for i = 1, 2 and
∐
2

◦
�( 12 ,

1
2 )× �2 s

↪→ �3 × T 2.

For
◦
�(1, 1)× �2 s

↪→ �1 × T 2, we take the inclusion. Note that for every invertible
matrix A on R2 the product ϕA := A × (AT )−1 is a symplectic transformation of
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1

1 2 5
2

�1 �2 �3

x1

x2

Figure 6.4. The simplices �1,�2,�3 ⊂ �( 52 , 1)

R2(x) × R2(y). The matrix A =
[
1 −1
0 1

]
takes

◦
�(1, 1) to a translate of �2, and

the composition of (AT )−1 =
[
1 0
1 1

]
∈ SL(2;Z) with the projection R2(y) → T 2

embeds �2 into T 2. Hence ϕA, followed by a translation in R2(x), symplectically

embeds
◦
�(1, 1) × �2 into �2 × T 2. In the same way, we construct an embedding∐

2

◦
�( 12 ,

1
2 ) × �2 s

↪→
◦
�(1, 1

2 ) × T 2, and this set maps symplectomorphically to a

translate of �3 × T 2 by ϕA with A =
[−2 1

1 0

]
.

6.2. Cutting ellipsoids into balls. The previous construction can be interpreted
as cutting E( 52 , 1) into the four balls

∐
2 B

4(1)
∐

2 B
4( 12 ); see Figure 6.5. More

generally, every ellipsoid E(a, 1) has a canonical ball decomposition: Define the
weight expansion w(a) of a positive rational number a as the finite decreasing
sequence

w(a) :=
(
1, . . . , 1︸ ︷︷ ︸

�0

, w1, . . . , w1︸ ︷︷ ︸
�1

, . . . , wN , . . . , wN︸ ︷︷ ︸
�N

)
≡
(
1×�0 , w×�1

1 , . . . , w×�N
N

)
such that w1 = a − �0 < 1, w2 = 1 − �1w1 < w1, and so on. Thus w(2) =
(1, 1) =: (1×2),

(6.8) w
(
9
2

)
=
(
1×4, ( 12 )

×2
)
, w

(
99
17

)
=
(
1×5, ( 1417 )

×1, ( 3
17 )

×4, ( 2
17 )

×1, ( 1
17 )

×2
)
.

s
=

=s

5
2

"

"

–

1

Figure 6.5. Cutting E( 52 , 1) into
∐

2 B
4(1)

∐
2 B

4( 12 )
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The multiplicities �i of w(a) give the continued fraction expansion of a. For in-
stance,

9
2 = 4 + 1

2 ,
99
17 = 5 +

1

1 + 1
4+ 1

1+ 1
2

.

The weight vector w(a) tells us how to decompose E(a, 1) into balls: First cut
off �0 = �a� balls B4(1) from E(a, 1). The remaining set contains the ellipsoid

E(a − �a�, 1) = E(w1, 1)
s
= w1 E(

1
w1

, 1). Now cut off �1 = � 1
w1

� balls B4(w1) from

this ellipsoid, and so on. As for (6.7) this yields a symplectic embedding of

B4(w(a)) :=
∐
�0

B4(1)
∐
�1

B4(w1)
∐

· · ·
∐
�N

B4(wN )

into E(a, 1) for every rational a � 1. We have just seen the soft part ⇒ of

Theorem 6.2 ([42, 79]). For every rational a � 1,

E(1, a)
s
↪→ C4(A) ⇐⇒ B4(w(a))

s
↪→ C4(A).

The proof of ⇐ is much harder, as we will see for the special case a = 2 in
Lemma 8.1. It relies on J-holomorphic curves.

7. The role of J-holomorphic curves

J-holomorphic curves were introduced to symplectic geometry by Gromov [46],
and according to [49] they are his only contribution to mathematics. The “bible”
on J-holomorphic curves is [83], and a nice short text is [31]. In this section we
explain their role for symplectic embedding problems.

A Riemann surface is a real surface Σ endowed with a conformal structure i. This
is the same thing as a holomorphic atlas for Σ. A holomorphic curve u : Σ → Cn

is a map that in holomorphic coordinates is given by n complex power series.
Equivalently, u satisfies the Cauchy–Riemann equation

(7.1) du ◦ i = J0 ◦ du,
where J0 = i⊕· · ·⊕i is the standard complex structure on Cn. This equation makes
sense in any manifold M carrying an almost complex structure, i.e., a fiberwise
endomorphism J of TM with J2 = −id. Every symplectic manifold carries almost
complex structures J . We speak of u : Σ → M satisfying (7.1) as a parametrized
J-holomorphic curve and of its image u(Σ) as an unparametrized J-holomorphic
curve.

There are several paths that lead to J-holomorphic curves in symplectic geome-
try. One is through Hamiltonian dynamics: a Hamiltonian vector field on R

2n can
be written as XHt

= −J0∇Ht, where again J0 is the standard complex structure
on R2n = R2(x1, y1)⊕· · ·⊕R2(xn, yn) = Cn, which suggests that (almost) complex
structures may be relevant to Hamiltonian dynamics.

Another path is by comparing the symplectic and Euclidean area of surfaces.
Let Σ ⊂ R2n be an oriented surface. Motivated by (2.1), we define the ω-area of Σ
by areaω0

(Σ) =
∫
Σ
ω0. This is at most the Euclidean area of Σ,

areaω0
(Σ) � areag0(Σ),

with equality iff Σ is J0-holomorphic, since for nonzero vectors v, w ∈ R2n,

(7.2) ω0(v, w) = 〈J0v, w〉 � ‖v‖‖w‖
with equality iff J0v = w.
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Yet another path is through the search for a substitute of geodesics: geodesics,
i.e., curves that locally minimize length, are a principal tool in the study of Rie-
mannian manifolds. But a symplectic structure makes 2-dimensional measure-
ments, so we look for something like “2-dimensional geodesics”. From Kähler and
complex geometry it is well known that holomorphic curves are such objects. For
instance, given a J0-holomorphic curve Σ and any other surface Σ′ in R2n with the
same boundary (7.2) and Stokes yield

areag0(Σ) =

∫
Σ

ω0 =

∫
Σ′

ω0 � areag0(Σ
′)

with equality iff Σ′ is also J0-holomorphic. By the same argument, an even-
dimensional compact submanifold (with or without boundary) of a Kähler manifold
minimizes volume in its (relative) homology class if and only if it is complex.

In a Kähler manifold (M,ω, J) the complex structure J is perfect in two ways.
It is integrable (namely, it is induced from the complex structure J0 on C

n by
a holomorphic atlas), and it is compatible with the symplectic form: gJ (v, w) =
ω(v, Jw) defines a Riemannian metric on M . Many symplectic manifolds are not
Kähler however [44]. We thus need to dispense with integrability or compatibility,
or both. To see what is needed, we return to Gromov’s proof of his

Nonsqueezing Theorem 7.1. If B2n(1)
s
↪→ Z2n(A), then 1 � A.

So again take ϕ : B2n(1)
s
↪→ Z2n(A), compactify Z2n(A) to M = S2(A) × C

n−1

with symplectic form ω = ωS2 ⊕ ω0, and recall from the introduction that 1 � A
follows if we can find

(i) an almost complex structure Jϕ on M that restricts to ϕ∗J0 on ϕ(B2n(1))
and is such that ω is nonnegative on Jϕ-invariant 2-planes, and

(ii) a Jϕ-holomorphic sphere u : S2 → M that passes through ϕ(0) and repre-
sents the homology class C = [S2 × {pt}] ∈ H2(M ;Z).

We write J⊕ for the sum iS2 ⊕ J0 of the usual complex structures on S2(A)
and Cn−1. For this complex structure, there exists a unique (unparametrized)
holomorphic sphere S⊕ through ϕ(0) in class C. The idea is now to connect J⊕
with a Jϕ as in (i) by a path of almost complex structures and to see that the sphere
S⊕ persists under this deformation. This does not work in the class of integrable
almost complex structures already because ϕ∗J0 need not be integrable. But this
works in the class of compatible almost complex structures: Choose R so large that
ϕ(B2n(1)) ⊂ S2(A)×B2n−2

R (where the second factor denotes the ball of radius R).
Let J be the space of all ω-compatible almost complex structures on M that agree
with J⊕ outside S2(A) × B2n−2

R+1 . For these almost complex structures, we have

uniform C0- and area-bounds for all J-spheres in class C: every such sphere S
is contained in S2(A) × B2n−2

R+1 by the maximum principle, and its area is equal

to A, since by the compatibility gJ (·, ·) = ω(·, J ·) we have gJ -area(S) =
∫
S
ω =

[ω](C) = A. Clearly J⊕ ∈ J , and since ϕ∗J0 is ω-compatible on ϕ(B2n(1)), it is
not hard to see that we can choose Jϕ ∈ J . Since J is path-connected, we find
a path {J t}t∈[0,1] in J from J⊕ = J0 to Jϕ = J1. For every t denote by Mt

the space of unparametrized J t-holomorphic spheres through ϕ(0) in class C. For
a generic choice of the path {J t}, the union M =

∐
t∈[0,1] Mt × {t} is a smooth

1-dimensional manifold, that is transverse at 0, i.e., the point S⊕ = M0 × {0}
belongs to the boundary of M; see Figure 7.1.



168 FELIX SCHLENK

0 1t∗

S⊕

t

Mt

NO!

Figure 7.1. The moduli space M, and an impossible scenario

The key point is now to see that M is compact, that is, that M looks like
the solid set in Figure 7.1. Then M1 is nonempty, and we are done. Assume
instead the dashed scenario: the moduli space Mt becomes empty at t∗. Choose
an increasing sequence tk → t∗, and let Sk be a J tk sphere in class C. Given the
C0-bound and the area-bound on Sk, Gromov’s compactness theorem now says
that after passing to a subsequence, the spheres Sk converge in a suitable sense to
a cusp curve, namely a finite union of J t∗ -holomorphic spheres S1, . . . ,Sm whose
homology classes Ci = [Si] add up to C. But each sphere Si is J t∗-holomorphic,
whence 0 <

∫
Si

ω = [ω](Ci). Therefore, Ci = ni C in H2(M ;Z) = Z with ni � 1,

and
∑m

i=1 ni = 1. It follows that m = 1 and n1 = 1, meaning that Mt∗ is not
empty. �

The Two Ball Theorem, Theorem 4.1, follows along the same lines, since B2n =
(CPn \CPn−1, ωSF) and since through any two different points in CPn passes a
unique holomorphic line CP1.

The compatibility condition of the almost complex structures used in the proof
is equivalent to the two conditions

ω(Jxv, Jxw) = ω(v, w), ω(v, Jxv) > 0

for all x ∈ M and 0 �= v, w ∈ TxM . The first condition says that ω is J-invariant,
and the second condition says that ω is positive on J-invariant 2-planes. Almost
complex structures fulfilling just the second condition are called ω-tame. Tameness
is the key property of the almost complex structures J for the above proof to work:
it implies that ω is everywhere positive on J-holomorphic curves, and it suffices for
Gromov compactness. Hence the above proof can equally well be carried out with
the larger set of ω-tame almost complex structures that agree with J⊕ at infinity;
see [46]. The spaces of ω-tame and ω-compatible almost complex structures on a
symplectic manifold (M,ω) are the relevant classes of almost complex structures in
symplectic geometry. Both spaces are contractible.

Each of the fundamental techniques in symplectic geometry (J-holomorphic
curves, the global theory of generating functions, variational techniques for the
action functional, Floer homologies, and probably also the microlocal theory of
sheaves [19]) yields a proof of the Nonsqueezing Theorem, and if you invent a new
mathematical theory and wish to see what it can say for symplectic geometry,
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the Nonsqueezing Theorem is a perfect test. But for symplectic embedding prob-
lems, J-holomorphic curves are for now the most important tool. Indeed, there is
Eliashberg’s general “holomorphic curves or nothing” principle [34, §6.1], that for
symplectic embedding problems can be phrased as

Eliashberg’s Principle 7.2. Any obstruction to a symplectic embedding (beyond
the volume condition) can be described by a J-holomorphic curve.

The above proof of the Nonsqueezing Theorem illustrates how the existence of
a suitable J-holomorphic curve gives rise to a symplectic embedding obstruction.
Somewhat surprisingly, J-holomorphic curves can also be used to construct sym-
plectic embeddings. In some situations, these constructions just attain the maximal
possible value predicted by the obstructions, so that the embedding problem in ques-
tion is completely solved. An example for such a perfect situation is Theorem 1.2;
see §8.1.

The way J-curves can be used for constructing symplectic embeddings is through
inflation: For some 4-manifolds (M,ω), the existence of a symplectic embedding of
balls or an ellipsoid into (M,ω) can be translated into the existence of a symplectic
representative of a certain cohomology class α in a multiple blowup of M ; see §8.1.
Such a symplectic representative, in turn, can sometimes be obtained by means
of the following lemma due to Lalonde and McDuff. We denote by PD(A) the
Poincaré dual of a homology class A.

Inflation Lemma 7.3. Let (M,ω) be a symplectic 4-manifold, and assume that
A ∈ H2(M ;Z) with A2 � 0 can be represented by a closed connected embedded
J-holomorphic curve for some ω-tame J . Then the class [ω] + τ PD(A) has a
symplectic representative for all τ � 0.

Idea of the proof. Let Z be a closed connected embedded J-holomorphic curve for
some ω-tame J . Then ω restricts to a symplectic form on Z. Since [Z]2 � 0, one
can find a Thom form ρ for the symplectic normal bundle of Z such that ω + τρ is
symplectic for all τ � 0; see [77, Lemma 3.7]. �

For both, obstructions to and constructions of symplectic embeddings, it is thus
crucial to know that certain homology classes can be represented by suitable J-
holomorphic curves. Sometimes, algebraic geometry gives the existence of such
a curve for an integrable J0, and existence for other J ’s then follows from Gro-
mov’s compactness theorem, as was the case in the proof of the Nonsqueezing and
Two Ball theorems. More difficult existence results of J-holomorphic curves in
dimension 4 rely on Seiberg–Witten–Taubes (SWT) theory.

It is interesting to see which J-curves are relevant for which symplectic embed-
ding questions. In the early results these were spheres (as in the Nonsqueezing and
Two Ball theorems) or discs (in Gromov’s Camel theorem). Nowadays, virtually
all topological types play a role. The J-curves guaranteed by SWT theory often
have genus, and different curves with genus are used in [12, 70] for 4-dimensional
ball packings. Punctured planes (cylinders) and curves with genus and punctures
are used for finding obstructions from Floer theory.
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8. The fine structure of symplectic rigidity

We first give an idea of how to establish the Pell stairs, then describe it in a purely
combinatorial way, and finally look at what happens to this infinite staircase if the
target C4(A) is elongated to polydiscs P(A, bA) with b ∈ N.

8.1. How to establish the Pell stairs. In this section we outline the proof of
Theorem 1.2 (i); see Figure 1.3. We focus on two special points, at which the general
argument can be much simplified, namely the foot and the edge of the first step
over a = 2 and a = 3, at which cEC(2) = 1 and cEC(3) =

3
2 . Besides for the relation

between embedding balls and blowing up, that is due to McDuff [76], the argument
only uses the ball decomposition of ellipsoids from §6 and rather elementary results
on J-holomorphic curves (the Inflation Lemma 7.3 and Gromov compactness), and
it explains the equivalence from Theorem 6.2 in the case a = 2.

Ingredient 1. Ball embeddings and blowups. The blowup of a complex man-
ifold in a point p is formed by replacing p by all complex lines in the tangent
space TpM . There is a symplectic version of this that comes with a size a: Given a

symplectically embedded ball B = ϕ(B2n(a)) in a symplectic manifold (M,ω), the
blowup M1 is formed by removing the open ball B and collapsing the boundary
sphere along the Hopf circles; cf. Example 3.2. This yields the exceptional divisor
Σ ⊂ M1, which is diffeomorphic to CPn−1. In dimension 4, Σ is an embedded
2-sphere with self-intersection number −1. The manifold M1 comes with a projec-
tion π : M1 → M that identifies M \ Σ with M \ {ϕ(0)} and takes Σ to ϕ(0), and
it carries a symplectic form ωa that agrees with ω on M1 \ Σ and integrates to a
over Σ. The cohomology class of ωa is therefore

[ωa] = π∗[ω]− ae ∈ H2(M1;R),

where e is the Poincaré dual of E = [Σ] ∈ H2(M1;Z).
If the class π∗[ω] − a e can be represented by a symplectic form that is non-

degenerate along Σ, there is a converse to this construction: one can then blow
down Σ, namely remove a small neighborhood of Σ and symplectically glue back a

ball B2n(a). Details of these constructions can be found in [82, §7.1].

Ingredient 2. From ball packings to embeddings of ellipsoids.

Lemma 8.1. E(1, 2)
s
↪→ C4(1 + ε) for every ε > 0.

Ideas of the proof. Fix ε > 0. Recall from §6 that E(1, 2) can be cut into two
balls B4(1). By the left drawing in Figure 4.2, there is an embedding∐

2

ϕi :
∐
2

B4(1)
s
↪→ C4(1 + ε).

It is known that the space of such embeddings is path-connected [78]. One may

thus hope that the two balls ϕi(B
4(1)) ⊂ C4(1+ ε) can somehow be glued together

to an image ϕ(E(1, 2)) of E(1, 2). There is no proof of Lemma 8.1 along these naive
lines, however. The actual proof in [79] uses J-holomorphic curves and inflation:
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Figure 8.1. A toric picture for the construction

Step 1. Compactify the open disc D2(1) to S2(1) by adding the point pt, let (M,ω)
be the compactification S2(1) × S2(1) of C4(1), and let S1 = [S2 × pt] and S2 =
[pt×S2] be the generators of H2(M ;Z). Represent the class S1 + S2 ∈ H2(M ;Z)
by the diagonal Δ = {(z, z)} ⊂ M . Take λ ≈ 1

3 and a tiny δ > 0, and blow up M

by size λ + δ in a point p1 ∈ Δ ∩ C4(1). This creates a sphere Σ1 in class E1,
and the diagonal Δ becomes a holomorphic sphere Δ1 ⊂ M1 that intersects Σ1

in one point p2. Now blow up M1 in p2 by size λ. This creates a sphere C2

in class E2, and transforms Σ1 to a sphere C1 in class E1 − E2; see Figure 8.1.
Further, Δ1 becomes a holomorphic sphere Δ2 in class S1 + S2 − E1 − E2. As
we have seen above, this construction gives a symplectic form ωλ on M2 in class
s1 + s2 − (λ + δ)e1 − λe2, where si, ei ∈ H2(M2;Z) are the Poincaré dual classes
of Si, Ei. The chain C(δ, λ) = C1 ∪ C2 consists of ωλ symplectic spheres of size δ
and λ. Note that the toric domain E(δ, λ), whose moment map image μ(E) is shown
in Figure 8.1, contains the ellipsoid E(λ, 2λ).

Step 2. We now wish to inflate the sphere C2, that is, to make the symplectic
form ωλ in class s1+ s2− (λ+ δ)e1−λe2 larger along C2, so that the chain C1∪C2

“bounds” a larger ellipsoid. The first try would be to deform ωλ in the direction
of −PD(C2) = −e2 to arrive at a form in class s1 + s2 − (λ + δ)e1 − e2. But this
does not work, since [−C2]

2 = E2
2 = −1 is negative. Instead, we deform ωλ in the

direction of PD(Δ2), which is possible since [Δ2]
2 = 0. By the Inflation Lemma 7.3,

all the classes

[ωλ] + τ PD(Δ2) = (τ + 1)(s1 + s2)− (τ + λ+ δ)e1 − (τ + λ)e2, τ � 0,

are represented by symplectic forms ωτ
λ. The ωτ

λ size of C1 is still δ, while C2

now has size τ + λ. We have thus found a chain C(δ, τ + λ) in (M2, ω
τ
λ). One can

now blow down this chain by removing a neighborhood of C(δ, τ + λ) and gluing
back the toric model E(δ, τ + λ), that contains E(τ, 2τ ). This yields an embedding
E(τ, 2τ )

s
↪→ C4(τ + 1). Now take τ > 1

ε and rescale. �

Lemma 8.1 and the volume condition show that cEC(2) = 1. Now assume that
E(1, 3)

s
↪→ C4(A). Then

∐
3 B

4(1)
s
↪→ C4(A) by the easy part of Theorem 6.2, and
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a
αn αn+1βn

√
a
2

Figure 8.2. The nth step of the Pell stairs

so Ingredient 1 shows that the class

α = As1 +As2 − e1 − e2 − e3 ∈ H2(M3;R)

can be represented by a symplectic form ωA. As in Step 1 above we see that the
class

E = S1 + S2 − E1 − E2 − E3

can be represented by a J-holomorphic sphere for “the usual” J on M3, and hence
by Gromov’s compactness theorem also for an ωA-tame almost complex structure
(cf. the proof of Theorem 7.1). Hence

0 < α(E) = 2A− 3,

proving that A � 3
2 . Since cEC(a) is nondecreasing, the reverse inequality will follow

from cEC(
9
2 ) � 3

2 . Since the segment between the points (2, 1) and (3, 3
2 ) lies on a

line through the origin, a simple scaling argument then implies that cEC(a) is on
this segment for all a ∈ [2, 3]. More generally, the Pell stairs are established if we
can show that for the slanted edge of the nth step over [αn, βn] it holds that

cEC(αn) �
√

αn

2
and cEC(βn) �

√
αn+1

2
;

cf. Figure 8.2. This can be done along the same lines as for α1 = 2 and β1 = 3, but
one now uses strong existence results for J-holomorphic curves implied by Seiberg–
Witten–Taubes theory. For instance, the lower bound for the fifth step, which
is centred at β5 = H6

H4
= 99

17 = 5 14
17 , comes from an exceptional sphere15 in class

58S1 + 29S2 − T with

T = 17E1···5 + 14E6 + 3E7···10 + 2E11 + E12 + E13 ∈ H2(M13;Z).

Here E1···5 := E1 + · · · + E5, etc. Note that this class is perfectly adapted to the
edge point β5 in the sense that the tail T is parallel to the weight vector w(β5)
from (6.8). Such a perfect exceptional sphere exists for every edge point βn.

The full proof of the Pell stairs confirms Eliashberg’s Principle for the problem
E(1, a)

s
↪→ C4(A): All embedding obstructions come from exceptional spheres. But

to show this, one also needs different J-holomorphic curves (for inflation).

15I.e., an embedded J-holomorphic sphere of self-intersection number −1.
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Figure 8.3. The heuristics for (8.1)

8.2. A combinatorial description. If E(1, a)
s
↪→ E(A, 2A), then E(1, a)

s
↪→ C4(A)

as we have seen in Lemma 8.1 up to a removable ε. The converse is also true, as
the following heuristics indicate. If E(1, a)

s
↪→ C4(A), decompose E(1, a) as in §6.2

and add two balls B4(A) to get an embedding B4(w(a))
∐

2 B
4(A)

s
↪→ B4(2A) as in

the left drawing of Figure 8.3. The two balls B4(A) can be moved to the positions
shown in the right drawing, so that B4(w(a))

s
↪→ E(A, 2A), and this collection of

balls “glues together” to an embedding E(1, a)
s
↪→ E(A, 2A). But again, the actual

proof uses J-curves and inflation [79]. Altogether

(8.1) E(1, a)
s
↪→ E(A, 2A) ⇐⇒ E(1, a)

s
↪→ C4(A).

Let (Nk(a, b))k�0 be the sequence of numbers formed by arranging all the linear
combinations ma+nb with m,n � 0 in nondecreasing order (with repetitions). For
instance,

(Nk(1, 2)) =
(
0, 1, 2, 2, 3, 3, 4×3, 5×3, 6×4, 7×4, . . .

)
.

Based on a generalization of Theorem 6.2, McDuff [80] proved the following com-
binatorial answer to when E(a, b)

s
↪→ E(c, d), which was conjectured by Hofer:

(8.2) E(a, b)
s
↪→ E(c, d) ⇐⇒

(
Nk(a, b)

)
�
(
Nk(c, d)

)
.

Combining (8.1) and (8.2), we obtain

cEC(a) = sup
k∈N

Nk(1, a)

Nk(1, 2)
.

Thus the Pell stairs have a completely combinatorial, though nonexplicit, descrip-
tion.

8.3. Fine structure at infinity. As we have seen in the introduction, it was
rewarding to elongate the domain in the problem B4(1)

s
↪→ C4(A) to E(1, a), inter-

polating the problems
∐

k B
4(1)

s
↪→ C4(A), k ∈ N. Let’s thus elongate the target

also and study the functions

cb(a) = inf {A | E(1, a) s
↪→ P(A, bA)} for b � 1.

This is a “movie” of functions (in time b) interpolating between c1(a) = cEC(a),
that starts with the Pell stairs, and the constant function cEZ(a) ≡ 1 describing
E(1, a)

s
↪→ Z4(A), which is an expression of the Nonsqueezing Theorem. This movie

of functions was studied in [26] for b ∈ N: For b = 2 there are only three steps

over the volume constraint
√
a
2 , so the Pell stairs already disappeared. But then

for b → ∞ we observe a new phenomenon: A different completely regular infinite
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Figure 8.4. The rescaled limit function

staircase with steps all of the same height and width appears. We describe this
limit behavior of the functions cb for large b in terms of a rescaled limit function.
Consider the rescaled functions

ĉb(a) = 2b cb(a+ 2b)− 2b, a � 0,

which are obtained from cb(a) by first forgetting about the horizontal line cb(a) = 1
over [1, 2b] that comes from the Nonsqueezing Theorem, then vertically rescaling
by 2b, and finally translating the beginning of the new graph to the origin. Then
for b → ∞, the functions ĉb converge to the function in Figure 8.4 uniformly on
bounded intervals.

9. Packing flexibility for linear tori

A symplectic form on the torus T 2n = R2n/Z2n is linear if it is induced by a
symplectic form

∑
i<j aij dxi∧dxj on R

2n that has constant coefficients aij ∈ R with
respect to the standard coordinates xi. Using the Albanese map, one sees that every
Kähler form on T 2n is symplectomorphic to a linear symplectic form [37, Prop. 6.1].
It is an open problem whether every symplectic form on T 2n is symplectomorphic
to a Kähler form.

The 4-dimensional case of the following result, that in particular implies Theo-
rem 1.3, was proved (for the most part) in [70] and the full result in [37, 38].

Theorem 9.1. Let (T 2n, ω) be a torus with a linear symplectic form ω. Then any
finite collection of 2n-dimensional ellipsoids whose total volume is strictly less than
Vol(T 2n, ω) symplectically embeds into (T 2n, ω).

Ideas of the proof. By Darboux’s theorem, we can always symplectically embed a
collection of small ellipsoids into a symplectic manifold. As we have seen in the
previous section, such an embedding can sometimes be converted into an embedding
of larger ellipsoids by inflation, which deforms a “small” symplectic form on the
blowup into a “larger” one. Inflation relies on the existence of certain J-holomorphic
curves, which are not available on blowups of tori. But one can look for other tools
that directly yield the existence of symplectic forms in suitable cohomology classes
on the blowup. For tori with linear symplectic forms, this can indeed be done thanks
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to deep results from complex geometry: the Demailly–Paun theorem, Kodaira–
Spencer stability, and Hironaka’s theorem on the resolution of singularities.

We start with the case that there is only one ball B2n(a) to be embedded into
(M,ω) := (T 2n, ω). Let a be such that Vol (B2n(a)) < Vol (M,ω). Take a Kähler
structure J for (M,ω). As in §8.1 form the complex blowup (M1, J1) of (M,J) in a
point p ∈ M , let π : M1 → M be the projection, let Σ = π−1(p) be the exceptional
divisor, and denote by e ∈ H2(M1;Z) the Poincaré dual of E = [Σ]. An obvious
condition for the existence of a Kähler form on (M1, J1) in the class α = π∗[ω]−ae
is that αm pairs positively with the homology classes of closed complex subvarieties
of complex dimension m, for all m = 1, . . . , n. By the Demailly–Paun theorem [29],
this condition is also sufficient.

Assume first that (M,J) has no closed complex subvarieties of positive dimension
other than M . The only such subvarieties in (M1, J1) are then M1 or subvarieties
of Σ, and one readily checks that the appropriate powers of α pair positively with
the homology classes of these varieties. We thus have a Kähler form ω1 in class α.
Being Kähler, this form is nondegenerate on Σ, and so we can blow down (M1, ω1)
along Σ to obtain a symplectically embedded ball B2n(a) in (M,ω).

Take now any linear Kähler structure I for (M,ω). Entov and Verbitsky [37]
show that the space of linear complex structures on T 2n that admit no closed
complex subvarieties of positive dimension other than T 2n is dense in the space
of all linear complex structures. So take such a J close to I. A version of the
Kodaira–Spencer stability theorem implies that the (1, 1) part [ω]1,1J of [ω] in the
Hodge decomposition with respect to J can be represented by a Kähler form ω′

for J that is close to ω. Then still Vol (B2n(a)) < Vol (M,ω′). The previous case

applied to (J, ω′) shows that the class π∗[ω]1,1J − ae is Kähler. Elementary but
pertinent arguments now imply that π∗[ω]− ae can be represented by a symplectic
form that still tames J1. We can thus blow down this form along Σ to obtain the
required embedding B2n(a)

s
↪→ (M,ω).

The same proof applies for a collection of balls. For 4-dimensional ellipsoids one
can proceed along the same lines, but with Σ replaced by a chain of spheres C,
as in Step 1 of the proof of Lemma 8.1; see [98]. The general case of collections
of ellipsoids of arbitrary dimension is proven in [38]: It suffices to consider ellip-
soids E(a1, . . . , an) with a1, . . . , an relatively prime. The integral curves of the

Hamiltonian system H(z1, . . . , zn) =
∑ π|zj |2

aj
on the level {H = 1} are all closed.

Removing the interior of such an ellipsoid and collapsing the boundary along the
integral curves leads to a symplectic orbifold with isolated singularities, that can
be resolved by Hironaka’s theorem. One can then proceed on this resolution as
before. �

Wrong impressions. Theorem 9.1 may give the impression that symplectic em-
beddings of collections of ellipsoids into linear tori are as well understood as those
into the 4-cube, and that they are as flexible as volume-preserving packings. Both
impressions are wrong.

1. It is known that the space of symplectic embeddings of a given collection of
closed16 ellipsoids into a cube C4 is path-connected [79]. This means that such

16For the connectivity problem it is better to assume that the domain is closed. An embedding
C

s
↪→ (M,ω) of a closed set C ⊂ R2n by definition is an embedding C → M that extends to a

symplectic embedding of a neighborhood of C into (M,ω).
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embeddings, if they exist, are “unique”. This is completely unknown if the target
is a torus. The reason is that while the forms on the blowups of T 2n guaranteed by
the Demailly–Paun theorem do lead to maximal packings, the proof of connectivity
of packings (which goes by inflation) requires the existence of certain J-curves (like
the curve Δ2 in the proof of Lemma 8.1) that are not available on blowups of tori.

Take for instance T4 = R4/Z4, a tiny ball B = B4(ε), and ϕ0, ϕ1 : B
s
↪→ T4

where ϕ0 is the inclusion and ϕ1 is an arbitrary embedding. An isotopy ϕt between
these two maps is the same thing as a smooth family of maps ϕ̃t : B

s
↪→ R4 such

that all projections ϕ̃t(B) → T
4 are injective. In other words, every Z

4-orbit in R
4

should intersect each ϕ̃t(B) in at most one point. It follows from Alexander’s trick
that there are symplectic isotopies of R4 taking B = ϕ̃0(B) to ϕ̃1(B). But can one
find such an isotopy with injective projections? For pairs of simple explicit embed-

dings ϕ0, ϕ1 : B
4( 43 )

s
↪→ T4 that are not known to be isotopic through symplectic

embeddings; see [70, §7.3].
2. For any symplectic manifold admitting full packings by one and two

balls, there is a hidden rigidity noticed in [12] that does not exist for volume-
preserving embeddings: Take for instance embeddings ϕ : B4(a)

s
↪→ T4 and

ψ : B4(b)
∐

B4(b)
s
↪→ T4 that both cover more than half of the volume. Then it

cannot be that the image of ϕ contains the image of ψ by the Two Ball Theo-
rem 4.1.

10. Intermediate symplectic capacities or shadows do not exist

Consider the problem P(a1, a2, . . . , an)
s
↪→ P(b1, b2, . . . , bn), where we assume

that the ai and bi are in increasing order. By the (proof of the) Nonsqueezing
Theorem, a necessary condition is a1 � b1, that is, the size of the smallest factor
cannot be reduced. Looking for further symplectic rigidity phenomena, Hofer [57]
in 1990 asked whether the size of the second factor can similarly obstruct symplectic
embeddings. For instance, is there b < ∞ such that

(10.1) P(1, a, a)
s
↪→ P(b, b,∞) for all a � 1 ?

Or, even more ambitiously, is there b < ∞ such that

(10.2) P(1,∞,∞)
s
↪→ P(b, b,∞) ?

The large pool of symplectic mappings and the flexibility of symplectic embed-
dings of submanifolds of codimension at least 2 indicated that the answer to these
questions may well be yes: Take any smooth embedding C

2 = P(0,∞,∞) ↪→
P(1, 1,∞). By Gromov’s h-principle for isosymplectic embeddings ([47, Theo-
rem (1) on p. 335] or [36, 12.1.1]), this embedding can be isotoped to a symplectic
embedding

P(0,∞,∞)
s
↪→ P(1, 1,∞)

by “wiggling” the image. Using the symplectic neighborhood theorem for sym-
plectic submanifolds, this yields a symplectic embedding of a neighborhood of
P(0,∞,∞). If one could find a uniform such neighborhood, one would get an
embedding P(ε,∞,∞)

s
↪→ P(1, 1,∞) for some ε > 0, and hence, after rescaling by

b = 1/ε, an embedding (10.2).
An embedding along these lines was never found, and a look at the h-principle

proof reveals why: the short jags introduced by the wiggling become denser and
denser at infinity, so that no uniform neighborhood can be found.
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The breakthrough came only in 2008 when Guth [51] ingeniously combined four
elementary mappings to construct an embedding (10.1) with a nonexplicit con-
stant b. His construction was quantified by Hind and Kerman [55] who showed that
one can take b = 2. Taking an exhausting family of such embeddings, Pelayo and
Vũ Ngo.c [89] finally obtained

Theorem 10.1. There exists a symplectic embedding P(1,∞,∞) → P(2, 2,∞).17

Guth’s embedding is hard to visualize. In [54], Hind cleverly combined the 4-
dimensional symplectic folding construction from [68,95] with playing ping-pong in
the additional direction to obtain an embedding

P(1, a, a)
s
↪→ P(2, 2,∞) for every a � 1.

His embedding can easily be visualized. Hind’s construction was modified in [98]
to simple and explicit embeddings

(10.3) P(1,∞,∞)
s
↪→ P(2 + ε, 2 + ε,∞) for every ε > 0.

Intermediate symplectic capacities do not exist. A symplectic capacity for
subsets of Cn is a monotone symplectic invariant c scaling like c(λU) = λ2 c(U)
that is positive and finite on the ball B2n(1) and the cylinder B2(1) × Cn−1, and
hence it is infinite on C

n [32]. An intermediate symplectic capacity would be a
monotone symplectic invariant that scales the same way and which is positive and
finite on B2n(1), but infinite already on B2k(1)× Cn−k for some k � 1.

The Gromov width cB defined in (4.1) is an example of a symplectic capacity by
the Nonsqueezing Theorem, and the Nonsqueezing Theorem follows at once from
the existence of any symplectic capacity that agrees on B2n(1) and B2(1)× C

n−1.
There are by now a dozen of different symplectic capacities that are defined in var-
ious ways: by symplectic embedding problems, symplectic areas of J-holomorphic
curves, variational problems in Hamiltonian dynamics, or as critical values of gen-
erating functions; see the survey [20]. Different capacities shed different light on
symplectic rigidity, and identities and inequalities between different capacities yield
relations between these different facets of symplectic rigidity.

Intermediate capacities, however, do not exist in view of the symplectic embed-
ding in Theorem 10.1. This is reassuring: at least at a formal level we did not
miss a basic form of symplectic rigidity that is not captured by the notion of a
symplectic capacity.

Symplectic shadows. A variant of the (non)existence of intermediate rigidity was
investigated by Abbondandolo et al. Already in [35] the Nonsqueezing Theorem
was interpreted as follows: Write B2n = B2n(1), and let Π1 : C

n → C(z1) be the
projection to the first factor. Then for any symplectic embedding ϕ : B2n → Cn,

(10.4) area
(
Π1ϕ(B

2n)
)

� π,

that is, the shadow on the symplectic plane C(z1) of any symplectic image of the
unit ball B2n is at least as large as the shadow of B2n.

17It is shown in [55] that this embedding is optimal: there is no embedding P(1,∞,∞) →
P(b, b,∞) for b < 2. The obstruction, which is stronger than the constraint b � 1 from the
Nonsqueezing Theorem, comes from a suitable J-holomorphic plane u : C → S2(b)× S2(b)×C in
the partial compactification of P(b, b,∞).
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More generally, for k ∈ {1, . . . , n}, let Πk : C
n → Ck(z1, . . . , zk) be the pro-

jection, and consider the 2k-dimensional shadows Πk ϕ(B2n) ⊂ C
k. Note that

Πk B
2n = B2k. Is it still true that for any symplectic embedding ϕ : B2n → Cn,

(10.5) vol2k
(
Πkϕ(B

2n)
)

� vol2k(B
2k) ?

Here, vol2k(U) = 1
k!

∫
U
ωk
0 is the Euclidean volume of a domain U ⊂ C

k. The
answer is yes for k = 1 by the Nonsqueezing Theorem (10.4) and for k = n by
Liouville’s theorem. A “yes” or at least a nontrivial lower bound in (10.5) for some
k ∈ {2, . . . , n− 1} would be a form of intermediate rigidity. However,

Theorem 10.2. For n � 3 and for every ε > 0 there exists a symplectic embedding
ϕ : Z2n(1) → Cn such that

vol2k
(
Πkϕ(Z

2n(1))
)
< ε

for every k ∈ {2, . . . , n− 1}.

This was proved for the ball B2n(1) in [3] by cleverly using Guth’s embed-
dings from [51]. The full theorem follows readily from the multiple folding em-
bedding (10.3); see [98]. Variations on the theme of symplectic shadows are given
in [1, 3, 92, 98].

The results of this section indicate that solely measurements by the 2-form ω can
express symplectic rigidity, while there is no rigidity coming from measurements by
higher powers ωk.
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