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It is uncertain when quantum waveguides first made their appearance in the
scientific literature. Along with their relatives now known as quantum wires and
quantum graphs, they had been considered on occasion since the invention of quan-
tum mechanics under different names and, for various reasons, not necessarily in
connection with small electrical structures. The model of an electron traveling in
a channel with no interactions other than confinement by the channel’s walls was
for most of the twentieth century a curiosity without practical implications, and
it did not attract wide attention. Macroscopic transport of electrons, like what
accounts for the current in the wires in your toaster, is not a simple subject. Even
the crude model introduced by Drude in 1900 and described in textbooks such as
[25] leads to a type of Boltzmann equation for time-evolving probability distribu-
tions by imagining a classical gas of electrons traveling ballistically with a small
drift due to the applied electric field, interrupted in some random way by elastic
scattering events. Incorporating quantum effects, as first attempted in an ad hoc
manner by Sommerfeld, does nothing to simplify matters. Indeed, the justification
of key relations of transport theory, such as the Kubo formula, is an active area of
research in mathematical physics to the present day.

Transport theory of this kind is the right approach to understand current in
macroscopic wires, but a new era dawned in the late 1980s, when it became practical
to fabricate electrical devices in the laboratory with widths comparable to the de
Broglie wavelength of an electron. On the scale of nanometers the wave nature
of the electron dominates, and at modest temperatures and densities it becomes
defensible to model the situation with the Schrédinger equation in its one-particle
form. If, as in a carbon nanotube, a particle is confined to a thin but very long
region, the situation is analogous to the acoustic and electromagnetic waveguides
that have been used since the nineteenth century to efficiently carry signals, which
were analyzed mathematically by Lord Rayleigh [19120] as boundary-value problems
for the wave equation. (A clear textbook treatment of electromagnetic waveguides
may be found in [25]. For a discussion of the complexities of electron transport
even on the nanoscale, see [I].) The analogy is even closer when the “quantum
waveguide” consists of a region in which the external forces are negligible except
near a sharp boundary as defined by a very large potential energy barrier, which
in a semiclassical limit is well approximated by a Dirichlet boundary condition.
Hence, about three decades ago, quantum waveguides were no longer considered
toy models, but viewed as a subject meriting serious analysis.

Quantum mechanics for small numbers of particles relies to a large extent on
spectral theory, using eigenvalues and eigenfunctions to understand bound states
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and the continuous spectrum to understand scattering, including resonance behav-
ior [3L23]. The spectral theory of Schrodinger and Laplace operators has become a
well-developed discipline, partly due to the connections with quantum mechanics,
but also because it has forged some wonderful connections with geometry, graph
theory, and harmonic analysis, which have appeal as pure mathematics.

Exner and Seba were among the first to understand that while the spectra of
quantum waveguides are connected with physics and with geometry, those con-
nections must differ in key respects from what was familiar in an earlier age of
spectral analysis. For example, the shapes of quantum wires are essentially tubular
neighborhoods of curves, which may be joined into complex networks, and such
structures bear scant resemblance to the sorts of domains that had predominated
in the earlier literature on whether it is possible to “hear the shape of a drum”,
a la Mark Kac [I4]. Quantum mechanicians and spectral theorists drawn to the
subject, most notably a group associated with Exner, found themselves in the grat-
ifying position of well-trained naturalists encountering new species and ecosystems
upon arrival at an unexplored shore.

A notable early result of Exner and Seba, in 1989, was that, under some rea-
sonable assumptions, if a thin but uniformly thick, infinitely long, two-dimensional
channel waveguide has any bending whatsoever in some compact region, then it
has a bound state (i.e., a discrete eigenvalue below the infimum of the continu-
ous spectrum). The key was to use a coordinate transformation to straighten out
the channel while giving rise to an effective potential that is negative, producing a
spectrum below the infimum of the essential spectrum (which can be located with
Weyl techniques). They did this both in the situation of quantum waveguides with
Dirichlet conditions and in the very similar situation of classical electromagnetic
waveguides with perfectly conducting edges [8,9]—work that both caught the eye
of mathematical physicists and inspired laboratory experiments; e.g., [5L6]. Inter-
estingly, although generic bound states in curved electromagnetic waveguides could
have been predicted and observed a century earlier, the question appears not to
have been asked before [8l[0]. A few years later Goldstone and Jaffe would find a
related but more general approach, demonstrating the existence of generic bound
states under some circumstances in higher dimensions and higher codimensions [12].
One interesting feature that arrives in dimensions higher than 2 is torsion, which,
as first realized by Clark and Bracken [7], leads to a repulsive effective potential
that can compete with curvature. What is the nature of the effective potentials
induced by geometry, and how does torsion affect the possibility of bound states
in tubes and layers? This tricky question inspired some remarkable analysis by
several research groups; e.g., [4[T6HIY], as well as by the authors of the book under
review and their associates. The interplay of curvature and torsion in these mod-
effective Hamiltonian theory has been well treated in a monograph by Wachsmuth
and Teufel [24].

In the ensuing two to three decades quantum waveguides and similar models
became fashionable in the mathematical physics community, and scores of articles
were written by the authors of this monograph and their associates, and by other
groups of researchers, rounding up the usual suspects in spectral mathematical
physics: the number and location of the eigenvalues, with bounds on various spec-
tral functionals and an understanding of extreme cases; circumstances in which the
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spectrum is absolutely continuous and wave operators can be constructed; possi-
ble gaps in the spectrum; the number and location of resonances; modifications
needed to incorporate magnetic fields; and perturbation theory for both the dis-
crete and continuous parts of the spectrum. Although these topics were natural,
even inevitable, in the context of modern mathematical physics, each one of them
needed serious new analysis to tease out the role of the geometry and the connected-
ness of the waveguides. Furthermore, some aspects of the physical modeling raised
distinctive new questions. Surely, a very thin quantum waveguide should exhibit
behavior similar to that of a lower-dimensional structure, whether a quantum wire
or a surface, but the limit as the width of the waveguide tends to zero and the
dimensionality changes is delicate, and it responds in subtly different ways to the
kinds of boundary conditions imposed on the boundary of the waveguide. When the
small channels are joined together, and the limit is a quantum graph, the situation
becomes quite tricky. For example, if the widths of different channels tend to zero
at different rates, a variety of distinct vertex conditions can emerge in the limiting
model. The question of how thin waveguide networks are related to the limiting
graph was first considered in the 1950s [2I], but a full and rigorous treatment of
this foundational matter and the related question of categorizing the possible self-
adjoint Hamiltonians on quantum graphs took decades to emerge, nearly to the
present day. The monograph under review contains the most accessible treatment
of vertex conditions, and the history of the subject is recounted in the notes to
Chapter 8.

Other topics arising from the physical modeling behind quantum waveguides
include waveguides that are not completely isolated but instead are coupled to
other waveguides through “windows”, and waveguides or quantum wires residing
in a larger structure, with respect to which they are “leaky”. These models are
interesting both for physical reasons and as sources of nice mathematical questions.

The well-written and thorough monograph by Exner and Kovafik contains an
excellent treatment of developments in the flourishing subject of quantum waveg-
uides. It lays out the mathematical underpinnings of the subject in an inviting
way, covering all of the topics mentioned in this review and more. When paired
with Berkolaiko and Kuchment’s monograph on quantum graphs [2] it would be
a perfect way to prepare a graduate student or researcher wishing to specialize
in quantum mechanics on models of nanoscale structures. The monograph is also
highly recommended for those with a wider interest in quantum mechanics, since
seeing how the concepts and mathematical methods of quantum mechanics need to
be adapted to the case of waveguides is an engaging and instructive way to deepen
one’s understanding of them.
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