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MRO0809718 (87j:53053) 53C15; 32F25, 53C57, 57R15
Gromov, M.

Pseudo holomorphic curves in symplectic manifolds.
Inventiones Mathematicae 82 (1985), no. 2, 307-347.

The paper under review opens a new effective approach to fundamental prob-
lems of symplectic topology. Let (M,w) be a symplectic manifold. An almost
complex structure J on M is said by the author to be tamed by w if w(z, Jz) > 0
for all nonzero tangent vectors. Almost complex structures tamed by the given
symplectic form are sections of a fiber bundle with a contractible fiber. In partic-
ular they will always exist. The author’s theory shows that manifolds with such
structures have (like Kéhler complex analytic manifolds) many globally defined
(pseudo)holomorphic curves (or J-curves), which leads to many deep results in the
geometry and the topology of contact and symplectic manifolds. The following
theorems illustrate the character of numerous results of the paper. Let S? be the
2-sphere with the area form w; with f g2w1 = Aj and let V2 be a closed manifold
of dimension 2(n — 1) with a symplectic form w such that fS2 we = kA for ev-
ery smoothly mapped sphere S? — V for some integer k = k(S? — V). Theorem
(2.3.C): Let J be a C*°-smooth almost complex structure on V = 52 x V5 tamed by
the symplectic form w; @ws. Then there exists a (possibly singular and nonunique)
rational (i.e., diffeomorphic to S?) J-curve C = C, C V which contains a given
point v € V and which is homologous to the sphere S2 x vy C V, vy € Vo. If n. =2
and V5 is not diffeomorphic to S?, or k > 1, then C is regular and unique. If V5
is diffeomorphic to S? and k = 1 then there exists a connected regular J-curve C
in V which represents the homology class p[S?] + q[Va] € H?(V;Z) for arbitrary
nonnegative integers p and ¢ and which has genus(C) = pg—p—q+2. In fact, these
curves C form a smooth manifold M = M, (J) of dimension 2(pg+p+g¢). Corollary
(0.3.A): Consider a symplectic diffeomorphism of the open round ball B(R) C R*"
onto an open subset V' C R?" which is contained in the e-neighborhood of the
symplectic subspace R?>"~2 ¢ R?". Then R satisfies the inequality R < ¢.

The next result shows the uniqueness of symplectic structure on R*. The-
orem (0.3.C): Let an open manifold (V,w) be symplectically diffeomorphic to
(R*, woy = dwy Ady; +draAdys) at infinity. If the Hurewicz homomorphism o (V) —
H,(V;R) vanishes, then (V,w) is symplectically diffeomorphic to (R*,wp). Now
consider C™ with standard complex and symplectic structures. Theorem (0.4.Az):
For an arbitrary closed C'*° smooth Lagrange submanifold W C C™ there exists a
nonconstant holomorphic map f (D?,dD?) — (C", W). It follows that the relative
class [wo] € H?(C", W;R) is nonzero. Corollary (0.4.A%): There exists a symplec-
tic structure w on R?” for all n > 2 which admits no symplectic embedding into
(R*" = C",wy).

The author successfully applies his theory to prove new fixed point theorems for
exact symplectic diffeomorphisms and to get many deep results in contact topology
and between them, e.g., D. Bennequin’s theorem [Troisiéme rencontre de géométrie
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du Schnepfenried, Vol. 1 (Schnepfenried, 1982), 87-161, Astérisque, 107-108, Soc.
Math. France, 1983; MR0753131] and some of its higher-dimensional analogues.
One of the main tools of the theory is the compactness theorem for the space of
pseudoholomorphic curves. The author introduces the notion of weak convergence
of pseudoholomorphic curves to a “cusp-curve” and proves the following theorem
(1.5.B): Let V be a compact manifold with almost complex structure J and Rie-
mannian metric 1. Let C; be a sequence of closed J-curves of fixed genus in (V, J, p).
If the areas Area,C; are uniformly bounded then some subsequence weakly con-
verges to a cusp-curve C in V.
Compare 1.5.B with Bishop’s compactness theorem for analytic sets [see E.
Bishop, Michigan Math. J. 11 (1964), 289-304; MR0168801].
Yakov FEliashberg

From MathSciNet, January 2018

MR1438190 (98h:53045) 53C15; 53C40, 53C65, 57R15, 58F05
Donaldson, S. K

Symplectic submanifolds and almost-complex geometry.
Journal of Differential Geometry 44 (1996), no. 4, 666-705.

This important paper develops a general procedure for producing symplectic
submanifolds of any even codimension within a given compact symplectic manifold
(V,w) of dimension 2n, n > 2. The main construction of the paper is the following
deep existence theorem for codimension 2 symplectic submanifolds. Assume that
the class [w/27] € H2(V;R) is “rational”, i.e. there is a lift of [w/27] to an integral
class h € H?(V;Z). Then for sufficiently large integers k, the Poincaré dual of kh
in Hy,—2(V;Z) may be represented by a symplectic submanifold W C V.

In order to obtain the symplectic submanifold W the author first endows V'
with a compatible almost complex structure and considers a complex line bundle
L — V with first Chern class ¢;(L) = [w/27]. In the integrable case, when V is
a complex manifold, since L is a positive line bundle one may apply the Kodaira
embedding theorem and conclude that for k sufficiently large, L®* gives rise to
a projective embedding of V in CPN. If s;,: V — L®F is a holomorphic section
which is transverse to the zero section then Wy, = {x € V: si(z) = 0} is a
complex submanifold and hence a symplectic submanifold (equivalently, W is given
by a hyperplane section of V' C CPN). In the nonintegrable case this result is
significantly more difficult. In particular, holomorphic sections will not exist in
general. One must instead try to find sections, transverse to the zero section, which
are as near to holomorphic as possible. The author shows that there is a transverse
section s of L®* which satisfies |9s| < (C/v/k)|ds| on the zero set of s, where Js
and Os are the complex linear and antilinear parts of the derivative Vs and C is a
positive constant. It is easy to see that this inequality ensures that the submanifold
W ={xz € V: s(z) = 0} is symplectic. Proving the existence of a transverse section
which satisfies this inequality is a delicate analytic task which makes up the core
of the paper. Roughly speaking, the proof consists of two parts. The first is an
analytic construction of “approximately holomorphic” sections s with ds small. The
second, more difficult, part is to show that among these sections one can find ones
where Js is not small on the intersection of s with the zero section. The local part
of the proof of this “quantitative transversality” result is accomplished by adapting



SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 301

a technique from real algebraic geometry developed by Y. Yomdin [Math. Ann. 264
(1983), no. 4, 495-515; MR0O716263].

For large values of k these symplectic submanifolds are “approximately pseudo-
holomorphic”. This is the key point that allows the author to remove the condition
that the class [w/27] be rational. If one begins with an arbitrary compact symplectic
manifold (V,w) then one can find an arbitrarily close symplectic structure w’ on
V' which is rational. If J’ is an almost complex structure which is compatible
with w’ then the approximately J’-pseudo-holomorphic submanifolds will also be
symplectic with respect to w. By replacing V with W and iterating the construction
one produces submanifolds of arbitrary even codimension.

In the final section the author establishes a number of related geometric results.
He proves an asymptotic result which shows that the submanifolds W are quite
complicated, essentially filling out all of V' as k — oo. In particular, when viewed
as currents, the sequence k~ W}, converges to a multiple of the symplectic form w.

By adapting the main construction to the integrable case, the author is able to
obtain bounds on the first fundamental form and curvature of complex hypersur-
faces of high degree (representing the Poincaré dual of k[w] for large k) in a Kéhler
manifold. These estimates are optimal in terms of their dependence on k. The
author raises the interesting problem of trying to find the optimal constant when
V = CP? in other words one would like to understand which curves of high degree
are the “smoothest” (or rather “flattest”) among all curves representing the same
homology class.

In addition the author proves an analogue of the Lefschetz hyperplane theo-
rem which states that for k sufficiently large the inclusion of W in V' induces an
isomorphism on the homotopy groups 7, for p < n — 2 and a surjection on m,_s.

Prior to the theory developed here, general methods for producing symplectic
submanifolds were available only in either codimension d > 4 or dimension 4 (i.e.
n = 2). In the former case, under certain natural topological assumptions, M. Gro-
mov’s h-principle may be used to produce symplectic submanifolds of codimension
d > 4 [see Partial differential relations, Springer, Berlin, 1986; MR0864505]. In
the latter case one has the theory of pseudo-holomorphic curves, also introduced
by Gromov. This has been an extremely important tool in the study of symplectic
four-manifolds and has recently seen remarkable applications, primarily through
the work of C. H. Taubes [see, e.g., J. Differential Geom. 44 (1996), no. 4, 818-893;
MR1438194]. The paper under review presents the only general existence result
known for codimension 2 symplectic submanifolds in dimensions greater than 4. It
is clearly the beginning of a very rich theory.

Danzel Pollack

From MathSciNet, January 2018

MR1804164 (2001k:53169) 53D35; 57R17

Auroux, Denis; Katzarkov, Ludmil

Branched coverings of CP? and invariants of symplectic 4-manifolds.
Inventiones Mathematicae 142 (2000), no. 3, 631-673.

This interesting paper develops in a very concrete fashion the analogue for sym-
plectic four-manifolds of a broad theory of “braid monodromies” of algebraic sur-
faces. Every algebraic surface may be described as a branched cover of the projective
plane. Pioneering work of B. G. Moishezon [in Combinatorial methods in topology
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and algebraic geometry (Rochester, N.Y., 1982), 311-344, Contemp. Math., 44,
Amer. Math. Soc., Providence, RI, 1985; MR0813122] and of M. Teicher [in Alge-
braic geometry—Santa Cruz 1995, 127-150, Proc. Sympos. Pure Math., 62, Part
1, Amer. Math. Soc., Providence, RI, 1997; MR1492521] showed that certain com-
binatorial invariants of this description were essentially computable, and could be
used for instance to distinguish connected components of moduli spaces of surfaces
of general type (an idea attributed by Moishezon to Chakiris). The computations
themselves are very hard, but the formal picture of describing a complex surface via
the monodromy representation of a branched cover is elementary and appealing.

Work of S. K. Donaldson [J. Differential Geom. 44 (1996), no. 4, 666-705;
MR1438190] in symplectic geometry, extended by Auroux [Invent. Math. 139
(2000), no. 3, 551-602; MR1738061], shows that symplectic four-manifolds may also
be written as branched covers of the projective plane. One can therefore hope to
produce similar combinatorial invariants. Here there are two caveats; the branched
covers become symplectically canonical only at arbitrarily large degree k, and the
branch loci in the projective plane may have nodes of negative self-intersection. The
latter, for instance, means that the Moishezon-Teicher arguments do not immedi-
ately imply that the fundamental group of the complement of the branch curve is
independent of choices in the construction; the asymptotic uniqueness means that
you are faced with an infinite sequence of branch curves in any case.

The paper under review is rather technical and applications are deferred for se-
quel papers. It is worth stressing, therefore, that over the last two years the same
authors (together with M. Yotov) have brought these methods much further, and it
seems very likely that the foundations laid here lead to symplectic invariants that
distinguish pairs of simply-connected symplectic four-manifolds which are homeo-
morphic and have the same Seiberg-Witten invariants. It would follow that, for
differential topology at least, these invariants would be more sensitive than any-
thing known to date. It is also worth pointing out, however, that the strategies
of these later proofs have developed in directions beyond those suggested in the
present paper, and the invariants and examples described here are not those to
which the sequels return.

Returning to the task at hand, Auroux proved in [op. cit.] that symplectic four-
manifolds cover the projective plane. To obtain invariants from these covers, one
first needs to arrange the branch loci into generic and computationally tractable
form, and the main goal of this paper is to do just this. The notion of an approxi-
mately holomorphic covering is refined to a quasiholomorphic covering (Definition
1) in which the branch curve is forced to lie so that projection from a distinguished
point of P? to a complex line maps the branch curve generically onto the line, lead-
ing to a distinguished presentation of the fundamental group of its complement.
Most of the work of the paper returns to the “estimated transversality” arguments
of Auroux’s original construction, to show that these can be adapted to give this
additional regularity. Similarly, the old one-real-parameter construction goes over
to give the obvious uniqueness statement. The converse is much easier (and prob-
ably standard in the field)—given all the combinatorial data, one can associate a
symplectic manifold, well-defined up to symplectomorphism. In principle, then, we
have a classification, and the question of applicability arises.

Note that the discussion after Corollary 2 of Section 4 remains mysterious, and
indeed the applications of later papers do not rely on removing negative nodes but
rather on measuring their effect.
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The last sections of the paper develop two welcome digressions. In the first, the
authors show in detail how to construct Lefschetz pencil monodromy data from that
of branched coverings and braid factorisations. That this is possible is unsurprising
(nets of sections of a line bundle clearly contain all the information of a pencil), but
the detailed construction illuminates two factors. First, the construction is universal
and effected by a homomorphism from a natural subgroup of the braid group to the
mapping class group (cf. Remark 7). Second, this homomorphism is trivial on braid
elements coming from nodes and cusps of the branch curve. This leads to much
simpler formulae for Lefschetz pencils and their monodromy (positive relations),
but also suggests that the invariants the authors are chasing—fundamental groups
of complements of branch curves, for instance—will remain invisible in the smaller
linear system, even though this is usually already enough to rebuild the symplectic
manifold to symplectomorphism.

Towards the end of the paper, the authors illustrate their arguments and com-
putations for the cubic surface in P3. Although the material is by its nature rather
dense, the illustration is well chosen and—bearing this example in mind—the earlier
sections of the paper became less intimidating, at least to this reviewer.

Ivan Smith

From MathSciNet, January 2018

MR1844078 (2002g:53153) 53D35; 32Q28, 32Q65

Biran, P.

Lagrangian barriers and symplectic embeddings.
Geometric and Functional Analysis 11 (2001), no. 3, 407-646.

A classical problem in symplectic topology is to determine an optimal bound
on the size of a ball which can be symplectically embedded into a given symplectic
manifold (M, Q). In fact it was one of Gromov’s first applications of pseudoholomor-
phic curves to compute what is now called Gromov width for a variety of symplectic
manifolds [M. L. Gromov, Invent. Math. 82 (1985), no. 2, 307-347; MR0809718]. In
particular he determined that for a product (M,w) x CP! the radius 7 of any such
ball is subject to the condition that the corresponding area 7r? of the disk does not
exceed the area of {*} x CP', provided that M does not admit a J-holomorphic
sphere of area less than the area of {*} x CP".

The main subject of the paper is a decomposition of Kéhler manifolds (which
should also be valid for general symplectic manifolds) into a Stein manifold and a
disk bundle whose Chern class is represented by the Kéhler form (symplectic form)
on the base equipped with a canonical symplectic structure. The Stein manifold
is described by its skeleton—a finite CW-complex to which it contracts under the
(positive) gradient flow of a plurisubharmonic function on it.

More precisely, let Q be an integer homology class. Assume there is a smooth
and reduced hypersurface ¥ C M whose Poincarédual is k€2 for some k£ € N. X is
called a polarization of the Kéhler manifold; the complete set of data is denoted by
P. Since its 2-area is positive, any complex curve in M has to intersect . Hence
the complement of ¥ is Stein.

In fact, let ® be a section of the holomorphic line bundle £ having ¥ as its
divisor, with ¥ as its regular zero set. Fix a Hermitian metric || - || on it such
that the connection V, compatible with this metric and the holomorphic structure,
has curvature RV = 27ikQ. The pointwise length ¢p = —(1/47)log||®p||? is an
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exhausting plurisubharmonic function of M\X. It is independent of the additional
choices apart from the data describing the polarization. Now —dd¢p = k€2 and
|®p||? has no critical points away from ¥ in a sufficiently small neighborhood. Then
Ap CC M\X is defined to be the union of the unstable submanifolds of critical
points in M\X of the gradient flow of ¢p with respect to the Kéahler metric. If the
critical point is nondegenerate then its unstable submanifold will be isotropic since
¢p is plurisubharmonic (Lemma 8.1.A). Hence their (real) dimension is not bigger
than the complex dimension of M. Ap is called the skeleton of the polarization.

M\Ap is shown to be symplectomorphic to a standard symplectic disk bundle
(E,wp) over X, modeled on the normal bundle Ny; of 3 in M, whose fibres have
area 1/k.

If ¢p is Morse then the skeleton has the structure of a cellular subspace (Def-
inition 2.6.B) which lacks two properties of CW-complexes: the attaching of the
cells along their boundaries to lower-dimensional strata and the strictly decreas-
ing dimensions of the strata. However, there is a CW-complex with a homotopy
equivalence to the skeleton which preserves dimensions, such that its complement is
again symplectomorphic to (E,wg) (Theorem 2.6.C). One main contribution to the
proof is a plurisubharmonic version of the Kupka-Smale theorem: One can perturb
¢p in a compact neighborhood of the set of critical points in M\ to a Morse func-
tion ¢ with the following properties: (1) It is, of course, still plurisubharmonic and
coincides with ¢p in a neighborhood of ¥. (2) Its gradient flow with respect to the
Kahler metric with Kéahler form wg = —dd®¢ is Morse-Smale. Then the union of
unstable manifolds of the critical points Ay will be an isotropic CW-complex. On
the other hand wy is isotopic to the original symplectic form 2, and due to Moser’s
argument they are symplectomorphic. The image of Ay under this symplectomor-
phism will be the replacement for Ap we were looking for. Biran and K. Cieliebak
[Israel J. Math. 127 (2002), 221-244] studied the case when the dimension of Ay
is strictly smaller than half the dimension of M.

The author computes the skeleton in several examples of polarizations. The main
application of the decomposition is that the Gromov width of M\A is considerably
smaller than the Gromov width of M itself. This follows from the following prin-
ciple: Whatever can be symplectically embedded into (M, §2) but not into (E,wp)
must intersect A.

Biran calls this phenomenon Lagrangian barriers. With assumptions on (M, Q)
which are basically the same as those to ensure the existence of Gromov-Witten
invariants by perturbing the almost complex structure, he concludes that every
symplectic ball of radius A\, B(\), with A* > 1/7k must intersect A. Algebraic
geometric arguments, on the other hand, show that this inequality is sharp if the
line bundle defined by ¥ and restricted to it, O(X)|y, is globally generated by
holomorphic sections, which is the case provided k is sufficiently large (Theorem
4.A).

It is pointed out in the paper that the results should be correct in a much
more general context. First of all, the conditions on (M, Q) could probably be
removed using the more general multi-valued perturbations of the data invented in
the context of Gromov-Witten invariants. Second, if (M, €2) is symplectic but not
necessarily Kéhler then, due to S. K. Donaldson [J. Differential Geom. 44 (1996),
no. 4, 666-705; MR1438190], there is a hypersurface Poincarédual to [NQ] if 2 was
a rational class to begin with and N is sufficiently large. However, the algebraic
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methods used in the proofs (in particular the ampleness of the line bundle £) are
to be adopted or replaced by techniques appropriate to this more general setting.
Klaus Mohnke

From MathSciNet, January 2018

MR2231465 (2007b:53178) 53D35; 53D12, 53D40

Biran, P.

Lagrangian non-intersections.

Geometric and Functional Analysis 16 (2006), no. 2, 279-326.

A recurring theme in symplectic topology since its very beginnings has been the
fact that the topology of Lagrangian submanifolds of symplectic manifolds is often
more constrained than that of smooth submanifolds of the same dimension. In
this paper, the author uses some of his previous work (especially [P. Biran, Geom.
Funct. Anal. 11 (2001), no. 3, 407-464; MR1844078] and [P. Biran and K. Cieliebak,
Israel J. Math. 127 (2002), 221-244; MR1900700]) to develop new methods that
reveal further examples of this phenomenon. For instance, it is shown that if X is
a 2m-dimensional closed symplectic manifold such that m5(X) = 0 and if CP™ x X
contains a Lagrangian sphere, then m is an odd multiple of n + 1; additionally,
when m = n+1 the only simply-connected Lagrangian submanifolds L of CP™ x X
satisfy H*(L; Zy) = H*(S?"*1; Z,). Another result proven in this paper states that
if @ is the standard quadric hypersurface of CP™ with n > 3, and A C @ is its real
locus, then any Lagrangian submanifold L C @ with vanishing first homology must
intersect A. Several other results in a similar vein are proven as well.

The proofs of these results proceed by first translating the question of the exis-
tence of the Lagrangian submanifold L into that of the existence of a Hamiltonianly
displaceable Lagrangian submanifold I" in a certain Stein manifold (which neces-
sarily has vanishing Floer homology), and then using a spectral sequence similar
to that constructed in [Y.-G. Oh, Internat. Math. Res. Notices 1996, no. 7, 305
346; MR1389956] to see that the Floer homology of I' cannot vanish unless certain
constraints on the singular cohomology of L are satisfied. To describe the general
setup, assume that (M, w,J) is a K&hler manifold containing a smooth hypersur-
face ¥ Poincaré dual to a multiple of [w] (in the first theorem mentioned in the
previous paragraph, M is CP"*! and ¥ is a hyperplane). Then M\X is Stein, with
exhausting plurisubharmonic function ¢ given by a multiple of the logarithm of
the norm-squared of a section of a line bundle vanishing along . Similar to the
situation in [P. Biran, op. cit.], it is seen that M decomposes symplectically as the
union of a standard disc bundle over ¥ with an isotropic CW complex constructed
from the stable manifolds of a Morse-Bott perturbation of ¢. Let P be the unit
circle bundle in this disc bundle. Over any Lagrangian L in M (or more gener-
ally in M x X for any other symplectic manifold X), one considers the preimage
', € Px X, which is a Lagrangian submanifold of (M\X) x X. Now if M\ is sub-
critical (i.e., the isotropic CW complex mentioned earlier has no cells of dimension
% dim M; this holds for instance if M = CP"*! and ¥ is a hyperplane), then a result
from [P. Biran and K. Cieliebak, op. cit.] shows that I'y, can be displaced from it-
self by a Hamiltonian symplectomorphism, so that the Floer homology HF (T'1,,T'r)
vanishes assuming it is defined. Under a somewhat more general assumption on
the critical submanifolds of the Morse-Bott exhausting plurisubharmonic function
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on M\Y, which is satisfied when M = CP"*! and ¥ is a hypersurface of any de-
gree, the author proves a more general analogue of the above-mentioned result of
[P. Biran and K. Cieliebak, op. cit.] which shows that there is a union A C ¥ of
immersed Lagrangian spheres with the property that if L " A = & then I'y, can be
displaced from itself by a Hamiltonian symplectomorphism. Once this is proven,
the main results become relatively simple algebraic consequences of (an analogue
of) the Oh spectral sequence, which has E; term expressed in terms of H*(I'1; Z2)
and F., term consisting of copies of HF(I',,I'1). In each case, the assumption on
L (e.g., that it is a Lagrangian submanifold of the quadric ) which misses the real
locus A) forces HF(I'y,,T'1) to be well-defined and zero, which implies that all of
the elements of H*(I'1; Z2) must be killed by the higher differentials of the spectral
sequence; the grading properties of this spectral sequence together with the Gysin
sequence for the circle bundle I';, — L then lead to the desired conclusion about

the singular cohomology of L (e.g., that it must be nonvanishing in degree 1).
While the results of this paper are heavily dependent on previous work, sum-
maries of that work are provided which serve to make this paper quite readable. The
main results here, while generally confined to somewhat special cases, are rather

striking, and it would be interesting to know how far they can be generalized.
Michael J. Usher

From MathSciNet, January 2018

MR2499436 (2010b:53155) 53D35; 57R17

McDuff, Dusa

Symplectic embeddings of 4-dimensional ellipsoids.
Journal of Topology 2 (2009), no. 1, 1-22.

Symplectic embedding problems have played a prominent role in symplectic
topology since the time of M. L. Gromov’s Nonsqueezing Theorem. This paper
shows how to convert the problem of symplectically embedding one 4-dimensional
rational ellipsoid into another to a problem of embedding disjoint unions of balls
into CP2, by using a new way to desingularize orbifold blow-ups of weighted pro-
jective spaces. More precisely, the author shows that the ellipsoid E(1, k) (where
k € N is the ratio of the area of the major axis to that of the minor axis) embeds in
the open ball = B(yu) if and only if k disjoint (closed) balls B(1) embed in = B(p).
Moreover, it is shown that the general ellipsoid embedding problem is equivalent
to the symplectic packing problem for k balls with weights w = (wq,...,w),
that is, the problem of embedding k disjoint (closed) balls B(w;),..., B(wy) into
the open ball = B(1). Therefore these questions can then be solved by previous
work of Gromov [Invent. Math. 82 (1985), no. 2, 307-347; MR0809718], P. Biran
[Geom. Funct. Anal. 7 (1997), no. 3, 420-437; MR1466333] and D. McDuff and L.
Polterovich [Invent. Math. 115 (1994), no. 3, 405-434; MR1262938|, by converting
them into questions about the existence of symplectic forms on the k-fold blow-up
of CP2. As a consequence, the author shows that the ball may be fully filled by the
ellipsoid E(1,k), for k = 1,4 and all £ > 9. Another important corollary answers
negatively to a question posed by K. Cieliebak et al. [in Dynamics, ergodic theory,
and geometry, 1-44, Cambridge Univ. Press, Cambridge, 2007; MR2369441], where
they asked if the volume and the Ekeland-Hofer capacities are the only obstructions
to embedding one open ellipsoid into another.
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Section 2 is devoted to the proof of the particular case of embedding ellipsoids
of the form F(1,k), where k € N, into balls, while the general case is proved in
Section 3.

The main idea of the proof is to cut the ellipsoid into balls via toric models.
The toric picture of a rational ellipsoid is a singular triangle, that is, the image of
the ellipsoid under the moment map of the obvious T? action in C? is a singular
triangle which coincides with the moment polytope of a weighted projective plane.
(The intersection of two successive edges of a polytope in R? is a singular point if
the matrix whose rows are outward normals to these edges has determinant # +1.)
The idea is then to show that these triangles can be cut into standard triangles of
different sizes. Moreover, this decomposition also corresponds to a joint resolution
of the two singularities of the toric variety corresponding to the complement of
the triangle in the positive quadrant. The cuts needed to resolve the singularities
in this polytope are parallel to the cuts that decompose the singular triangle into
standard triangles.

This problem also turns out to have very interesting and unexpected relations
to the properties of continued fractions, as explained by the author in Section 3.1.

{For further information pertaining to this item see [D. McDuff, J. Topol. 8
(2015), no. 4, 1119-1122; MR3431670].}

Silvia R. Anjos

From MathSciNet, January 2018

MR2838266 53D42

Hutchings, Michael

Quantitative embedded contact homology.

Journal of Differential Geometry 88 (2011), no. 2, 231-266.

In the article under review, the author defines new obstructions to symplectically
embedding one 4-dimensional Liouville domain into another via embedded contact
homology (ECH), which was also defined by the author [J. Eur. Math. Soc. (JEMS)
4 (2002), no. 4, 313-361; MR1941088]. A Liouville domain is a compact exact sym-
plectic manifold X with a symplectic form w, where w|sx = dA for A a contact form
on its boundary. The author associates to a given 4-dimensional Liouville domain
(X,w) a sequence of real numbers 0 = ¢p(X,w) < ¢1(X,w) < -+ < (X,w) <
-+ < 00, called the ECH capacities of (X,w). The main result of the article under
review is that if (X, wp) and (X7,w;) are two Liouville domains such that (X, wp)
symplectically embeds into (X7,w1), then cx(Xo,wo) < ¢ (X1, wq) for every k > 0
with strict inequality when ¢ (Xo, wp) < co.

The ECH capacities of a Liouville domain (X,w) are defined to be the ECH
spectrum of its boundary (Y,A). The latter is defined via the action filtration
on ECH which measures the length of admissible orbit sets that generate the ECH
chain complex. Suppose (Y, ) is a connected contact 3-manifold with non-vanishing
ECH contact invariant, which is represented by the empty orbit set . Having fixed
nonzero o € ECH(Y, A,0), the author defines the quantity ¢, (Y, \) as the infimum
of L > 0 for which o is in the image of the map ECH”(Y,\,0) — ECH(Y, ), 0).
Then the ECH spectrum of (Y, \) is the sequence {cx (Y, A) }ren, where

(Y, \) := min{c, (Y, \)|o € ECH(Y, \,0), U*o = [0]}.
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The assumption that Y is connected is redundant. The above definition can be
generalized to disconnected contact 3-manifolds as well.

With the preceding understood, the proof of the main result of the article under
review exploits what is known about cobordism maps on ECH induced by weakly
exact symplectic cobordisms, that is, a cobordism from (Y, A4 ) to (Y_, A_) with an
exact symplectic form w such that w|y, = dA4. These cobordism maps were defined
and studied in [“Proof of the Arnold chord conjecture in three dimensions 117,
preprint, arXiv:1111.3324] by C. H. Taubes and the author using the isomorphism
between ECH and Seiberg—Witten Floer cohomology due to Taubes [Geom. Topol.
14 (2010), no. 5, 2497-2581; MR2746723; Geom. Topol. 14 (2010), no. 5, 2583-2720;
MR2746724; Geom. Topol. 14 (2010), no. 5, 2721-2817; MR2746725; Geom. Topol.
14 (2010), no. 5, 2819-2960; MR2746726; Geom. Topol. 14 (2010), no. 5, 2961—
3000; MR2746727]. Among other things, these maps preserve the action filtration
and intertwine the U-action on ECH. As a result, it follows easily from the definition
that if there exists a weakly exact symplectic cobordism from (Y, A1) to (Y_, A_),
then ¢ (Yi, A\y) > (Y-, A_) for each k € N. That said, the proof of the main
result follows at once from the observation that if a Liouville domain (Xo,wp)
embeds into another Liouville domain (X7, wp), then X;\int(Xy) is a weakly exact
symplectic cobordism.

In a significant portion of the article, the author investigates the ECH capac-
ities of various examples including ellipsoids and polydisks, and finds numerical
embedding obstructions for these examples. It is worth noting that D. McDuff
and F. Schlenk showed that the ECH embedding obstructions of one ellipsoid into
another are sharp [Ann. of Math. (2) 175 (2012), no. 3, 1191-1282; MR2912705].
The author also states and discusses a conjecture about determining the symplectic
volume of a Liouville domain via its ECH capacities. More precisely, if (X,w) is a
4-dimensional Liouville domain with ¢ (X,w) < oo for all k£ € N, then

X 2
KX o, w).

lim

k—o0

The author verifies this conjecture in various cases. As a matter of fact, D.

Cristofaro-Gardiner, V. Gripp, and the author recently announced a proof of this
conjecture [“The asymptotics of ECH capacities”, preprint, arXiv:1210.2167].

This article is very much self-contained and presents an interesting application

of ECH to symplectic geometry. Moreover, the fact that it investigates various

examples in detail makes it quite instructive as to the use of ECH.
Cagatay Kutluhan
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McDuff, Dusa; Schlenk, Felix

The embedding capacity of 4-dimensional symplectic ellipsoids.

Annals of Mathematics. Second Series 175 (2012), no. 3, 1191-1282.
Given a real number a > 1 consider the ellipsoid

2 2
E(1,a) = {112 b2 B 1} C R
a
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The paper under review studies the graph of the function ¢ [1,00) — R defined
by posing c¢(a) to be the infimum of all real numbers p for which there exists a
symplectic embedding of E(1,a) into the ball B(u) = {2% + 23 + 2% + 23 < u},
with respect to the standard symplectic form wg = dxy A dxs + dxs A dzy.

An elementary fact about the function ¢ is that c¢(a) > y/a for all a, because
every symplectic transformation preserves the volume. However, due to Gromov’s
non-squeezing theorem it is known that preservation of volume is not the only
constraint for the symplectic embedding problem. As was later understood, other
constraints come from the characteristic flow on the boundary of a domain, and are
seen, for example, by the Ekeland-Hofer capacities. Although it seemed reasonable
to believe that the volume and the Ekeland-Hofer capacities might give a complete
set of obstructions for the symplectic embedding problem of ellipsoids in Euclidean
space, D. McDuff discovered in [J. Topol. 2 (2009), no. 1, 1-22; MR2499436] that
at least in dimension 4 this is not the case: she proved that there are indeed also
other obstructions, related to the theory of embedded contact homology developed
by M. L. Hutchings [J. Differential Geom. 88 (2011), no. 2, 231-266; MR2838266].

In the paper under review the authors calculate c¢(a) for all values of a, and
using this calculation they show that the capacities coming from embedded contact
homology give sharp obstructions for the problem of symplectically embedding an
ellipsoid E(1,a) into a ball, thus confirming in this special case a conjecture of
Hofer. Note that the full Hofer conjecture on 4-dimensional ellipsoids has been
proved by McDuff in a more recent paper [J. Differential Geom. 88 (2011), no. 3,
519-532; MR2844441], without using the results in the paper under review.

The structure of the graph of the function c is very rich, and turns out to be
related to Fibonacci numbers, weight expansions and continued fractions, excep-
tional curves in blow-ups of CP? and to the problem of counting lattice points in
right-angled triangles.

The main result of the paper can be described by saying that the graph of ¢ is
composed of the following three parts:

- On the interval [1, 7%], where 7 = 1+T\/5 is the golden ratio, the graph of ¢ forms
an infinite Fibonacci staircase converging to the point (7%,72). More precisely, let
gn, N € N, denote the odd terms in the sequence of Fibonacci numbers and let

an = (%)2 and b, = 222 Then on the intervals [a,,b,] the graph of c is
a line through the origin, with slope %, while on the intervals [b,, an41] it is
the horizontal line ¢ = /a,+1 (note that \/bT = /any1 so that the function is
continuous).

- For a > 8 4= we have that c¢(a) = \/a (i.e. volume is the only obstruction in
this region).

- On the interval 74,8 -] we have a transition region: c(a) = y/a except on a
finite number of short intervals (described explicitly in the paper).

The main ideas behind the proof of this result are the following (see also the
review articles by McDuff [Jpn. J. Math. 4 (2009), no. 2, 121-139; MR2576029] and
Hutchings [Proc. Natl. Acad. Sci. USA 108 (2011), no. 20, 8093-8099; MR 2806644]):

Using a result of McDuff [op. cit.; MR2499436], the problem of symplectically
embedding an ellipsoid into a ball can be reduced to the problem of symplectically
embedding a disjoint union of balls into a ball. More precisely, let a > 1 be rational
and let w(a) = (wi(a),...,wk(a)) be its weight expansion. Then E(1,a) can be
symplectically embedded into B(p) if and only if the disjoint union | |, B(w;(a))
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can be symplectically embedded into B(u). Recall that the weight expansion of a
rational number a = % (written in lowest terms) can be thought of as describing
how to subdivide a rectangle of sides p and ¢ into squares. For example, w(%) =
(1,1, %, %, %, %, %, %): we can subdivide a rectangle of sides 25 and 9 into two squares
of side 9, one of side 7, three of side 2 and two of side 1. Moreover, the multiplicity

of the weights gives the continued fraction expansion of g. For example,

25 _,, 1
i S
9 L+ 5t

The result that E(1,a) can be symplectically embedded into B(p) if and only if the
disjoint union | |; B(w;(a)) can be, follows from the fact that E(1,a) decomposes
into the union of balls whose sizes are given by the weights of a, since the decom-
position of a rectangle into squares given by the weights induces a decomposition
of the moment image of the ellipsoid into moment images of balls. On the other
hand, the converse uses Taubes-Seiberg-Witten theory and .J-holomorphic curves.

Consider now the set & of tuples (d;my,...,mg) with m; > m; ;1 that satisfy
the Diophantine equations d? + 1 = Ym? and 3d — 1 = ¥;m; and the additional
algebraic condition requiring that (d;my, ..., mg) can be reduced to (0;1,...,1) by
repeated Cremona moves. The authors of the paper under review prove that &
describes the set of homology classes dL — %;m;E; in the k-fold blow-up of CP?
that can be represented by a symplectically embedded sphere of self-intersection
—1 (here L is the class of a line CP' and E; the class of the i-th exceptional
divisor). As proved by McDuff and L. Polterovich [Invent. Math. 115 (1994), no. 3,
405-434; MR1262938] the problem of symplectically embedding a disjoint union of
balls |_|iC B(w;(a)) into a ball can be reduced to the problem of understanding the
symplectic cone of the k-fold blow-up of CP? (i.e. the set of cohomology classes
represented by a symplectic form), and by work of McDuff [in Topics in symplectic
4-manifolds (Irvine, CA, 1996), 8599, First Int. Press Lect. Ser., I, Int. Press,
Cambridge, MA, 1998; MR1635697], P. Biran [Geom. Funct. Anal. 7 (1997), no. 3,
420-437; MR1466333], T.-J. Li and A.-K. Liu [J. Differential Geom. 58 (2001),
no. 2, 331-370; MR1913946] and B. H. Li and T.-J. Li [Asian J. Math. 6 (2002),
no. 1, 123-144; MR1902650] the structure of this cone is understood in terms of
the set &. As a consequence of these results the authors of the paper under review
obtain that for each a € Q

(1) c(a) = max <\/E, sup M) :

(dyma,...,mg)EEL d

Using (1) it is relatively easy to see that c(a) = v/a for a > 83—16, while the key to
describing the function c on [1, 7%] as a Fibonacci staircase is given by the surprising
discovery that there exist classes in & which are given by tuples (d;mq,...,my)
constructed from weight expansions of ratios of odd terms in the sequence of Fi-
bonacci numbers. On the other hand, in order to understand the function ¢ on
the transition region [7?, 8%] a more delicate analysis is needed, involving among
other things a study of the elements of the sets &, of the corresponding functions

> mw; /d, of the influence of a ghost staircase made from the even terms of the
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Fibonacci sequence, and the derivation of surprising identities satisfied by weight

expansions.
Sheila Sandon

From MathSciNet, January 2018

MR3069365 53D35; 57R17

Buse, O.; Hind, R.

Ellipsoid embeddings and symplectic packing stability.
Compositio Mathematica 149 (2013), no. 5, 889-902.

The paper under review is a sequel to [O. Buge and R. Hind, Geom. Topol. 15
(2011), no. 4, 2091-2110; MR2860988], which proved stability results for symplectic
ellipsoid embeddings in any dimension. This is fairly remarkable, given the lack
of techniques dealing with higher-dimensional packing problems, compared to the
situation in dimension 4. In particular, in dimension 4, the stability of symplectic
manifolds (M, w) with [w] € H2(M, Q) was established a long time ago, by P. Biran
[Invent. Math. 136 (1999), no. 1, 123-155; MR1681101].

The main result of the paper under review is stated as follows:

Theorem. There exists a constant S(by,...,b,) such that if a,/a; > S and
ay -G < by by, there exists a symplectic embedding

E(al, .. .,an) — E(bl, .. 7bn)

Intuitively, this means the only obstruction of embedding into a target ellipsoid
is the volume obstruction when the source ellipsoid is thin enough.

A main technical ingredient of the paper is Theorem 1.4, which is a rather
handy 4-dimensional result. Theorem 1.4 was proved using a general necessary and
sufficient condition of ellipsoid embedding in dimension 4 due to M. L. Hutchings
[J. Differential Geom. 88 (2011), no. 2, 231-266; MR2838266] and D. McDuff [J.
Differential Geom. 88 (2011), no. 3, 519-532; MR2844441], which is in general not
easy to verify.

Another very useful technical ingredient is a refinement of the suspension result
from [O. Buge and R. Hind, op. cit.], i.e. Proposition 3.4 of the paper. This says if
E(a,b) embeds into E(c,d), then E(a,b,as,...,a,) embeds into E(c,d, as, ..., a,).
The authors combine the above two results to reduce the main argument to induc-
tive rearrangements of two consecutive radii of the ellipsoid.

Given the stability result on ellipsoid embeddings into ellipsoids, it follows that
when [w] € H?(M,Q), a similar stability result holds for the closed symplectic
manifold (M, w). This essentially follows from the generalized Biran decomposition
in higher dimensions (this implies that there exists a full ellipsoid embedding into
such closed symplectic manifolds), proved by E. Opshtein [Compos. Math. 143
(2007), no. 6, 1558-1575; MR2371382; J. Symplectic Geom. 11 (2013), no. 1, 109—
133; MR3022923] and also presented in the current paper (Theorem 4.1).

The paper also computes examples of stability numbers. For example, it is a
nice result that Nstab((CIPﬁ) is shown to lie in a very narrow range between 8 and
21. Explicitly, this means when n > 21, packing n equal balls has no obstructions
other than volume; while one cannot fully embed 7 balls into CP3 (the latter part
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is a classical result due to M. Gromov [Invent. Math. 82 (1985), no. 2, 307-347;
MR0809718)).
Weiwer Wu

From MathSciNet, January 2018

MR3286479 53D05; 53D10, 53D12

Eliashberg, Yakov

Recent advances in symplectic flexibility.

Bulletin of the American Mathematical Society. New Series 52 (2015), no. 1, 1-26.

In this expository article the author reviews the most prominent flexibility results
in symplectic and contact topology, starting from M. Gromov’s work on the h-
principle in the 60’s and 70’s to E. Murphy’s recent discovery of a flexible class
of Legendrian submanifolds and the author’s joint work with M. S. Borman and
Murphy on the classification of overtwisted contact structures in all dimensions.

In the author’s words, “flexible and rigid problems and the development of each
side toward the other shaped and continue to shape the subject of symplectic topol-
ogy from its inception”. On the flexibility side, the basic starting points are the
classical theorems of Darboux, Moser and Gray which state local flexibility and sta-
bility of symplectic and contact structures. Moreover, in the 60’s and 70’s Gromov’s
work on the h-principle [Partial differential relations, Ergeb. Math. Grenzgeb. (3),
9, Springer, Berlin, 1986; MR0864505] showed that many symplectic and contact
problems are governed by flexibility. Gromov also proved that either the group
of symplectomorphisms is C’-closed in the diffeomorphism group or its C°-closure
coincides with the group of volume-preserving diffeomorphisms. At the same time
Arnold stated his famous conjecture on fixed points of Hamiltonian symplectomor-
phisms (a statement that was known to be false in general for volume-preserving
diffeomorphisms in dimension bigger than two). The Arnold conjecture was first
proved in some special cases in the 80’s, and at the same time also other phe-
nomena were discovered that solved Gromov’s alternative in favor of rigidity (in
particular, Gromov’s non-squeezing theorem). In the author’s words, after the
introduction of holomorphic curves by Gromov [Invent. Math. 82 (1985), no. 2,
307-347; MR0809718], “the rigid side of symplectic topology began unravelling
with an exponentially increasing speed” and “rigid methods dominated the devel-
opment of the subject during the last three decades”. On the other hand, “flexible
milestones after the resolution of Gromov’s alternative” are, according to the au-
thor, the classification by the author of overtwisted contact structures in dimension
three [Invent. Math. 98 (1989), no. 3, 623-637; MR1022310], S. K. Donaldson’s
almost holomorphic sections method for constructing codimension two symplec-
tic submanifolds in dimensions greater than four [J. Differential Geom. 44 (1996),
no. 4, 666-705; MR1438190], the work by the author on existence of Stein structures
[Internat. J. Math. 1 (1990), no. 1, 29-46; MR1044658] and L. Guth’s flexibility
result on symplectic embeddings of polydisks [Invent. Math. 172 (2008), no. 3,
477-489; MR2393077]. After briefly reviewing these works, the author discusses in
more detail some recent breakthroughs on symplectic flexibility, in particular the
results originated by Murphy’s thesis and the classification of overtwisted contact
structures in all dimensions by Borman, Murphy and the author.

In [“Loose Legendrian embeddings in high dimensional contact manifolds”, pre-
print, arXiv:1201.2245] Murphy discovered, on all contact manifolds of dimension
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bigger than three, a class of Legendrian embeddings (which are called loose) that are
flexible, in the sense that they satisfy a certain h-principle. This recent discovery
already led to many important applications. In particular, loose Legendrians are
at the base of the work of the author and Murphy [Geom. Funct. Anal. 23 (2013),
no. 5, 1483-1514; MR3102911] on Lagrangian caps, which also led to unexpected
constructions by T. Ekholm, Murphy, I. Smith and the author [Geom. Funct. Anal.
23 (2013), no. 6, 1772-1803; MR3132903] of Lagrangian immersions with minimal
number of self-intersection points. Using loose Legendrians, K. Cieliebak and the
author [From Stein to Weinstein and back, Amer. Math. Soc. Colloq. Publ., 59,
Amer. Math. Soc., Providence, RI, 2012; MR3012475] defined a class of flexible
Weinstein manifolds, a notion which in turn led to applications to the topology
of polynomially and rationally convex domains [K. Cieliebak and Y. M. Eliash-
berg, Invent. Math. 199 (2015), no. 1, 215-238; MR3294960] and was also a ma-
jor ingredient in S. Courte’s negative answer to the question of whether contact
manifolds with exact symplectomorphic symplectization are necessarily contacto-
morphic [Geom. Topol. 18 (2014), no. 1, 1-15; MR3158770]. Finally, in the recent
preprint [“Existence and classification of overtwisted contact structures in all di-
mensions”, preprint, arXiv:1404.6157] Borman, Murphy and the author generalized
the author’s work in dimension three [op. cit.; MR1022310] to prove that any al-
most contact structure on a closed manifold (of any dimension) is homotopic to
a contact structure. Moreover they extended the definition of overtwisted contact
structures to all dimensions and proved that on any closed manifold any almost
contact structure is homotopic to an overtwisted contact structure, which is unique
up to isotopy.

The paper under review is an expanded version of [Y. M. Eliashberg, in The
influence of Solomon Lefschetz in geometry and topology, 3—18, Contemp. Math.,
621, Amer. Math. Soc., Providence, RI, 2014; MR3289318]. The most important
additions are a review of the classification of overtwisted contact structures in all
dimensions that appeared after the publication of the first paper, and a discussion
in the last section of further directions of research.

Sheila Sandon
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