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MR0140494 (25 #3914) 14.48

Dwork, Bernard

On the rationality of the zeta function of an algebraic variety.

American Journal of Mathematics 82 (1960), 631–648.

Das Hauptergebnis ist der folgende Satz: Die Zetafunktion ζ(V, t) einer algebrais-
chen Mannigfaltigkeit V über einem endlichen Körper k ist eine rationale Funktion
von t (Vermutung von Weil). ζ(V, t) ist durch

(1) ζ(V, t) = exp[

∞∑

i=1

Nit
i/i]

definiert, wo Ni die Anzahl der Punkte von V bedeutet, die Koordinaten in der
Erweiterung i-ten Grades ki von k haben. V mag eine affine, projektive oder
allgemeiner eine abstrakte Mannigfaltigkeit im Sinne von Weil sein, V darf auch
reduzibel und singularitätenbehaftet sein. Durch naheliegende kombinatorische
Überlegungen wird der Beweis auf den Fall zurückgeführt, daß V die Differenz
einer Hyperfläche f(x1, · · · , xn) = 0 im n-dimensionalen affinen Raume über k und
der reduziblen Hyperfläche

∏n
i=1 xi = 0 ist, so daß also Ni die Anzahl der Lösungen

x1, · · · , xn von f(x1, · · · , xn) = 0 mit x ∈ ki
× (Multiplikativgruppe von ki) ist. Mit

irgend einem nichttrivialen Charakter Θ der Additivgruppe von ki gilt

(2) qiNi = (qi − 1)n +
∑

xν∈ki;ν=0,1,··· ,n
Θ(x0f(x1, · · · , xn)),

wo q = pa die Elementezahl von k sei, p die Charakteristik von k. Dies wird in die
p-adische Approximationsformel

(3) qiNi = (qi − 1)n+

∑

ξν∈Ti;ν=0,1,··· ,n

i−1∏

j=0

Fr(ξ0
qj , · · · , ξnqj ) mod pr, r = 1, 2, 3, · · · ,

übergeführt, Fr(X0, · · · , Xn) ist ein Polynom mit ganzen Koeffizienten in dem
Körper Ω, der vollständigen und algebraisch abgeschlossenen Hülle des Körpers
Qp der rationalen p-adischen Zahlen und Ti ist die Gruppe der (qi − 1)-ten Ein-
heitswurzeln in Ω. Diese Umformung verläuft folgendermaßen: ξ → x sei der
Isomorphismus von ki

× auf Ti, der ξ seine Restklasse x nach dem maximalen
Ideal zuordnet, order umgekehrt: ξ = ξ(x) ist der multiplikative (Teichmüller-)
Repräsentant von x in Ω. Ist ζ eine primitive p-te Einheitswurzel und ist Li

die unverzweigte Erweiterung i-ten Grades von Qp, so ist Θ(x) = ζSpurLi/Qp
(ξ(x))

ein nichtrivialer Charakter von ki
+. Für diesen wird eine Aufspaltung Θ(x) =∏i−1

j=0 θ(ξ(x)
pj

) hergeleitet, in der θ(t) =
∑∞

m=0 βmtm eine Potenzreihe bedeutet,

deren Koeffizienten βm (aus Ω) die Abschätzung |βm| ≤ |p|m/(p−1) erfüllen (| | be-
deutet den Betrag im bewerteten Körper Ω). Wird dies noch dem Körper k durch
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Einführung von Λ(t) =
∏a−1

j=0 θ(t
pj

) =
∑∞

m=0 λmtm angepaßt—es gilt wieder (4)

|λm| ≤ |p|m/(p−1)—so folgt aus (2)

qiNi = (qi − 1)n +
∑

ξμ∈Ti

ρ∏

ν=1

i−1∏

j=0

Λ(AνMνξμ
qj )

wenn X0F (X1, · · · , Xn) =
∑ρ

ν=1AνMν mit Aν ∈ k, Mν Potenzprodukt der Xμ ist.

Da die Λ(AνMν
qj ) keine Polynome sind, ist es nötig

∑r(q−1)
m=0 λmtm = Λr(t) gesetzt,

für = 1, 2, · · · , Polynome (5) Fr(X) =
∑

r Λr(AνMν) einzuführen, mit diesen gilt
dann (beachte (4)) die Formel (3). Für die Summe rechts in (3) hat man nun
nach des Verfassers Arbeit [siehe #3913] einen Ausdruck als Spur einer linearen
Transformation des Polynomrings Ω[X] in sich

∑

ξν∈Ti;ν=0,1,··· ,n

i−1∏

j=0

Fr(ξ0
qj , · · · , ξnqj ) = (qi − 1)n+1 Spur (ψ ◦ Fr)

i.

Ähnlich wie [loc. cit.] schließt man jetzt auf die Existenz des Grenzwertes (6)
limr→∞ det(I − tψ ◦ Fr) = Δ(t), dabei ist die Konvergenz—im Potenzreihen-
ring Ω{t}—koeffizientenweise p-adisch gemeint; weiter, daß (7) ζ(V, qt) = (1 −
t)−(−δ)nΔ(t)−(−δ)n+1

gilt, wo δ den loc. cit. erklärten (in der eben erwähnten
Topologie) topologischen Automorphismus der multiplikativen Gruppe 1 + tΩ{t}
bedeutet. Man kann nun die Koeffizienten von det(I − tψ ◦ Fr) aus der Definition
(5) von Fr berechnen und dann, dank der Abschätzung (4), zeigen, daß für die Ko-
effizienten von det(I − tψ ◦ Fr) =

∑∞
m=0 γr,mtm eine Abschätzung |γr,m|1/m ≤ εm;

r = 1, 2 · · · , mit limm εm = 0 gilt. Für Δ(t) =
∑∞

m=0 γmtm folgt |γm|1/m ≤ εm,
und also ist Δ(t) (in Ω) beständig konvergent; (7) ergibt, daß ζ(V, t) p-adisch mero-
morph (Quotient von zwei beständig konvergenten Potenzreihen in Ω ist.

Bemerkt man nun noch, daß ζ(V, t) zufolge der Definition (1) eine Potenzreihe
mit ganzen rationalen Koeffizienten ist, so folgt die Rationalität von ζ(V, t) mit Hilfe
des auch an sich interessanten Kriteriums: Eine Potenzreihe F (t) =

∑∞
i=0 Ait

i mit
Koeffizienten Ai aus einem endlichen algebraischen Zahlkörper L ist genau dann
rational, wenn die Menge der Primstellen p von L so in eine endliche Menge S
und ihr Komplement S′ eingeteilt werden kann, daß (i) |Ai|p ≤ 1, i = 0, 1, 2, · · · ,
gilt für p ∈ S′; (ii) F (t) als Funktion einer p-adischen Variabeln τp in Ωp (der
algebraisch abgeschlossenen und p-adisch vollständigen Hülle von L) in einem Kreise
|τp|p≤Rp meromorph (d.h. Quotient zweier dort konvergenter Potenzreihen) ist,
und es gilt

∏
p∈S Rp>1. Die p-Beträge sind dabei so normiert zu denken, daß

für A �= 0 aus L die Produktformel
∏

p
|A|p = 1 gilt. Der Beweis beruht auf

dem klassischen Kriterium für die Rationalität einer Potenzreihe
∑∞

i=0 Ait
i mit

Koeffizienten aus einem Körper (von É. Borel): Genau dann ist F (t) rational,
wenn es ein m = 1, 2, · · · und ein i0 = 1, 2, · · · , gibt, so daß die Hankelschen
Determinanten Ni,m = det (Ai+j+1)j,1=0,··· ,m null sind für i ≥ i0. Es wird übrigens
nur der einfachste Fall L = Q und S = {p, p∞} dieses Kriteriums gebraucht. Zum
Schluß wird noch auf die loc. cit. nur unter der Annahme der Rationalität von
ζ(V, t) bewiesenen Aussagen hingewiesen.

Die Aufspaltung des additiven Charakters Θ mittels der gut konvergenten Poten-
zreihe θ, die ein wesentliches Hilfsmittel des Beweises bildet, ist, wie der Verfasser
bemerkt, keinesweges die einzig mögliche und es wird angedeutet, wie man sie auch
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auf anderem Wege gewinnen kann; ferner wird bemerkt, daß die genannte Auf-
spaltung auch für die Theorie der Gaußschen Summen nützlich ist, es wird eine
Kongruenz von Stickelberger [Math. Ann. 37 (1890), 321–367] mit ihrer Hilfe
hergeleitet.

M. Deuring

From MathSciNet, March 2018

MR0340258 (49 #5013) 14G13

Deligne, Pierre

La conjecture de Weil. I. (French)

Institut des Hautes Études Scientifiques. Publications Mathématiques (1974),
no. 43, 273–307.

This is without question the most important paper in algebraic geometry to have
appeared in the last ten years (since H. Hironaka’s proof of resolution of singularities
in characteristic zero [Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964),
205–326; MR0199184]). Deligne has proved the Riemann hypothesis for varieties
over finite fields! The superficial reader may be dismayed that the proof uses the full
strength of the Artin-Grothendieck étale cohomology theory as it is set down in the
2544 pages of SGA4 and SGA7 [Théorie des topos et cohomologie étale des schémas,
Tome 1: Théorie des topos (Sém. de Géométrie Algébrique du Bois-Marie 1963–
1964, SGA4), Lecture Notes in Math., Vol. 269, Springer, Berlin, 1972; Théorie des
topos et cohomologie étale des schémas, Tome 2 (Sém. de Géométrie Algébrique
du Bois-Marie 1963–1964, SGA4), Lecture Notes in Math., Vol. 270, Springer,
Berlin, 1972; Théorie des topos et cohomologie étale des schémas, Tome 3 (Sém.
de Géométrie Algébrique du Bois-Marie 1963–1964, SGA4), Lecture Notes in Math.,
Vol. 305, Springer, Berlin, 1973; Groupes de monodromie en géométrie algébrique, I
(Sém. de Géométrie Algébrique du Bois-Marie 1967–1969, SGA7I), Lecture Notes
in Math., Vol. 288, Springer, Berlin, 1972; Groupes de monodromie en géométrie
algebrique, II (Sém. de Géométrie Algébrique du Bois-Marie 1967–1969, SGA7II),
Lecture Notes in Math., Vol. 340, Springer, Berlin, 1973] and the various loose
exposés (available in preprint form only) of the still unpublished SGA5. In fact
the author does an excellent job of isolating and stating clearly precisely which
results he is using, thus providing the reader with a valuable skeleton key to those
weighty tomes. Because the actual proof is quite readable, and has already been
summarized by J.-P. Serre (“Valeurs propres des endomorphismes de Frobenius
(d’après P. Deligne)”, to appear in Séminaire Bourbaki, 1973/1974, 26ème année),
I will only discuss the sources of some of the ideas that go into the proof.

Recall that for any variety X over a finite field Fq, its zeta function Z(X/Fq, T )
is defined as the formal power series exp(

∑
n≥1 NnT

n/n), where Nn is the number
of points of X with coordinates in the field Fqn . Thus the zeta-function of X
provides a sort of Diophantine summary of X.

In 1949, A. Weil [Bull. Amer. Math. Soc. 55 (1949), 497–508; MR0029393]
made his famous conjectures about the zeta-function of a projective, non-singular
n-dimensional variety X over Fq (generalizing what he himself had proved for X a
curve, an abelian variety or a Fermat hypersurface).

(1) Z(X/Fq, T ) is a rational function of T .
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(2) Moreover,

Z(X/Fq, T ) = P1(T )P3(T ) · · ·P2n−1(T )/P0(T )P2(T ) · · ·P2n(T ),

where Pi(T ) =
∏bi

j=1(1− αijT ), |αij | = qi/2, the last equality being the “Riemann
hypothesis” for varieties over finite fields.

(3) Under α �→ qn/α, the αi,j are carried bijectively to the α2n−i,j . This is a
functional equation for T �→ 1/qnT .

(4) In case X is the “reduction modulo p” of a nonsingular projective variety X
in characteristic zero, then bi is the ith topological Betti number of X as a complex
manifold.

The moral is that the topology of the complex points of X, expressed through
the classical cohomology groups Hi(X,C), determines the form of the zeta-function
of X, i.e., determines the Diophantine shape of X. Weil gave a heuristic argu-
ment for this, as follows [Proceedings of the International Congress of Mathemati-
cians (Amsterdam, 1954), Vol. III, pp. 550–558, Noordhoff, Groningen, 1956;
MR0092196]. Among all elements of the algebraic closure of Fp, the elements of
Fq are singled out as the fixed points of the Frobenius morphism x �→ xq. More
generally, if x = (· · · , xi, · · · ) is a solution of some equations which are defined

over Fq, then F (x)
dfn→ =(, · · · , xi

q, · · · ) will also be a solution of the same equa-
tions, and the point x will have its coordinates in Fq precisely when F (x) = x.
Thus F is an endomorphism of our variety X over Fq, and Nn = #Fix(Fn); thus
Z(X/Fq, T ) = exp(

∑
(Tn/n)#Fix(Fn)).

Suppose that we consider instead a compact complex manifold X, and an en-
domorphism F of X with reasonable fixed points. Then the Lefschetz fixed point
formula would give us #Fix(Fn) =

∑
(−1)itrace(Fn|Hi(X,C)), which is formally

equivalent to the identity

exp(
∑

n≥1

(Tn/n)#Fix(Fn)) =
2n∏

i=0

det(1− TF|Hi(X,C))(−1)i+1

.

The search for a “cohomology theory for varieties over finite fields” which could
justify this heuristic argument has been responsible, directly and indirectly, for
much of the tremendous progress made in algebraic geometry during the past
twenty-five years. Weil’s proofs of the Riemann hypothesis for curves over fi-
nite fields had already necessitated his Foundations of algebraic geometry [Amer.
Math. Soc., New York, 1946; MR0023093; revised edition, Providence, R.I., 1962;
MR0144898]. Around the same time, O. Zariski had also begun emphasizing the
need for an abstract algebraic geometry. His disenchantment with the lack of rigor
in the Italian school had come after writing his famous monograph Algebraic sur-
faces [Springer, Berlin, 1935; Zbl 10, 377] which gave the “state of the art” as
of 1934. The possibility of transposing to abstract algebraic varieties with their
“Zariski topology” the far-reaching topological and sheaf-theoretic methods that
had been developed by Picard, Lefchetz, Hodge, Kodaira, Leray, Cartan,... in
dealing with complex varities was implicit in Weil’s lecture notes “Fibre spaces in
algebraic geometry” [mimeographed lecture notes, Math. Dept., Univ. of Chicago,
Chicago, Ill., 1952 (1955)]. This transposition was carried out by Serre in his fa-
mous article FAC [Ann. of Math. (2) 61 (1955), 197–278; MR0068874]. From the
point of view of the Weil conjectures, however, this theory was still inadequate, for
when applied to varieties in characteristic p it gave cohomology groups that were
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vector spaces in characteristic p, so could only give “mod p” trace formulas, i.e.,
could only give “mod p” congruences for numbers of rational points.

(I) l-adic cohomology: After some false starts (e.g., Serre’s Witt vector coho-
mology [International Symposium on Algebraic Topology, pp. 24–53, Univ. Nac.
Autónom. de México, Mexico City, 1958; MR0098097; Amer. J. Math. 80 (1958),
715–739; MR0098100]) and B. M. Dwork’s “unscheduled” (because apparently non-
cohomological) proof [ibid. 82 (1960), 631–648; MR0140494] of the rationality
conjecture (1) for any-variety over Fq, M. Artin and A. Grothendieck developed a
“good” cohomology theory based on the notion of étale covering space, and gen-
eralizing Weil’s l-adic matrices [see the third, fourth and fifth references to SGA4
above]. In fact, they developed a whole slew of theories, one for each prime number
l �= p, whose coefficient field was the field Ql of l-adic numbers. Each theory gave

a factorization of the zeta-function Z(T ) =
∏2n

i=0 Pi,l(T )
(−1)i+1

into an alternat-
ing product of Ql-adic polynomials, satisfying conjecture (3). In the case when X
could be lifted to X in characteristic zero, they proved that Pi,l was a polynomial
of degree bi(X). However, they did not prove that the Pi,l in fact had coefficients
in Q, nor a fortiori that the Pi,l were independent of l. This meant that in the

factorization of an individual Pi,l, Pi,l(T ) =
∏bi

j=1(1−αi,j,lT ), the roots αi,j,l were
only algebraic over Ql, but possibly not algebraic over Q, and so they might not
even have archimedean absolute values. (Of course, by a theorem of Fatou, the ac-
tual reciprocal zeros and poles of the rational function Z(T ) are algebraic integers;
the problem is that there may be cancellation between the various Pi,l in the l-adic
factorization of the zeta-functions.)

So the question became one of how to introduce archimedean considerations into
the l-adic theory. Even before the l-adic theory had been developed, Serre [Ann. of
Math. (2) 7 (1960), 392–394; MR0112163; correction, MR 22, p. 2545], following
a suggestion of Weil [see the tenth reference above, p. 556], had formulated and
proved a Kählerian analogue of the Weil conjectures, making essential use of the
Hodge index theorem. In part inspired by this, in part by his own earlier (1958)
realization that the Castelnuovo inequality used by Weil was a consequence of the
Hodge index theorem on a surface, Grothendieck in the early sixties formulated
some very difficult positivity and existence conjectures about algebraic cycles, the
so-called “standard conjectures” [cf. S. Kleiman, Dix exposés sur la cohomologie
des schémas, pp. 359–386, North-Holland, Amsterdam, 1968; MR0292838], whose
truth would imply the independence of l and the Riemann hypothesis.

Much to everyone’s surprise, the author managed to avoid these conjectures
altogether, except to deduce one of them from the Weil conjectures, the “hard”
Lefschetz theorem giving the existence of the “primitive decomposition” of the co-
homology of a projective non-singular variety, a result previously known only over
C, and there by Hodge’s theory of harmonic integrals. The rest of the “standard
conjectures” remain open. In fact, the generally accepted dogma that the Riemann
hypothesis could not be proved before these conjectures had been proved [cf., J.
Dieudonné, Cours de géometrie algébrique, Vol. I: Aperçu historique sur le devel-
opment de la géométrie algébrique, especially p. 224, Presses Univ. France, Paris,
1974; Vol. II: Précis de géométrie algébrique élémentaire, 1974] probably had the
effect of delaying for a few years the proof of the Riemann hypothesis.

(II) The new ingredients: So what was it that finally allowed the Riemann
hypothesis for varieties over finite fields to be proved? There were two principal
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ingredients. (1) Monodromy of Lefschetz pencils: In the great work of S. Lefschetz
[L’analysis situs et la géométrie algébrique, Gauthier-Villars, Paris, 1924; reprint-
ing, 1950; MR0033557] on the topology of algebraic varieties, he introduced the
technique of systematically “fibering” a projective variety by its hyperplane sec-
tions, and then expressing the cohomology of that variety in terms of the cohomol-
ogy of those fibers. The general Lefschetz theory was successfully transposed into
l-adic cohomology, but it didn’t really bear Diophantine fruit until D. A. Každan
and G. A. Margulis proved that the “monodromy group” of a Lefschetz pencil of
odd fibre dimension was as “large as possible”. The author realized that if the
same result were true in even fibre dimension as well, then it would be possible
to inductively prove the independence of l and the rationality of the Pi,l of X,
by recovering them as generalized “greatest common divisors” of the Pi,l of the
hyperplane sections. But the Každan-Margulis proof was Lie-algebra theoretic in
nature, via the logarithms of the various Picard-Lefschetz transformations in the
monodromy group. The restriction to odd fibre dimension was necessary because
in that case the Picard-Lefschetz transformations were unipotent, thus had inter-
esting logarithms, while in even fibre dimension they were of finite order. Soon
thereafter, N. A’Campo [Invent. Math. 20 (1973), 147–169; MR0338436], found
a counterexample to a conjecture of Brieskorn that the local monodromy of iso-
lated singularities should always be of finite order. Turning sorrow to joy, Deligne
realized that A’Campo’s example could be used to construct (non-Lefschetz) pen-
cils which would have unipotent local monodromy. These he used to make the
Každan-Margulis proof work in even fibre-dimension as well, and so to establish
the “independence of l” and rationality of the Pi,l [cf. J.-L. Verdier, Séminaire
Bourbaki, 25ème année (1972/1973), Exp. No. 423, pp. 98–115. Lecture Notes in
Math., Vol. 383, Springer, Berlin, 1974].

With this result, the importance of monodromy considerations for Diophantine
questions was firmly established. (2) Modular forms, Rankin’s method, and the
cohomological theory of L-series: In the years after the Weil conjectures were first
formulated, experts in the theory of modular forms began to suspect a strong
relation between the Weil conjectures and the Ramanujan conjecture on the order
of magnitude of τ (n). Recall that the τ (n) are the q-expansion coefficients of the
unique cusp form Δ of weight twelve on SL2(Z) : Δ(q) = q(

∏
n≥1(1 − qn))24 =∑

τ (n) · qn. As an arithmetic function, τ (n) occurs essentially as the error term
in the formula for the number of representations of n as a sum of 24 squares.
The Ramanujan conjecture is that |τ (n)| ≤ n11/2d(n), d(n) = # (divisors of n).
According to Hecke theory (which had been “prediscovered” by Mordell for Δ), the
Dirichlet series corresponding to Δ admits an Euler product:

∑
n≥1 τ (n) · n−s =∏

p(1/1− τ (p) · p−s + p11−2s).

The truth of the Ramanujan conjecture for all τ (n) is then a formal consequence
of its truth for all τ (p) with p prime: |τ (p)| ≤ 2p11/2. This last inequality may be
interpreted as follows. Consider the polynomial 1−τ (p)T +p11T 2 and factor it: 1−
τ (p)T+p11T 2 = (1−α(p)T )(1−β(p)T ). Then the Ramanujan conjecture for τ (p) is
equivalent to the equality |α(p)| = |β(p)| = p11/2. If there were a projective smooth
varietyX over Fp such that the polynomial 1−τ (p)·T+p11T 2 divided P11(X/Fp, T ),
then the Riemann hypothesis forX would imply the Ramanujan conjecture for τ (p).
The search for this X was carried out by Eichler, Shimura, Kuga, and Ihara [cf.
Y. Ihara, Ann. of Math. (2) 85 (1967), 267–295; MR0207655; M. Kuga and G.
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Shimura, ibid. (2) 82 (1965), 478–539; MR0184942]. They constructed an X which
“should have worked”, but because their X was not compact and had no obvious
smooth compactification, its polynomial P11 did not necessarily have all its roots of
the correct absolute value. The author then showed how to compactify their X and
how to see that the Hecke polynomial 1 − τ (p)T + p11T 2 divided a certain factor
of P11, the roots of which factor would have the “correct” absolute values if the
Weil conjectures were true. Thus the truth of the Ramanujan conjecture became
a consequence of the universal truth of the Riemann hypothesis for varieties over
finite fields.

In 1939 R. A. Rankin [Proc. Cambridge Philos. Soc. 35 (1939), 351–372;
MR0000411; correction, MR 1, p. 400] had obtained the then-best estimate for τ (n)
(namely τ (n) = O(n29/5)) by studying the poles of the Dirichlet series

∑
(τ (n))2 ·

n−s. R. P. Langlands [Lectures in modern analysis and applications, III, pp. 18–
61, Lecture Notes in Math., Vol. 170, Springer, berlin, 1970; MR0302614] pointed
out that the idea of Rankin’s proof could easily be used to prove the Ramanujan
conjecture, provided one knew enough about the location of the poles of an infinite
collection of Dirichlet series formed from Δ by forming even tensor powers: for each
even integer 2n one needed to know the poles of the function represented by the

Euler product
∏

p

∏2n
i=0(1/(1− α(p)iβ(p)2n−ip−s))(

2n
i ).

The author studied Rankin’s original paper in an effort to understand the re-
marks of Langlands. He realized that for L-series over curves over finite fields (in-
stead of L-series over Spec(Z)), Grothendieck’s cohomological theory [A. Grothen-
dieck, Séminaire Bourbaki, Vol. 1964/1965, Exp. No. 279, facsimile reproduction,
Benjamin, New York, 1966; see MR 33 #54201] of such L-series together with the
Každan-Margulis monodromy result gave an a priori hold on the poles: Rankin’s
methods could therefore be combined with Lefschetz pencil-monodromy techniques
to yield the Riemann hypothesis for varieties over finite fields, and with it the
Ramanujan-Petersson conjecture as a corollary.

(III) Other Applications: Another arithmetic application is the estimation of
exponential sums in several variables. Though technically difficult, the idea goes
back to Weil [Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207; MR0027006], who
showed how the Riemann hypothesis for curves over finite fields gave the “good”
estimate for exponential sums in one variable.

As for geometric applications, we have already mentioned the hard Lefschetz
theorem which is promised for the sequel to the present paper. There is also a
whole chain of ideas built around the “yoga of weights”, Grothendieck’s catch-
phrase for deducing results on the cohomology of arbitrary varieties by assuming
the Riemann hypothesis for projective non-singular varieties over finite fields. The
whole of the author’s “mixed Hodge theory” for complex varieties [Inst. Hautes

Études Sci. Publ. Math. No. 40 (1971), 5–57; “Théorie de Hodge, III”, to appear in

Inst. Hautes Études Sci. Publ. Math.], developed before his proof of the Riemann
hypothesis, is intended to prove results about the cohomology of these varieties
which follow from the Riemann hypothesis and from the systematic application
of Hironaka’s resolution of singularities. The recent work of the author, Griffiths,
Morgan and Sullivan on the rational homotopy type of complex varieties is also
considerably clarified by the use of the Riemann hypothesis.

Nicholas M. Katz

From MathSciNet, March 2018
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MR0601520 (83c:14017) 14G13; 10H10

Deligne, Pierre

La conjecture de Weil. II. (French)

Institut des Hautes Études Scientifiques. Publications Mathématiques (1980),
no. 52, 137–252.

This paper is the sequel to an earlier one by the author [same journal No. 43
(1974), 273–307; MR0340258]. By an essentially new method, which he calls the
method of Hadamard-de la Vallée-Poussin because it involves showing that a large
class of L-functions do not vanish on the line Re s = 1, the author generalizes
his results on the absolute values of the eigenvalues of Frobenius acting on étale
cohomology to the case of twisted coefficients. He applies his results to prove the
hard Lefschetz theorem and the local invariant cycle theorem, as well as to the
study of the homotopy type of an algebraic variety.

Let X0 be an algebraic variety defined over a finite field Fq, and let X be
the base extension of X0 to the algebraic closure F of Fq. (The convention of
dropping a subscript 0 to indicate base extension to F will be used without comment
throughout this review.) Let x be a geometric point of X. The fundamental group

π1(X0, x) is an extension of Ẑ by π1(X, x). A smooth l-adic sheaf on X0 [resp.
Weil sheaf on X0] is given by a continuous representation of π1(X0, x) [resp. of

W (X0, x) = subgroup of π1(X0, x) mapping to Z ⊂ Ẑ] on a finite-dimensional
vector space V over a finite extension of Ql.

Given a closed point y ∈ X0, there is a conjugacy class [Fy] ⊂ π1(X0, x) asso-
ciated to the inverse of the Frobenius in Gal(F/Fq(y)). A Weil sheaf E0 on X0

is i-pure of weight n for a given isomorphism i of Ql onto C if for all y ∈ X0

the eigenvalues of Fy all have absolute value qn/2. E0 is pure of weight n if it is
i-pure of weight n for any i. For example, if f0 : Y0 → X0 is smooth and projective,
Rmf∗Ql is pure of weight m by the Weil conjectures. E0 is mixed if it is an iterated
extension of pure sheaves.

For E0 on X0 a Weil sheaf, the cohomology H∗
c (X,E) inherits a Z-action and

hence a notion of i-weights (computed for the inverse of the canonical generator of
Z). The main result in the paper under review is that E0 i-mixed of weights ≤ n
implies that Hr

c (X,E) has i-weights ≤ n+ r.
To see the power of this result, suppose X0 is an open smooth curve and that

E0 and G0 are pure of weights n and m with n ≤ m. Using the duality between
compactly supported and ordinary cohomology, H1(X,Hom(E,G)) is seen to have
weights ≥ 1. In particular there are no Frobenius invariants, hence no extensions
of E0 by G0 nonsplit over X. This semisimplicity result, applied with X0 ⊂ P1

parametrizing smooth members of a Lefschetz pencil on a variety V0, and E the
sheaf of middle dimensional cohomology groups on the fibres of the pencil, yields
E = Eπ ⊕ W with π = π1(X). W has no π invariants or coinvariants so E
and W are perpendicular under the intersection pairing. This is equivalent to
the classical assertion that any invariant vanishing cycle is trivial, and the hard
Lefschetz theorem follows.

Let Z(E0, t) =
∏

y det(I −Fyt|Ey)
−1. The Grothendieck cohomological formula

gives Z(E0, t) as a product det(I − Ft|Hi
c(X,E)(−1)i). The proof of the main

theorem is reduced to the case when E0 has i-weight 0 and X0 is an open curve. By
duality it suffices to show the weights of Hi

c(X,E) ≤ 1. An elementary argument
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based on the convergence of the infinite product for Z(E0, t) shows that these
weights ≤ 2.

One assumes inductively the weights ≤ 1 + 2−k, and one considers E0 � E0 on
X0 × X0. If Y0 ⊂ X0 × X0 is a hyperplane section one shows that the weights
on H1(Y,E0 � E0|Y ) are integral and strictly less than 2. (It is here that the
Hadamard-de la Vallée-Poussin method is used.) Fibering X0 ×X0 by a Lefschetz
pencil, the above is sufficient to show the weights on H2(X ×X,E �E) ≤ 2+2−k,
which gives 1 + 2−k−1 ≥ weights of H1(X,E).

Let ωs be the character q
− deg(x)·s onW = W (X0, x), where s ∈ C and deg : W →

Z. The Hadamard-de la Vallée-Poussin idea is based on considering L-functions
L(τωs) where X0 is a curve and τ is a unitary representation of W . Let ν(τ ) be
the residue at s = 1 of

−L′

L
(τωs) =

∑

n,x

logN(x) · Tr(τ (Fn
x ))N(x)

−ns.

One knows that ν(τ ) is defined, ν(1) = 1, ν(τ ) = ν(τ), and ν(τ ) ≤ 0 for τ �=
1. Extending ν to the Grothendieck group of virtual unitary representations by
additivity and observing the terms on the right above are positive for s real and
tr(τ ) > 0, one also has ν(ρ⊗ ρ) ≥ 0 for any virtual unitary representation ρ. The
author proves a general lemma valid for any group W to the effect that such a
function ν on the category of virtual unitary representations necessarily satisfies
ν(τ ) = 0 for τ irreducible unitary except τ = 1 and possibly one other τ defined
by a character of order 2. In the case at hand, such an exotic τ would correspond
to a curve (double cover of X0) whose zeta function had no pole at s = 1, and this
cannot occur.

By a curious misprint, the running head throughout the paper is “la conjoncture
de Weil”. More appropriate might have been “la conjunction de Weil et Deligne”.

Spencer J. Bloch

From MathSciNet, March 2018
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Weil, André

Foundations of Algebraic Geometry. (English)

American Mathematical Society Colloquium Publications, vol. 29.
American Mathematical Society , New York , 1946, xix+289 pp.

Advances in the more arithmetic branches of modern algebra and their applica-
tion to number theory naturally lead, as we may venture to say today, to problems
which to the well-informed mathematician either appeared familiar as part of the
heritage of classical algebraic geometry or seemed to be intrinsically adapted to a
solution by more conceptual geometric methods. Furthermore, since major parts of
the theory of algebraic functions of one variable had been fitted into the system of
algebra it was sensible that similar interpretations and attempts at solutions were
(and had to be) tried for higher dimensional problems. In order to understand and
appreciate the ultimate significance of this book the reader may well keep in mind
the preceding twofold motivation for the interest in algebraic geometry. Classical
algebraic geometry made free use of a type and mode of reasoning with which the
modern mathematician often feels uncomfortable, though the experience based on a
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rich and intricate source of examples made the founders of this discipline avoid seri-
ous mistakes in final results which lesser men might have been prone to make. The
main purpose of this treatise is to formulate the broad principles of the intersection
theory for algebraic varieties. We find those fundamental facts without which, for
example, a good treatment of the theory of linear series would be difficult. The
doctrine of this book is that an unassailable foundation (and thereby justification)
of the basic concepts and results of algebraic geometry can be furnished by certain
elementary methods of algebra. Thus, the reader will agree after some time that
he is finding a delicate tool which can serve him to remove the traces of insecurity
which occasionally accompany geometric reasoning. Incidentally, the term “ele-
mentary” used here and by the author is to be understood in a restricted technical
sense, in the sense that general ideal theory and the theory of power series rings
are not brought into play too often. The proofs require the general plan of using
the “principles of specialization,” as formulated algebraically by van der Waerden;
and they are by no means elementary in the customary connotation. To some read-
ers the adherence to a definite type of approach, where another author may have
deemed it more instructive or appropriate to use slightly different methods, may
tend to cloud occasionally immediate understanding by the less adept. However,
once the reader has grasped the real geometric meaning of a definition or theorem
(he then has to forget occasionally the fine points resulting from the facts that
the author imposes no restriction on the characteristic of the underlying field of
quantities) he will recognize how skilfully the language and methods of algebra are
used to overcome certain limitations of spatial intuition.

The author begins his work with judiciously selected results from the theory of
algebraic and transcendental extensions of fields [chapter I, Algebraic preliminar-
ies]. Special emphasis has to be placed on inseparable extensions, which incidentally
means a more complete account than is found in books on algebra. The further plan
of the book is perhaps best appreciated if one starts to ponder over a more or less
heuristic definition of “algebraic variety,” and then asks one’s self informally how
one should define “intersections with multiplicities” of “subvarieties.” Then, in view
of the principle of local linearization in classical analysis, the author’s arrangements
of topics is more or less dictated by the ultimate subject under discussion, provided
one does not place the interpretation of geometrical concepts by ideal theory at the
head of the discussion. Therefore the technical definitions of point, variety, generic
point and point set attached to a variety [chapter IV, The geometric language] must
be preceded by suitable algebraic preparations [essentially in chapter II, Algebraic
theory of specializations] and more arithmetic studies [chapter III, Analytic theory
of specializations]. Crucial results in this connection, based on arithmetical consid-
erations, are found in proposition 7 on page 60 and theorem 4 on page 62, where
the existence of a well-defined multiplicity is proved for specializations. For further
work, the author next introduces the concept of simple point of a variety in affine
space by means of the linear variety attached to the point. [See the significant
propositions 19 to 21 on pages 97–99.] Next, the intersection theory of varieties in
affine space is presented through the following stages of increasing complexity: (i)
intersection with a linear subspace of complementary dimension, the 0-dimensional
case, with the important criterion for multiplicity 1 in proposition 7 on page 122,
and ultimately the criterion for simple points in theorem 6 on page 136; (ii) in-
tersection with a linear subspace of arbitrary dimension, with theorem 4 on page
129 which justifies the invariant meaning of the term “intersection multiplicity of a
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variety with a linear variety along a variety” [chapter V, Intersection multiplicities,
special case]. In chapter VI, entitled General intersection theory, the results for the
linear case are extended so as to culminate in the important theorem 2 on page
146 concerning the proper components of the intersection of two subvarieties in a
given variety. Furthermore, all important properties of intersection multiplicities
are established. Later, in appendix III, it is shown that the properties established
for a certain symbol are characteristic for intersection multiplicities and uniquely
define that concept. It may be mentioned that the topological definition of the
chain intersections on manifolds coincides with the algebraically defined concept
of this book. Of course, the underlying coefficient field has to be the field of all
complex numbers and further simplifying assumptions on the variety have to be
made. However, this comparison cannot be made at the level of chapters V and
VI, since there one deals with affine varieties to which the ordinary topological
considerations are not directly applicable.

The subsequent chapter VII, Abstract varieties, provides the necessary back-
ground for the aforementioned connections and also contains complete proofs of
those results which one might have formulated first had one deliberately adopted
ideal-theoretic intentions at an early stage. The abstract varieties of this chapter
are obtained by piecing together varieties in affine spaces by means of suitably re-
stricted birational transformations. This definition of the author has turned out
to be very fruitful for the work on the Riemann hypothesis for function fields and
the study of Abelian varieties in general. In the course of the work, the results of
the preceding chapters are extended so as to lead up to the important theorem 8
on page 193 related to Hopf’s “inverse homomorphism.” The chapter ends with
a theory of cycles of dimension s, that is, formal integral combinations of sim-
ple abstract subvarieties of dimension s. The notion of the intersection product
of cycles is also introduced here [page 202], by means of which the investigation
of equivalence theories can be initiated. This is done more explicitly in chapter
IX, Comments and discussion; apparently the Riemann-Roch theorem for surfaces
should now be accessible to a careful re-examination. As a further result, the the-
ory of quasi-divisibility of Artin and van der Waerden is developed in theorems
3 and 4 on pages 224–225 and theorem 6 on page 230. These theorems exhibit
the relations between the theory of cycles of highest dimension and the theory of
quasi-divisibility, where naturally some of the results in appendix II, Normalization
of varieties, are to be added for the necessary integral closure of the required rings
of functions. In this appendix the author relates his results on the normalization
of algebraic varieties to those of Zariski. At this point the individual reader may
well compare the elementary and the ideal-theoretic approach to a group of theo-
rems. In appendix I, Projective spaces, often used properties and facts concerning
projective spaces are quickly developed on the basis of the preceding work. This
brief discussion not only deals with results which are generally useful in algebraic
geometry, but also contains one of the theorems on linear series of divisors which
was frequently used in the classical work [see page 266]. Because of the wealth of
material and the excellent “advice to the reader” prefacing this rich and important
book the reviewer feels that he should mention some of the highlights and not delve
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into a discussion of technical details. In short, the only way to appreciate this
treatise is actually to read it.

O. F. G. Schilling

From MathSciNet, March 2018
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Weil, André

Sur les courbes algébriques et les variétés qui s’en déduisent. (French)

Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945).
Hermann et Cie., Paris , 1948, iv+85 pp.

Suppose that Ωk is a field of algebraic functions of one variable with a finite field
k of q elements for a coefficient field. Let p be a prime divisor of Ωk which is trivial
on k, i.e., a homomorphism of a suitable subring of Ωk upon an algebraic extension
k(p) of k with [k(p) : k] = d(p). Then the zeta function of Ωk can be defined as
Z(u) =

∏
p(1−ud(p))−1, where u is a complex variable, and the product is extended

over all distinct prime divisors. Artin formulated the analogue of the Riemann

hypothesis as the statement that the zeros of Z(u) lie on the circle |u| = q−
1
2 .

The author gives in this paper the first complete proof of this Riemann hypothesis
for function fields of arbitrary genus. His proof depends on a reformulation of
the hypothesis as an assertion on the positiveness of a quadratic form [corollary 3
on page 70]. This quadratic form is derived from a trace function σ acting on a
subring of the ring of correspondences of Ωk. Thus the author requires a complete
treatment of the theory of correspondences, and the major portion of the present
paper is devoted to it.

For the unity of method and in order to establish a clearcut connection with the
original papers of Castelnuovo, Enriques, Severi and others, it is found convenient to
discuss “curves Γ over k” instead of the function field Ωk. The concept of “curve” as
used by the author requires a careful explanation as given in his book “Foundations
of Algebraic Geometry” [Amer. Math. Soc. Colloquium Publ., v. 29, New York,
1946; MR0023093], where it is not required that k be a finite field. (Naturally the
author shows how the connection can be made between his theory and the slightly
different theory of the field Ωk.) For the treatment of the algebraic geometry on
a curve the author permits himself to draw freely upon his book. Thus in the
definition of the canonical divisors and in the proof of the theorem of Riemann-
Roch the geometry of the 2-fold product of Γ by itself is used, and thereby tools like
the intersection product, etc., are employed. Such tools are not absolutely necessary
if one just desires to demonstrate the theorem of Riemann-Roch. However, for the
discussion of the all-important trace function it is preferable to have available, for
example, the author’s definition of a canonical divisor [theorem 8 on page 42]. The
correspondences on Γ are introduced as divisors on Γ × Γ, and the uniqueness of
the product of correspondences is established [theorem 6 on page 35] leading to a
simple formula for the latter. This work and the discussion of the additive group
of correspondences with the concept of equivalence require a comprehensive part
of the general theory of cycles and of the intersection product in chapters VII and
VIII of the author’s book.

The ring of correspondences A = {ξ, · · · } is introduced by means of the equiv-
alence relation and a symmetry operator ξ → ξ′ is defined on it essentially by the
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interchange of the factors in Γ× Γ; the trace σ(ξ) is defined by means of intersec-
tion multiplicities. The function σ has all the formal properties of a trace [theorem
7 on page 41]. The most complicated part of the paper consists in proving that
σ(ξξ′) > 0 for nonzero ξ. Application of this basic inequality yields the positive-
ness of the quadratic form σ(ξξ′) = 2gx2 + 2σ(ιn)xy+ 2gqny2, where ξ = xδ + yιn

with integers x, y. In this formula g denotes the genus of Γ, δ denotes the identity
correspondence and ι is the class of the correspondence I(P ) = Pω, for each point
P of Γ, where ω is the normalized automorphism of the algebraic completion k of
k, aω = aq for a in k. The points P of Γ are essentially the same thing as the prime
divisors of the coefficient extension Ωkk. To each P there belongs, relative to k, a
smallest field of definition k(P ). Then d logZ(u) =

∑∞
n=1 νnu

ndu/u, where νn is
the number of distinct points Pj with k(Pj) ⊆ kn for the extension kn of degree n
over k. The numbers νn are identified with the numbers of components of certain
intersection cycles related to P → Pωn

. Thus the author shows νn = 1+ qn−σ(ιn)
and the expansion d log [(1 − u)(1 − qu)Z(u)] =

∑∞
n=1 σ(ι

n)undu/u together with
the positiveness of σ(ξξ′) imply the Riemann hypothesis by means of a simple
argument on analytic functions.

In the last paragraph further consequences of the structure of the ring A are
developed. Implications on the theory of L-series of function fields are given, and
the connections with the groups of Hilbert and Artin’s theory of the conductor are
established. The higher ramification groups are given an interesting definition by
means of the multiplicity of a point in a transformed cycle. These results depend
on the identification of σ with the trace of a matrix representation of A in a field of
characteristic 0. The author announces the early publication of the pertinent facts
which depend on the structure of the class group of Ωk and further properties of
the Jacobian variety attached to Γ, which incidentally already had to be used for
the proof of the positiveness of σ(ξξ′) [pages 49–53].

O. F. G. Schilling

From MathSciNet, March 2018
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Kleiman, S. L.

Algebraic cycles and the Weil conjectures. (English)

Dix exposés sur la cohomologie des schémas, 359–386, Adv. Stud. Pure Math., 3,
North-Holland, Amsterdam, 1968.

In a famous article [Bull. Amer. Math. Soc. 55 (1949), 497–508; MR0029393]
A. Weil introduced the zeta function of a smooth projective variety, defined over
the finite field kq with q elements. This function Z(t) is determined by the equa-
tion logZ(t) =

∑∞
s=1 Nst

s/s, Ns = number of kqs -valued points of V , and is an
analogue of a number-theoretic nature for the arithmetic of the variety V of the
Riemann zeta function for Q. Hence, one can ask if Z(t) has the same properties
as the Riemann zeta function. The main questions are: (1) Does Z(t) satisfy a
functional equation? (2) Does the Riemann hypothesis hold for Z(t)? (3) Is Z(t)
rational? Weil pointed out in his article that the statements (1)-(3) would be true if
there existed a cohomology theory with coefficients in a field of characteristic 0 for
algebraic varieties that are defined over an algebraically closed field of characteris-
tic p > 0, such that certain statements (like the Künneth formula or duality, etc.)
are satisfied. Today the l-adic étale cohomology has been developed. In studying
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this l-adic cohomology the author realized that the Weil conjectures, i.e., the state-
ments (1)-(3), are formal consequences of certain conjectures on algebraic cycles on
algebraic varieties. These interesting conjectures arise from classical cohomology
theory for smooth compact algebraic varieties over the complex numbers C and the
classical work of Lefschetz and Hodge.

There is hope of attacking the Weil conjectures successfully by proving these
conjectures on cycles. The author introduces in his article the notion of a Weil co-
homology (the l-adic étale cohomology is one) and formulates for such a cohomology
the conjectures of Lefschetz and Hodge type. These conjectures are known to be
true for the classical cohomology. Also D. I. Lieberman has shown in his papers
[Amer. J. Math. 90 (1968), 366–374; MR0230336; ibid. 90 (1968), 1165–1199;
MR0238857] that the conjectures of Lefschetz type are true for abelian varieties
The author then shows how to get the Weil conjectures from these conjectures.
Furthermore, many interesting theorems are proved that relate the conjectures to
each other.

H. Popp
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Grothendieck, A.

Crystals and the de Rham cohomology of schemes.

Dix exposés sur la cohomologie des schémas, 306–358, Adv. Stud. Pure Math., 3,
North-Holland, Amsterdam, 1968.

Let X be a non-singular algebraic variety over the complex number field C, and
let Xan be the associated analytic manifold. The author has previously shown [Inst.

Hautes Études Sci. Publ. Math. No. 29 (1966), 95–103; MR0199194] that the good
classical cohomology H∗(Xan,C) with complex coefficients can be defined purely
algebraically as the hypercohomology of the complex of sheaves of algebraic Kähler
differential forms (Ω·

X/C, d), the so-called de Rham cohomology HDR
∗(X/C).

If X is singular, however, the complex Ω·
X/C, and hence the de Rham coho-

mology, is not good enough [T. Bloom and M. Herrera, Invent. Math. 7 (1969),
275–296; MR0248349].

When we define the de Rham cohomology of an algebraic variety over a field of
characteristic p in a similar way, it has the serious drawbacks of having characteristic
p and usually being too big.

To prove the remaining Riemann hypothesis part of the Weil conjecture for the
congruence zeta functions [A. Weil, Bull. Amer. Math. Soc. 55 (1949), 497–508;
MR0029393; see also S. Kleiman, Dix exposés sur la cohomologie des schémas, pp.
359–386, North-Holland, Amsterdam, 1968], however, it is desirable to have a good
p-adic cohomology for algebraic varieties of characteristic p, as well as the l-adic
etale cohomology we already have [Cohomologie étale des schémas (Sém. Géométrie

Algébrique, Inst. Hautes Études Sci., 1963/64), Fasc. 1, 2, Inst. Hautes Études
Sci., Paris, 1964]. P. Monsky and G. Washnitzer have a theory in that direction
[Ann. of Math. (2) 88 (1968), 181–217; MR0248141; Monsky,. ibid. (2) 88 (1968),
218–238; MR0244272].

In these notes, the author proposes a new approach to overcome these drawbacks
of the de Rham cohomology. As for the first, he defines the infinitesimal site [the
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stratifying site] for a scheme X over another S. The “open set” is a pair (U, T )
of a Zariski open set of X and a nilpotent S-immersion U → T [nilpotent S-
immersion with local retraction toX]. These define ringed topos, and the respective
cohomology with values in the “structure sheaf” is proved to coincide with the de
Rham cohomology HDR

∗(X/S) when X/S is smooth and S is of characteristic
0. He conjectures that they give good alternatives also in the singular case in
characteristic 0.

As for the second drawback in characteristic p, he proposes the crystalline topos
and the connecting topos, which, respectively, coincide with our previous topos in
characteristic 0. The proposal has been successfully carried out by P. Berthelot
[C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A297-A300; MR0246882; ibid. 269
(1969), A357-A360; MR0249441; ibid. 269 (1969), A397-A400; MR0263833]. We
now have a seemingly good p-adic cohomology.

When a morphism of schemes f : X → S is smooth, the relative version of the
de Rham cohomology HDR

∗(X/S), which is a sheaf on S obtained as the hyper-
derived functor Rf∗(Ω

·
X/S), is proved to have a canonical absolute connection, the

Gauss-Manin connection, in the sense of derived categories. When, moreover, S is
smooth (hence X is), the connection exists in the ordinary sense. For an elementary
proof of the existence and the integrability of the Gauss-Manin connection in the
smooth case, see N. M. Katz and the reviewer [J. Math. Kyoto Univ. 8 (1968),
199–213; MR0237510] and Katz [“Nilpotent connections and the monodromy the-
orem: Applications of a result of Turritin” (Seminar on Degeneration of Algebraic
Varieties), pp. 1–101, mimeographed notes, Inst. for Advanced Study, Princeton
Univ., Princeton, N.J., 1970].

T. Oda
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Suslin, Andrei; Voevodsky, Vladimir

Singular homology of abstract algebraic varieties.

Inventiones Mathematicae (1996), no. 1, 61–94.

In one of his most influential papers, A. Weil [Bull. Amer. Math. Soc. 55 (1949),
497–508; MR0029393] proved the “Riemann hypothesis for curves over functions
fields”, an analogue in positive characteristic algebraic geometry of the classical
Riemann hypothesis. In contemplating the generalization of this theorem to higher-
dimensional varieties (subsequently proved by P. Deligne [Inst. Hautes Études Sci.
Publ. Math. No. 43 (1974), 273–307; MR0340258] following foundational work of
A. Grothendieck), Weil recognized the importance of constructing a cohomology
theory with good properties. One of these properties is functoriality with respect
to morphisms of varieties. J.-P. Serre showed with simple examples that no such
functorial theory exists for abstract algebraic varieties which reflects the usual (sin-
gular) integral cohomology of spaces. Nevertheless, Grothendieck together with M.
Artin [Théorie des topos et cohomologie étale des schémas. Tome 1, Lecture Notes
in Math., 269, Springer, Berlin, 1972; MR0354652; Tome 2, Lecture Notes in Math.,
270, 1972; MR0354653; Tome 3, Lecture Notes in Math., 305, 1973; MR0354654]
developed étale cohomology which succeeds in providing a suitable Weil cohomol-
ogy theory provided one considers cohomology with finite coefficients (relatively
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prime to residue characteristics). This theory, presented in J. Milne’s book [Étale
cohomology, Princeton Univ. Press, Princeton, N.J., 1980; MR0559531], relies on a
new formulation of topology and sophisticated developments in sheaf theory.

In the present paper, the authors offer a very different solution to the problem of
providing an algebraic formulation of singular cohomology with finite coefficients.
Indeed, their construction is the algebraic analogue of the topological construction
of singular cohomology [see, e.g., E. H. Spanier, Algebraic topology, McGraw-Hill,
New York, 1966; MR0210112], thereby being much more conceptual. Their alge-
braic singular cohomology with (constant) finite coefficients equals étale cohomol-
ogy for varieties over an algebraically closed field. The proof of this remarkable fact
involves new topologies, new techniques, and new computations reminiscent of the
earlier work of Artin and Grothendieck.

To understand the authors’ construction, we recall the classical theorem of A.
Dold and R. Thom [Ann. of Math. (2) 67 (1958), 239–281; MR0097062]. This as-
serts that the singular homology of a CW complex X is naturally isomorphic to the
homotopy groups of the simplicial abelian group (Sing·(

∐
d≥0 S

dX))+, the group

completion of the singular complex of the topological abelian monoid
∐

d≥0 S
dX.

Now, if X is an algebraic variety, so are its symmetric products. Moreover,
homotopy groups of the simplicial abelian group (Sing·(

∐
d≥0 S

dX))+ can be com-
puted as the homology of the associated chain complex, which we denote by
(Sing·(

∐
d≥0 S

dX))∼. The construction of Suslin-Voevodsky, first proposed by
Suslin in a talk in Luminy in 1987, is to replace the singular complex by its al-
gebraic analogue. Algebraic singular simplices were exploited years ago by M.
Karoubi and O. Villamayor [C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–
A419; MR0251717] and more recently used by S. Bloch in his formulation of higher
Chow groups [Adv. in Math. 61 (1986), no. 3, 267–304; MR0852815].

The fundamental theorem of Suslin-Voevodsky is that ifX is an algebraic scheme
of finite type over an algebraically closed field k of characteristic p ≥ 0 and if n
is an integer prime to p, then the étale cohomology of X with Z/n coefficients

can be computed as Ext∗((Singalg· (
∐

d≥0 S
dX))+,Z/n). (The published statement

assumes that the ground field k is of characteristic 0; as the authors soon real-
ized, recent work of J. de Jong giving a weak version of resolution of singularities
for varieties over fields of positive characteristic enables this extension to arbitrary
characteristic.) Although the formulation of this theorem is relatively elementary,
its proof involves sophisticated techniques of abstract algebraic geometry as well
as insights from algebraic K-theory. Indeed, the authors encountered this theorem
as a part of a sweeping approach to motivic cohomology and algebraic K-theory
[see, e.g., V. Voevodsky, A. Suslin and E. Friedlander, Cycles, transfers, and mo-
tivic homology theories, Ann. of Math. Stud., to appear]. Underlying the authors’
approach to (motivic) cohomology is the utilization of algebraic cycles. Maps from
a normal variety S (e.g., a standard algebraic simplex Δk) to a symmetric product
of X correspond to cycles on S ×X finite and surjective over X.

The geometric heart of the proof is the authors’ determination of the relative al-
gebraic singular homology of a relative curve in terms of the relative Picard group,
just as a key first ingredient for étale cohomology is the understanding of the étale
cohomology of curves. This computation leads to a general form of the rigidity
theorem of O. Gabber [in Algebraic K-theory, commutative algebra, and algebraic
geometry (Santa Margherita Ligure, 1989), 59–70, Contemp. Math., 126, Amer.
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Math. Soc., Providence, RI, 1992; MR1156502] and H. A. Gillet and R. W. Thoma-
son [J. Pure Appl. Algebra 34 (1984), no. 2-3, 241–254; MR0772059] which played
a key role in Suslin’s proof of the Quillen-Lichtenbaum conjecture for an arbi-
trary algebraically closed field [A. A. Suslin, J. Pure Appl. Algebra 34 (1984),
no. 2-3, 301–318; MR0772065]. Namely, the authors consider homotopy invariant
presheaves with transfers, a basic structure which now plays a central role in their
approach to motivic cohomology. The example of most interest for the present work
is the “free sheaf generated by X”, whose values on standard algebraic simplices
determine the chain complex (Singalg· (

∐
d≥0 S

dX))∼. This example fits their gen-
eral context of presheaf with transfers thanks to the theorem that any “qfh-sheaf”
admits the structure of a presheaf with transfers.

An essential ingredient in the authors’ approach to cohomology is a further
generalization of the étale topology in which proper maps arising in resolutions
of singularities occur as coverings. Voevodsky’s “h-topology” and its quasi-finite
version leading to qfh-sheaves [cf. Selecta Math. (N.S.) 2 (1996), no. 1, 111–153] play
an important role. The authors’ rigidity theorem asserts the equality of various Ext-
groups from sheaves associated to a homotopy invariant presheaf F with transfers
to Z/n, where these Ext-groups are computed in the étale topology and various
topologies associated to the h-topology. Much of the formal effort in establishing
their comparison theorems consists in analyses and manipulations of resolutions of
sheaves for these topologies.

Eric M. Friedlander
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