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AFTERWORD TO THE ARTICLE
“ARITHMETIC ON CURVES”

B. MAZUR

ABSTRACT. In this afterword the author discusses his previously published
article “Arithmetic on curves”, which appeared in the Bulletin of the American
Mathematical Society (N.S.) 14 (1986), no. 2, 207-259.

I am delighted to have been asked by Susan Friedlander, the editor of Bulletin
of the American Mathematical Society, to revisit my survey article “Arithmetic
on Curves” and write a brief afterword, mentioning some major advances in the
subject in the intervening three decades. But since our subject—algebraic curves
and their arithmetic properties—is so closely interconnected with so many branches
of mathematics, to give useful comments about major advances, it makes sense to
impose strong limits on the range of the discussion. Especially so, since much has
been achieved.

I'll keep to two themes, rational points and modularity, as foci of attention
regarding the arithmetic of curves. These, of course, represented goals that were
of great interest when my article was written. But an up-to-date survey of our
subject would have a good deal more to say about them! Arithmetic statistics
regarding curves, for example, has inspiring new results: striking theoretical work—
i.e., theorems—in arithmetic statistics being due to Manjul Bhargava and his co-
authors, and important ezperimental work regarding Mordell-Weil groups of elliptic
curves.

e As for rational points, we still don’t know whether there is an algorithm
that (for any curve C' defined over a number field K) is guaranteed to termi-
nate in finite time, finding all of the K-rational points of C. Nevertheless,
this general question (which—perhaps in less specific terms and different
language—has been around since Diophantus) remains a primary goal, and
it fits into more structural questions and broader frameworks (e.g., in its
connection with higher-dimensional varieties that are potentially dense in
the terminology of Bogomolov and Tschinkel: varieties whose K-rational
points are Zariski-dense), and for which there are some new tools for finding
explicit solutions.

e The arithmetic of elliptic curves has had major breakthroughs, what with
their modularity, advances toward “their” Iwasawa Theory, Main Con-
jecture [26], and Birch-Swinnerton-Dyer Conjecture; “modularity” taken
broadly and in its relation to the grand Langlands Program, has made great
strides, with modular curves being more closely understood, and viewed—
more and more—within the general framework of Shimura varieties.

I’ll expand on these issues in the brief remarks below.
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1. RATIONAL POINTS; ARITHMETIC STATISTICS

Since the arithmetic of a curve is often tightly controlled by the arithmetic
properties of its jacobian, any advance in the number theory of abelian varieties
will help with our understanding of curves; and also conversely, since any abelian
variety is a quotient of a jacobian. The Mordell-Lang Conjecture, proven by Gerd
Faltings [13] is entirely a statement about abelian varieties and their subvarieties—
no explicit mention of curves in it. Nevertheless, it is a powerful extension of
Mordell’s (classical) Conjecture that a projective curve of genus > 1 over a number
field K has only finitely many K-rational points:

Theorem 1. Let A be an abelian variety over a number field K, and let V C A
be a subvariety defined over K that is the Zariski-closure of its K-rational points.
Then V' is a finite union of abelian subvarieties of A.

This theorem originally conjectured by Lang, captures the spirit of Lang’s more
general view regarding rational points on algebraic varieties: roughly speaking,
rational points tend to be sparse, except when there is a compelling geometric reason
for them to be plentifulE More explicitly and more boldly, he conjectured that if
V is an algebraic variety over a number field K with infinitely many K-rational
points, then V contains a positive dimensional subvariety that is the birational
image of an abelian variety or a rational curve. There are various strengths of
“Lang’s Conjecture”. A form of it (known as the Strong Lang Conjecture)—and
I'm still not sure whether there is consensus about its likelihood of being correct—
was shown to imply a striking uniformity in the upper bounds of the number of
rational points a curve of genus > 1 defined over a number fieldd

Conjecture 2. For any g > 1, there is a finite bound N(g) such that for any num-
ber field K there are only finitely many isomorphism classes of projective smooth
curves of genus g defined over K having more than N(g) K -rational points.

Of course to exhibit a lower bound N(g) > B for this conjecturally finite number
N(g), one must exhibit infinitely many curves of genus g over some number field
K with more than B K-rational points. Families of hyperelliptic curves with all
their Weierstrass points Q-rational show that N(g) > 2¢g+2. Can one improve this
lower bound? I.e., is there some k > 2 such that N(g) > & - g for g > 07

One might ask—especially in light of current advances in arithmetic statistics—
whether or not there is an upper bound B—even independent of the number field
of definition, K, or of the genus—for which a positive proportion of curves over K a
given genus g > 1 (when organized in a natural way) have fewer than B K-rational
points?

Even if that’s too stark a question, it may be an appropriate moment—thanks
to the many results of Manjul Bhargava and his co-authors—to ask more generally,
“How many rational points does a random curve have?” This is the title of an
excellent survey article by Wei Ho [16]. Among other results cited there, there’s
the theorem that for fixed g > 1 a positive proportion of genus g hyperelliptic

IFor an introductory exposition to background of some of the ideas behind, and related to,
this result, see [21].

2Here is an example: P! is the only irreducible curve V defined over a number field to have
the property that for every nontrivial number field extension L/K (where K contains the field of
definition of V') V has more L-rational points than K-rational points. This is [22, Theorem 1.10].

3See [8] and a corrected version of it(!) that will appear soon.
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curves over Q (organized by size of discriminant) possessing a rational Weierstrass
point have no other rational points. Moreover, a majority of such curves have at
most seven rational points. These are results of Poonen and Stoll [25] building on
the work of Bhargava and Gross [2] and depending on Chabauty’s method. They
also show that as the genus ¢ tends to infinity, the lower density of these curves for
which the given Weierstrass point is the only Q-rational point tends to 1.

There are also striking results when you ask, more generally, for rational points
over number fields other than Q (cf. [7], [24], [14]).

And, regarding elliptic curves, Manjul Bhargava, Christopher Skinner, and Wei
Zhang have shown that “a majority of elliptic curves over Q satisfy the Birch and
Swinnerton-Dyer conjecture”, this being the title of their preprint

The known proofs of Mordell’s Conjecture and of Theorem [ quoted above are
nonconstructive. Thanks to Robert Coleman ([I1]), Chabauty’s method ([9]), which
is an earlier strategy, leads—but only when applicable—to a constructive way of
achieving upper bounds for the numbers of rational points. For an overview of these
results, see [23].

Here is the gist of the Chabauty’s method for a curve C of genus g > 1 over
Q as amplified by Coleman (see, in particular, [23] 5.4, 5.5]). If the jacobian J
of the curve C has Mordell-Weil rank strictly less than g, then for a prime p the
p-adic subgroup of J(Q,) generated by the Q-rational points of J is necessarily
of dimension strictly less than the dimension of J(Q,); even more to the point,
for a suitable prime p one constructs a nontrivial homomorphism ¢ : J(Q,) — Q,
having the property that the full subgroup of Q rational points of J lies in H, its
kernel. The Q-rational points of C, then, lie in the finite set H N C(Q,) C J(Q,),
and Coleman’s approach to this, in good situations, can yield a computable upper
bound for the number of Q-rational points of C.

Of course, this only works if the Mordell-Weil rank of .J is strictly less than g. To
get to a broader range of cases, an exciting new development due to Minhyong Kim
[19], inspired by the anabelian approach of Grothendieck, offers yet another power-
ful tool to deal with this fundamental question. The idea ([20]) is—effectively—to
expand Chabauty—Coleman’s method by replacing the jacobian J by a suitable
more discriminating object that is functorially dependent on the curve and then
proceed analogously. Illustrative applications can be found in [12] and [1].

2. ELLIPTIC CURVES; MODULARITY

The most striking direction of progress since the late 1980s is the establishment
of what is now referred to as the modularity conjectuwﬁ that says that any elliptic
curve of conductor N over the field of rational numbers Q is isomorphic to a quo-
tient of the modular curve Xo(N). The magnificent method of Andrew Wiles—and
Taylor & Wiles (1995)—proved the modularity conjecture for semistable elliptic

4This is published in arxiv.org/abs/1407.1826: their result follows from a combination of
e the theorem of Bhargava & Shankar (2015) that the average rank of the Mordell-Weil
group of an elliptic curve over Q is bounded above by 7/6;
e results of Nekovar and Dokchitser & Dokchitser regarding parity; and
e the proof of the main conjecture of Iwasawa theory for GL(2) by Skinner & Urban [26].
They use these results and the classical powerful method of Kolyvagin to prove their theorem.
5The modularity conjecture was referred to in my article as the “Weil-Taniyama Conjecture”.
This conjecture has undergone a number of curious name changes in its history—the reasons
behind this might deserve to be explored as a project in the sociology of mathematics.
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curves (and this result implied Fermat’s Last Theorem). The full modularity con-
jecture was proved by an extension of the method of Wiles in 2001 by Breuil,
Conrad, Diamond & Taylor.

Here’s a three-sentence telegraphic hint of the method that proves that an elliptic
curve FE over Q is modular. To get started, one shows (using results of Langlands
and others—and a very clever and incisive step known as the 3 — 5 trick) that
for an appropriate prime p, the Galois representation obtained by Galois action
on E[p], the group of p-torsion points of E is “modular” in the sense that it is
the residual characteristic p Galois representation attached to a modular form—
more specifically, a modular form that is an eigenform for the Hecke operators.
Then by a close understanding of the deformation theory of such modular residual
characteristic p representations, one shows that appropriate corresponding p-adic
representations lifting them are modular; in particular, so is the p-adic Galois repre-
sentation associated to F. Then one uses Faltings’ Isogeny Theorem and eventually
concludes that E is itself a quotient of the modular curve Xo(V), where N is the
conductor of . This approach has expanded enormously and in striking ways. To
give a responsible account—even just hints and appropriate attributions—would
lead us too far afield, and it would do so even if we restrict our discussion to re-
sults that produce, in various contexts, modularity or automorphyﬁ At the very
least, though, we might note the resolution of the classical Sato—Tate Conjecture
that gives—among many other things!-—the precise statistical distribution of the
numbers of points over F,, (for p varying) of a given elliptic curve over QE See
also the extension of this result by Michael Harris [I5] where the (un-)correlation
of such statistical distributions for different elliptic curves is treated. In short, the
arithmetic of curves is as alive as ever!
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