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MR1376246 (97e:14030) 14F99; 14C25, 14F20, 19E15
Suslin, Andrei; Voevodsky, Vladimir

Singular homology of abstract algebraic varieties.
Inventiones Mathematicae 123 (1996), no. 1, 61-94.

In one of his most influential papers, A. Weil [Bull. Amer. Math. Soc. 55 (1949),
497-508; MR0029393] proved the “Riemann hypothesis for curves over functions
fields”, an analogue in positive characteristic algebraic geometry of the classical
Riemann hypothesis. In contemplating the generalization of this theorem to higher-
dimensional varieties (subsequently proved by P. Deligne [Inst. Hautes Etudes Sci.
Publ. Math. No. 43 (1974), 273-307; MR0340258] following foundational work of
A. Grothendieck), Weil recognized the importance of constructing a cohomology
theory with good properties. One of these properties is functoriality with respect
to morphisms of varieties. J.-P. Serre showed with simple examples that no such
functorial theory exists for abstract algebraic varieties which reflects the usual (sin-
gular) integral cohomology of spaces. Nevertheless, Grothendieck together with M.
Artin [Théorie des topos et cohomologie étale des schémas. Tome 1, Lecture Notes
in Math., 269, Springer, Berlin, 1972; MR0354652; Tome 2, Lecture Notes in Math.,
270, 1972; MR0354653; Tome 3, Lecture Notes in Math., 305, 1973; MR0354654]
developed étale cohomology which succeeds in providing a suitable Weil cohomol-
ogy theory provided one considers cohomology with finite coefficients (relatively
prime to residue characteristics). This theory, presented in J. Milne’s book [Etale
cohomology, Princeton Univ. Press, Princeton, N.J., 1980; MR0559531], relies on a
new formulation of topology and sophisticated developments in sheaf theory.

In the present paper, the authors offer a very different solution to the problem of
providing an algebraic formulation of singular cohomology with finite coefficients.
Indeed, their construction is the algebraic analogue of the topological construction
of singular cohomology [see, e.g., E. H. Spanier, Algebraic topology, McGraw-Hill,
New York, 1966; MR0210112], thereby being much more conceptual. Their alge-
braic singular cohomology with (constant) finite coefficients equals étale cohomol-
ogy for varieties over an algebraically closed field. The proof of this remarkable fact
involves new topologies, new techniques, and new computations reminiscent of the
earlier work of Artin and Grothendieck.

To understand the authors’ construction, we recall the classical theorem of A.
Dold and R. Thom [Ann. of Math. (2) 67 (1958), 239-281; MR0097062]. This as-
serts that the singular homology of a CW complex X is naturally isomorphic to the
homotopy groups of the simplicial abelian group (Sing.(][;5,5X))", the group
completion of the singular complex of the topological abelian monoid [],-, SeX.
Now, if X is an algebraic variety, so are its symmetric products. Moreover,
homotopy groups of the simplicial abelian group (Sing.(][;~,9%X))" can be
computed as the homology of the associated chain complex, which we denote by
(Sing. (] I;50S?X))~. The construction of Suslin-Voevodsky, first proposed by
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Suslin in a talk in Luminy in 1987, is to replace the singular complex by its al-
gebraic analogue. Algebraic singular simplices were exploited years ago by M.
Karoubi and O. Villamayor [C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416—
A419; MR0251717] and more recently used by S. Bloch in his formulation of higher
Chow groups [Adv. in Math. 61 (1986), no. 3, 267-304; MR0852815].

The fundamental theorem of Suslin-Voevodsky is that if X is an algebraic scheme
of finite type over an algebraically closed field k of characteristic p > 0 and if n
is an integer prime to p, then the étale cohomology of X with Z/n coefficients
can be computed as Ext*((Sing™®(] [~ S4X))*, Z/n). (The published statement
assumes that the ground field k is of characteristic 0; as the authors soon real-
ized, recent work of J. de Jong giving a weak version of resolution of singularities
for varieties over fields of positive characteristic enables this extension to arbitrary
characteristic.) Although the formulation of this theorem is relatively elementary,
its proof involves sophisticated techniques of abstract algebraic geometry as well
as insights from algebraic K-theory. Indeed, the authors encountered this theorem
as a part of a sweeping approach to motivic cohomology and algebraic K-theory
[see, e.g., V. Voevodsky, A. Suslin and E. Friedlander, Cycles, transfers, and mo-
tivic homology theories, Ann. of Math. Stud., to appear]. Underlying the authors’
approach to (motivic) cohomology is the utilization of algebraic cycles. Maps from
a normal variety S (e.g., a standard algebraic simplex A¥) to a symmetric product
of X correspond to cycles on S x X finite and surjective over X.

The geometric heart of the proof is the authors’ determination of the relative al-
gebraic singular homology of a relative curve in terms of the relative Picard group,
just as a key first ingredient for étale cohomology is the understanding of the étale
cohomology of curves. This computation leads to a general form of the rigidity
theorem of O. Gabber [in Algebraic K-theory, commutative algebra, and algebraic
geometry (Santa Margherita Ligure, 1989), 59-70, Contemp. Math., 126, Amer.
Math. Soc., Providence, RI, 1992; MR1156502] and H. A. Gillet and R. W. Thoma-
son [J. Pure Appl. Algebra 34 (1984), no. 2-3, 241-254; MR0772059] which played
a key role in Suslin’s proof of the Quillen-Lichtenbaum conjecture for an arbi-
trary algebraically closed field [A. A. Suslin, J. Pure Appl. Algebra 34 (1984),
no. 2-3, 301-318; MRO772065]. Namely, the authors consider homotopy invariant
presheaves with transfers, a basic structure which now plays a central role in their
approach to motivic cohomology. The example of most interest for the present work
is the “free sheaf generated by X7, whose values on standard algebraic simplices
determine the chain complex (Sing™®(][;s, S?X))~. This example fits their gen-
eral context of presheaf with transfers thanks to the theorem that any “qfh-sheaf”
admits the structure of a presheaf with transfers.

An essential ingredient in the authors’ approach to cohomology is a further
generalization of the étale topology in which proper maps arising in resolutions
of singularities occur as coverings. Voevodsky’s “h-topology” and its quasi-finite
version leading to qfh-sheaves [cf. Selecta Math. (N.S.) 2 (1996), no. 1, 111-153] play
an important role. The authors’ rigidity theorem asserts the equality of various Ext-
groups from sheaves associated to a homotopy invariant presheaf F' with transfers
to Z/n, where these Ext-groups are computed in the étale topology and various
topologies associated to the h-topology. Much of the formal effort in establishing
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their comparison theorems consists in analyses and manipulations of resolutions of
sheaves for these topologies.
Eric M. Friedlander

From MathSciNet, July 2018

MR1648048 (99j:14018) 14F35; 14A15, 55U35
Voevodsky, Vladimir

A'-homotopy theory.
Proceedings of the International Conbress of Mathematicians, Vol. I (Berlin, 1998).

Documenta Mathematica (1998), no. Extra Vol I, 579-604.

To this outside observer, one of the most significant strands in the recent history
of algebraic geometry has been the search for good cohomology theories of schemes.
Each new cohomology theory has led to significant advances, the most famous being
étale cohomology and the proof of the Weil conjectures.

In a beautiful tour de force, Voevodsky has constructed all reasonable cohomol-
ogy theories on schemes simultaneously by constructing a stable homotopy cate-
gory of schemes. This is a triangulated category analogous to the stable homotopy
category of spaces studied in algebraic topology; in particular, the Brown repre-
sentability theorem holds, so that every cohomology theory on schemes is an object
of the Voevodsky category. This work is, of course, the foundation of Voevodsky’s
proof of the Milnor conjecture.

The paper at hand is an almost elementary introduction to these ideas, mostly
presenting the formal structure without getting into any proofs that require deep
algebraic geometry. It is a beautiful paper, and the reviewer recommends it in the
strongest terms. The exposition makes Voevodsky’s ideas seem obvious; after the
fact, of course.

One of the most powerful advantages of the Voevodsky category is that one can
construct cohomology theories by constructing their representing objects, rather
than by describing the groups themselves. The author constructs singular homol-
ogy (following the ideas of A. Suslin and Voevodsky [Invent. Math. 123 (1996),
no. 1, 61-94; MR1376246]), algebraic K-theory, and algebraic cobordism in this
way. Throughout the paper, there are very clear indications of where Voevodsky
thinks the theory needs further work, and the paper concludes with a discussion of
possible future directions.

Mark Hovey

From MathSciNet, July 2018

MR1813224 (2002f:14029) 14F35; 19E08
Morel, Fabien; Voevodsky, Vladimir
A'-homotopy theory of schemes.

Institut des Hautes Etudes Scientifiques. Publications Mathématiques (1999),
no. 90, 45—-143.

Algebraic geometry has long thrived on the importation of ideas and principles
from topology. However, before the constructions of the article under review, there
was no framework available for a systematic lifting of the detailed techniques of
algebraic topology to the realm of algebraic geometry. Now that this framework
along with its extension to the theory of Pl-spectra is available, we are beginning
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to see modern homotopy theory being used in its algebro-geometric version, giving
new insights to such classical areas as quadratic forms and number theory.

The construction of Karoubi-Villamayor K-theory KV, [M. Karoubi and O.
Villamayor, Math. Scand. 28 (1971), 265-307 (1972); MR0313360] gave the first
hint for what the proper framework for doing algebraic topology in the setting of
algebraic geometry would be.

For a regular ring A, K;(A) is presented as the infinite general linear group
GL(A) modulo the subgroup generated by the image of GLo (A[T]) under the
map g(T) ~ ¢(0)~1g(1), that is, K1(A) is the group of “path components” of
GL (A), where the affine line replaces the unit interval in defining a path.

One then applies a simplicial machinery to construct the rest of KV-theory.
Specifically, one defines the algebraic n-simplex A™ as the hyperplane in affine
(n + 1)-space given by the equation ty + --- + ¢, = 1. For a ring A, one has the
ring A, (A) = Alto,...,t,]/(3_;ti —1). The usual formulas for the coface and
codegeneracy maps among the standard topological simplices are all linear in the
coordinates t;, so define a purely algebraic structure, the cosimplicial scheme A*,
or the simplicial ring A,(A4). For Karoubi-Villamayor K-theory, one replaces A
with A, (A) and applies GLo, forming the simplicial set GLoo (AL (A4)). KV, (A4) is
defined as the homotopy groups of the geometric realization of this simplicial set:
KV, (A4) == m,-1(|GLoo (A(A4))])-

A similar process occurs in S. Bloch’s construction of the higher Chow groups
[Adv. in Math. 61 (1986), no. 3, 267-304; MR0852815], and in A. Suslin’s construc-
tion of abstract homology [lecture at the conference “Les régulateurs” (Luminy,
1987); per revr.; see also A. A. Suslin and V. Voevodsky, Invent. Math. 123 (1996),
no. 1, 61-94; MR1376246]. Both start with a functor defined via some generators
(cycles or families of zero-cycles), with the relations for a variety X given by (es-
sentially) the same generators on X x A', using the difference of the restriction to
X x 0 and X x 1. They apply the “functor” of generators to X x A* (in Bloch’s
case, the fact that cycles do not really form a functor creates some technical dif-
ficulties, but we will pass over this point), and then take the homotopy groups of
the associated simplicial set.

In all these constructions, the role of the unit interval in topology is being re-
placed with the affine line A'. Morel and Voevodsky build on this idea, creating
a category in which one can perform the basic constructions used in topology, but
where the building blocks are algebraic varieties instead of topological spaces, and
where homotopy uses the affine line instead of the unit interval. The construction
proceeds in three main steps.

The first step is to embed the category of algebraic schemes over a fixed base S
into the category of sheaves (on S-schemes) for the Nisnevich topology, by sending a
variety X to the representing sheaf Y — Homg(Y, X). Embedding into the category
of sheaves enables one to perform many of the operations used in topology, most
notably, the operation of taking the quotient of a topological space by a subspace.
This is only rarely possible for algebraic varieties, but for sheaves it is a triviality.
The next step is to introduce some “classical” topology by enlarging to the category
of simplicial sheaves. One then has the notion of an A'-weak equivalence: A map
f: X =Y is an Al-weak equivalence if f induces a stalk-wise weak equivalence of
the simplicial Hom’s, f*: Hom(Y, Z) — Hom(X, Z), for all Al-local Z, where Z is
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Al-local if the map on simplicial Hom’s,
p}: Hom(W, Z) — Hom(W x A, Z),

is a stalk-wise weak equivalence for all W. One localizes the category of sim-
plicial sheaves with respect to A'-weak equivalence, and the construction of the
Al-homotopy category of S-schemes H(S) is complete.

One result of the paper is that this A!-localization can be accomplished by using
A*. If X is a simplicial sheaf, one has the simplicial sheaf Sing(X) := Hom(A*, X).
Ignoring some technicalities, the functor sending X to Sing™ (X)) (the infinite iterate
of the functor Sing) is equivalent to the A'-localization of the category of simplicial
sheaves.

As an indication that the theory works as expected, Morel and Voevodsky show
that, just as in topology, the classifying space BGL, represents algebraic K-theory
(for smooth S-schemes): K, (X) = Homy gy (X" X, BGLy).

The fun really begins with the next step beyond the article under review: the
construction of the category of P!-spectra. This allows one, among other things,
to recreate the whole world of extraordinary cohomology theories in the algebro-
geometric setting, and gives the proper framework for Voevodsky’s beautiful proof
of the Milnor conjecture.

Mare Levine

From MathSciNet, July 2018

MR1744945 (2001g:14031) 14F42; 19D45, 19E15, 19E20
Suslin, Andrei; Voevodsky, Vladimir
Bloch-Kato conjecture and motivic cohomology with finite coefficients.

The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 117-189,
NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.

Let F be a field, m an integer prime to the characteristic of F'; and Sm/F be
the category of smooth schemes over F'. The conjecture of Beilinson and Lichten-
baum for weight n states that the natural map Z/m(n) — 7<,Ra,p&" is a quasi-
isomorphism. Here Z/m(n) is the mod m motivic complex, and a: (Sm/F)e —
(Sm/F)z,, is the natural map. The main result of the paper is that the Bloch-
Kato conjecture, i.e. the surjectivity of the norm residue homomorphism from Mil-
nor K-theory to Galois cohomology KM (E)/m — H"(E,u%m"), is equivalent to
the conjecture of Beilinson-Lichtenbaum. More precisely, assume that resolution of
singularities holds over F' and that the norm residue homomorphism in degree n
is surjective for any extension E/F. Then the Beilinson-Lichtenbaum conjecture
holds over F' in weights at most n.

The authors start by reviewing the construction of motivic cohomology and the
derived category of mixed motives [see V. Voevodsky, A. A. Suslin and E. M. Fried-
lander, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143,
Princeton Univ. Press, Princeton, NJ, 2000; MR1764197]. The category DM~ (F))
is the full subcategory of the derived category of bounded above complexes of Nis-
nevich sheaves with transfers and homotopy invariant cohomology sheaves. The
motivic complex Z(n) is a specific object of this category, and motivic cohomology
of a variety X over F is defined to be H}, (X, Z(n)) = Homp -7y (M (X), Z(n)),
where M(X) is an object of DM~ (F') naturally associated to X. This is in fact
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isomorphic to the hypercohomology in the cdh-topology of Z(n) on X, and if X is
smooth over F', then it suffices to take the Nisnevich topology.

Several properties of these motivic cohomology groups are given, for example a
Mayer-Vietoris exact sequence for open covers, a projective bundle formula, and a
blow-up exact sequence. The natural isomorphism of graded rings €, KM(E) =
D, Hi;(E,Z(n)) gives an interpretation of the Bloch-Kato conjecture in terms of
motivic cohomology.

In the second half of the paper the actual proof takes place. The theorem is
easily reduced to the case of a field, and only injectivity is hard. The main idea is
to use the motivic cohomology of the boundary of the r-simplex A" (a singular
scheme) to shift degrees. More precisely, if S is the affine line AL with the points
0 and 1 identified to the point p, then the map H:,(E,Z/m(n)) — H'(E, u2") is
a direct summand of the map

HIFY QAN % 8 Z/m(n)) — H™ QAL x 8, 1®m).

Every class coming from H%,(E,Z/m(n)) vanishes in some neighborhood U of the
vertices, hence comes from the motivic cohomology with supports H: T (9AL "+ x
S,Z/m(n)), for T equal to 8A%ﬁi+1 x S —U. Finally, by purity and induction, the
map is injective on the latter group.

Thomas Geisser

From MathSciNet, July 2018

MR2031198 (2005b:14038a) 14F42; 12G05, 19D45, 19E15
Voevodsky, Vladimir
Reduced power operations in motivic cohomology.

Publications Mathématiques. Institut de Hautes Etudes Scientifiques (2003),
no. 98, 1-57.

MR2031199 (2005b:14038b)  14F42; 12G05, 19D45, 19E15
Voevodsky, Vladimir
Motivic cohomology with Z/2-coefficients.

Publications Mathématiques. Institut de Hautes Etudes Scientifiques (2003),
no. 98, 59-104.

follows from CnoFile 2 031 198remarks The papers under review present Vo-
evodsky’s proof of the “Milnor conjecture”, a remarkable achievement which marks
the culmination of Voevodsky’s program to extend Grothendieck’s constructions
of new “topologies”, incorporate the philosophy of motives, and integrate into ab-
stract algebraic geometry important techniques of homotopy theory. Voevodsky’s
work has inspired considerable further work by algebraic geometers and algebraic
topologists, and holds great promise for dramatic new geometric results.

The fundamental theorem of Voevodsky states that if & is a field of characteristic
different from 2 then the Galois cohomology groups H'(k,Z/2) are generated by
classes in H1(k,Z/2). More precisely, J. Milnor [Invent. Math. 9 (1969/1970),
318-344; MR0260844] conjectured that the norm residue symbol determines an
isomorphism

(1) KEME)®7/2 5 — H*(k,7/2),
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where KM (k) is the Milnor K-theory of the field k defined as the quotient of the
tensor algebra on the multiplicative group k* by the ideal generated by elements
of the form a ® b with a,b € k*, a + b = 1. Indeed, there is a conjectural general-
ization formulated by K. Kato [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980),
no. 3, 603-683; MR0603953] (the so-called Bloch-Kato conjecture) of this Milnor
conjecture (1) applicable to any prime number [ which asserts that the norm residue
homomorphism determines an isomorphism

(2) KX (k)@ L/l = — H*(k, 21"

for any prime [. Voevodsky has written these two papers so that whenever possible
the results are proved for all primes. In a forthcoming paper with D. Orlov and A.
Vishik [“An exact sequence for Milnor’s K-theory with applications to quadratic
forms”, preprint, arxiv.org/abs/math/0101023], Voevodsky uses his proof of the
Milnor conjecture to prove a companion conjecture of Milnor’s [op. cit.] relating
KM(k)®7Z/2 to the sections of the natural filtration of the Witt ring of quadratic
forms over k.

The first of these papers verifies existence and important properties of cohomol-
ogy operations in motivic cohomology. Earlier work of Voevodsky and joint work
of Voevodsky, A. A. Suslin and E. M. Friedlander [Cycles, transfers, and motivic
homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ,
2000; MR1764197] established many good properties of motivic cohomology, and
Voevodsky has shown [Int. Math. Res. Not. 2002, no. 7, 351-355; MR1883180] that
the motivic cohomology groups agree with the higher Chow groups of S. J. Bloch
[Adv. in Math. 61 (1986), no. 3, 267-304; MR0852815]. The relationship of motivic
cohomology to algebraic K-theory for smooth varieties over a field closely paral-
lels the relationship of singular cohomology to (complex) topological K-theory of a
topological space. Indeed, Voevodsky’s results are results about motivic cohomol-
ogy, and these results translate directly into results concerning algebraic K-theory
with finite coefficients [see, for example, E. M. Friedlander and A. A. Suslin, Ann.
Sci. Ecole Norm. Sup. (4) 35 (2002), no. 6, 773-875; MR1949356].

The construction and essential properties of these cohomology operations are
challenging to verify. The proofs are much more than a mere translation of cor-
responding results in algebraic topology. In the first paper, Voevodsky establishes
results needed for the proof of the Milnor conjecture: construction of the Steenrod
p-th power operations P?, their relationship to the Bockstein operation, the Car-
tan formula, and the Adem relations. These are established in the context of the
pointed motivic homotopy category He(k) considered by F. Morel and Voevodsky
[Inst. Hautes Etudes Sci. Publ. Math. No. 90 (1999), 45-143 (2001); MR1813224].
Indeed, this extension of the category of k-varieties is essential for the formulation
as well as proof of many results (e.g., Thom isomorphism and suspension isomor-
phism, as well as the representability of motivic cohomology by “Eilenberg-Mac
Lane objects”). Other properties (uniqueness of P’; the identification of the ring of
all stable cohomology operations) not needed for Voevodsky’s proof of the Milnor
conjecture as presented in the second paper are not proved here.

The second paper provides Voevodsky’s proof of the Milnor conjecture, referring
freely to earlier papers by Voevodsky, M. Rost, and Suslin and Voevodsky for im-
portant subsidiary results as well as to the preceding paper on motivic cohomology
operations. In some sense, one can view this paper as presenting the “master plan”,
with details to be found elsewhere. For example, no reference is given to the fact
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that Milnor K-group K7, (k) ®Z/1 of a field k can be viewed as the (Zariski) mod-I
motivic cohomology HY. (k,Z/l(n)) of k, and only a brief sketch is given of the fact
that the Galois cohomology H"(k, ui"™) can be viewed as the (étale) mod-I motivic
cohomology H.(k,Z/l(n)) of k. The proof of the cohomological interpretation of
K7 (k) ® Z/1 was given by Bloch in [op. cit.] (in the context of his higher Chow
groups); a proof of the second is outlined by Voevodsky with a reference to [V.
Voevodsky, C. Mazza and C. Weibel, “Lectures on motivic cohomology. 1”, math.
rutgers.edu/~weibel/motiviclectures.html] for a detailed proof. Voevodsky
proves, as conjectured by A. A. Beilinson [in K-theory, arithmetic and geometry
(Moscow, 1984-1986), 1-25, Lecture Notes in Math., 1289, Springer, Berlin, 1987;
MR0923131] and S. Lichtenbaum [in Number theory, Noordwijkerhout 1983 (Noord-
wigkerhout, 1983), 127-138, Lecture Notes in Math., 1068, Springer, Berlin, 1984;
see MR 85i:11001 MR0756089], that the natural map determines an isomorphism

(3) Hy,, (k. Z/1(q)) = — HE(K,Z/U(9), p<gq,

for I = 2; in particular, he affirms the Milnor conjecture (1). As shown earlier by
Suslin and Voevodsky [in The arithmetic and geometry of algebraic cycles (Banff,
AB, 1998), 117-189, Kluwer Acad. Publ., Dordrecht, 2000; MR1744945] and then
extended by T. Geisser and M. N. Levine [J. Reine Angew. Math. 530 (2001), 55—
103; MR1807268], one need only prove the surjectivity assertion of the Bloch-Kato
conjecture (2) to conclude via an inductive argument the Beilinson-Lichtenbaum
isomorphism (3).

Voevodsky’s effort is dedicated to proving a higher-order version of the “Hilbert
theorem 90”. In Voevodsky’s terminology, k satisfies H90(n,[) if the l-adic étale
cohomology group Hé"tﬂ(k,Z(l)(n)) vanishes. For n = 1, one can interpret this
vanishing as a restatement of the classical Hilbert theorem 90, and for n = 2 this is
essentially the famous result of A. S. Merkur’ev and Suslin [Izv. Akad. Nauk SSSR
Ser. Mat. 46 (1982), no. 5, 1011-1046, 1135-1136; MR0675529], which we may view
as the confirmation of the Bloch-Kato conjecture in weight 2. One readily sees that
H90(n,l) implies the surjectivity assertion of Bloch-Kato in weight n. The main
result of Voevodsky is that H90(n, 2) is valid for any field £ and any n > 0. (For k
of characteristic I, H90(n, 1) was established by Geisser and Levine [op. cit.].)

Voevodsky proceeds to prove H90(n,2) by induction on n; thus, one begins
by assuming the validity of H90(n — 1,2); in fact, he assumes H90(n — 1,1) for an
arbitrary prime [ and proceeds quite far towards the proof of the general Bloch-Kato
conjecture before restricting to the case | = 2. Voevodsky makes the observation
that H90(n — 1,1) implies (2) for weights ¢ < n (and this choice of prime [) as
well as a version of the Hilbert theorem 90 for K éV[ with ¢ < n. Using “classical”
techniques of Galois cohomology, Voevodsky then shows that these two conditions
imply the vanishing of HZ (k,Z/l) provided that k satisfies two conditions: (i) k
has no extensions of degree prime to [; and (ii) K} (k) is l-divisible. Reasonably
straightforward arguments reduce the required cohomological vanishing of H90(n, [)
to the vanishing of HZ (k,Z/l) in this case, so that it remains to prove that we can
pass from our given field k to a field extension K/k satisfying these two conditions
as well as the injectivity

(4) Hi P (k, Zgy (n) = HETH (K, Zgy (n)
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of the induced map. Condition (i) for a field extension K/k satisfying (4) can be
easily arranged using a transfer argument. The heart of the proof is showing that
Condition (ii) can also be arranged for K/k satisfying (4) when | = 2.
In order to arrange the 2-divisibility of KM (k), Voevodsky chooses a symbol
a = (ay,...,a,) representing a generator of K (k) and takes K to be the func-
tion field of the associated norm quadric (. It is well known that the class in
KM (k) associated to a is divisible by I. The challenge is to prove (3) for K/k. Up
to this point, the proof has been largely inspired by the proof of Merkur’ev and
Suslin for the Bloch-Kato conjecture in weight 2 [op. cit.]. Voevodsky proceeds
to investigate the motivic cohomology of the Cech simplicial scheme X, associated
to the norm quadric .. He employs his motivic cohomology operations and the
vanishing of “Margolis homology” of a closely related simplicial scheme to prove
that H90(n — 1,2) implies that H""!(X,, Z2)) = 0. Now Voevodsky invokes re-
sults of Rost [“On the spinor norm and Ag(X, K1) for quadrics”, preprint, 1988,
www.mathematik.uni-bielefeld.de/~rost/spinor.html; “Some new results on
the Chow groups of quadrics”, preprint, 1990, www.mathematik.uni-bielefeld.
de/~rost/chowqudr.html; J. Ramanujan Math. Soc. 14 (1999), no. 1, 55-63;
MR1700870] concerning the motive of the norm quadric (), to obtain the necessary
injectivity by relating the motive of X, to that of the field k.
Eric M. Friedlander

From MathSciNet, July 2018

MR2811603 (2012j:14030) 14F42; 19D45

Voevodsky, Vladimir

On motivic cohomology with Z/I-coefficients.

Annals of Mathematics. Second Series 174 (2011), no. 1, 401-438.

This landmark paper completes the publication of Voevodsky’s celebrated proof
of the Bloch-Kato conjecture—it is now a theorem that the norm residue homo-
morphism

K (k) /L — HE (k™)

is an isomorphism for all fields k, all primes | with ({,chark) = 1 and all n. The
norm residue homomorphism is a special case of a comparison morphism between
(Beilinson) motivic cohomology and (Lichtenbaum) étale motivic cohomology, and
indeed the more general Beilinson-Lichtenbaum conjecture is also a consequence of
the results of the paper. The proof of these conjectures is one of the fundamental
results in algebraic K-theory and motivic cohomology, and has involved a lot of
time as well as a lot of work by a lot of people. The result itself is a great piece
of mathematics that allows a much better understanding of the relation between
motivic cohomology or algebraic K-theory with their étale counterparts, but even
more importantly, the methods developed to prove it (derived categories of motives,
motivic cohomology and homotopy) have already had a large impact on mathemat-
ics and will continue to do so in the years to come. Needless to say, Voevodsky was
awarded the Fields Medal in 2002 for developing these methods leading to a proof
of the case | = 2, which had been known as Milnor’s conjecture [cf. Publ. Math.
Inst. Hautes Etudes Sci. No. 98 (2003), 59-104; MR2031199)].

An introduction to the proof of the Milnor conjecture can be found in [F. Morel,
Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 2, 123-143; MR1600334], while an
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introduction to the proof of the Bloch-Kato conjecture can be found in [C. A.
Weibel, in Some recent developments in algebraic K -theory, 277-305, ICTP Lect.
Notes, 23, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008; MR2509183].

The proof for both I = 2 and [ odd combines homotopy-theoretic techniques
and an algebraic-geometric study of norm varieties associated to symbols. On the
homotopy-theoretic side one has Voevodsky’s construction of derived categories of
motives [cf. V. Voevodsky, A. A. Suslin and E. M. Friedlander, Cycles, transfers,
and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press,
Princeton, NJ, 2000; MR1764197] and the Morel-Voevodsky Al-homotopy theory
[F. Morel and V. Voevodsky, Inst. Hautes Etudes Sci. Publ. Math. No. 90 (1999),
45-143 (2001); MR1813224]. These are used to define motivic cohomology and
study cohomological operations in motivic cohomology with finite coefficients via
motivic Eilenberg-Mac Lane spaces. On the geometric side, the norm varieties
and their associated (generalized) Rost motives provide the nontrivial input for the
cohomological operations machine to work. There are some differences between the
cases | = 2 and [ odd. On the homotopy theory side, some additional results on
cohomology operations in motivic cohomology are necessary in the odd prime case.
On the geometric side, the case [ = 2 uses Pfister quadrics and their associated Rost
motives. For [ odd, these have to be replaced by v,-varieties, resp. v<,-varieties,
and generalized Rost motives.

The strategy for the Bloch-Kato conjecture was already described in Voevodsky’s
work on the Milnor conjecture: one first reduces to fields which have characteristic
0 to be able to use results on motivic Eilenberg-Mac Lane spaces [Publ. Math. Inst.
Hautes Etudes Sci. No. 112 (2010), 1-99; MR2737977] and motivic duality theorems
[in Cycles, transfers, and motivic homology theories, 188-238, Ann. of Math. Stud.,
143, Princeton Univ. Press, Princeton, NJ, 2000; MR1764202]. The comparison
between motivic cohomology in the Nisnevich and the étale topology then follows
from a vanishing H gfl(k, Z;)(n)) = 0. To inductively prove these higher versions
of Hilbert’s theorem 90, it suffices to find for each symbol a € KM (k)/l a field K
such that

1. a vanishes in KM (K)/I and

2. the morphism Hgt"'l(k;, Ziy(n)) — H;"'I(K, Z;)(n)) is an injection.
The injectivity is proved in the paper under review, using results on the existence
and properties of v<,-varieties which split symbols in Milnor K-theory. The re-
sults on v<,-varieties were announced by Rost and proved in [A. A. Suslin and S.
Joukhovitski, J. Pure Appl. Algebra 206 (2006), no. 1-2, 245-276; MR2220090].

We now give a more detailed overview of the arguments in the paper which prove

this injectivity. In section 2, an analysis of the structure of motivic Eilenberg-Mac
Lane spaces and computations in motivic cohomology are used to show a uniqueness
theorem for cohomology operations

H?" (=, Z/1(n)) — H*™2(—, Z/I(nl)).

In section 3, symmetric powers of relative Tate motives are used to construct ex-
plicitly one particular such operation, which by the previous uniqueness agrees with
the composition SP™ of the Bockstein and the motivic reduced power operation.
Section 4 then establishes the vanishing of Margolis homology for embedded simpli-
cial schemes related to v, -varieties as well as a generalization of the motivic degree
theorem.
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Section 5 contains one of the major points—the construction and properties of
generalized Rost motives. This is the replacement for the Rost motives associated
to Pfister quadrics in the case [ = 2. For an embedded simplicial scheme X and
a cohomology class 6 € H""1(X,Z/l(n)) with QoQ1 -+ Qn(d) # 0, Voevodsky
constructs a (self-dual) generalized Rost motive M;_; over X as the (I —1)Q@Q-st
symmetric power of the cone of the class §. If additionally there exists a v,-
variety X whose motive M (X) lies in DMy, the results of section 4 show that this
generalized Rost motive M;_ is pure and splits off as a direct summand of M (X).

Finally, section 6 uses the results of the previous sections to establish the injec-
tivity assertion (2). Voevodsky considers the Cech simplicial scheme X = C(Y) of
the disjoint union Y of all smooth schemes which split the symbol a. This simplicial
scheme satisfies the conditions of Section 5, so there is a generalized Rost motive
associated to it and the injectivity on étale motivic cohomology reduces to show the
vanishing of H"*(X, Z)(n)). The vanishing of Margolis homology from section 4
allows one to use Milnor operations to embed this group into H**+2(X, Z ) (Ib+1)),
whose vanishing follows from properties of the splitting v<(,,_1)-varieties.

Matthias Wendt
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The Univalent Foundations Program

Homotopy type theory—univalent foundations of mathematics.
(English)

The Univalent Foundations Program, Princeton, NJ; Institute for Advanced Study
(IAS), Princeton, NJ,, 2013, xiv+589 pp.

This is an important book, and it is the first one on a research topic called
Homotopy Type Theory (HoTT). This new theory mixes two apparently distant
disciplines: type theory (a branch of logic) and homotopy theory (a branch of
algebraic topology). The topic originated from Voevodsky’s contributions, which
were preceded by the work of several authors (among them, Hofmann, Streicher,
Awodey and Warren). Before describing the contents of the book, some meta-
information deserves comment.

First, the book is a collaborative effort, fruit of a special year (2012-13) at the
Princeton Institute for Advanced Study. The book is published on an open access
basis, and the authorship is collective (there is a long list of contributors, but no
name is particularly highlighted). All this is quite original in our days.

Second, the writing of the text has the explicit objective of finding an informal
style of expressing formal type theory, emulating the way working mathematicians
write their papers without paying attention to foundations. However, the (un-
named) authors always try to keep a link with the real formal development; in
fact, it is stated in the book that most of the results presented were first found
in a formalized setting (on occasions using the Coq or Agda proof assistants) and
then “unformalized”. This is a very promising point of view, but it is not without
difficulties (some examples will be commented on later).

The contents of the book are separated into two parts. Chapters 1 to 7 deal with
basics, while Chapters 8 to 11 are devoted to formalizing concrete mathematics
using the language of HoTT. The book ends with an appendix which describes the
particular type theory where the results of the book could be expressed.
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After a quite long and very enlightening introduction, Chapter 1 introduces
dependent type theory, and Chapter 2 presents the actual topic. It consists of
a new interpretation of identity types, which were introduced by Martin-Lof in
his intensional dependent type theory. The main idea is to interpret a proof of
equality between two terms a, b of type A as a path from a point a to a point b in a
(topological) space A. Then, the formal properties of identity (reflexive, symmetric,
transitive) can be read (almost) as defining a groupoid structure over the “space”
(type) A. This is almost a groupoid because the proofs of the equations are again
terms of a type. If we denote by Id4(_,-) the identity type over a type A, from
p:1da(a,b), a proof p~1 : Id 4 (b, a) can be constructed, but the equation p~top =1
is to be understood as the construction of a term g : Idyg, (q,a) (p~top,refl,), where
refl, : Ida(a,a) is the primitive term expressing the reflexive property of equality.
Or, through the homotopy glasses, this means that p~! o p is homotopic to the
constant path refl,. Such complex proofs as ¢ devised on Id4(_, ) show equality
as having a meaning beyond a simple boolean operator (we are in the presence of
proof-relevant mathematics); indeed, Id 4 (, -), being also a type, carries a groupoid-
like structure, too. In that way, any type is endowed with an co-groupoid structure
(where equations are established up to homotopy). From Grothendieck’s claim that
oo-groupoids encapsulate homotopy types, we get an unexpected link between types
as occurring in type theory and homotopy types from homotopy theory.

Chapter 2 also explains that taking full advantage of these ideas requires another
tool: Voevodsky’s univalence axiom. It is stated in a context where a universe U (a
type such that its terms are also types) is fixed. A definition is given of when two
types A, B : U are equivalent Equi;, (A, B). Even if the concept of equivalence can
be defined in several different ways (Chapter 4), we can think of it as meaning that
there is an arrow fA — B such that it is known there is a gB — A satisfying fog =1
and go f = 1. But the equality go f = 1 means really that a term p : Id4, 4 (go f,id)
is constructed; that is to say, g o f is homotopic to the identity map from A to A;
so the terms inhabiting Equi, (A4, B) can be reasonably interpreted as homotopy
equivalences between the spaces A and B. There is a natural map going from
Idy (A, B) to Equiy (A, B). The univalence axiom imposes that this arrow is an
equivalence for all A, B : U. Therefore the univalence axiom “invents” an arrow
ua Equiy, (A, B) — Idy (A, B), transforming equivalences into identities.

Univalence is used in Chapter 3 to study a stratification of types, depending on
the richness of their identity types. For instance, a type is considered a set if there
is at most one equality proof for each pair of its terms. The Axiom of Univalence
proves that there are types which are not sets (in particular, this is the case of the
fixed universe ). After studying equivalences in Chapter 4, Chapter 5 is devoted
to inductive definitions. Here, the univalence axiom is used, for instance, to prove
the uniqueness of the object of natural numbers N in HoTT.

In order to empower the homotopic interpretation another ingredient is however
needed: higher inductive types (Chapter 6). The usual inductive types (Chapter 5)
define a new type by freely creating new terms through constants and constructors.
In higher inductive types, in addition, some identities (terms of identity types)
are also created. It amounts, in a sense, to defining a collection of terms and,
simultaneously, a quotient over that collection. Higher inductive types allow the
introduction of spaces by attaching cells (such as the spheres S™, for instance) and
the concept of n-type (Chapter 7).



SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 541

The second part of the book (formalization of mathematics) starts in Chapter 8,
where further relations between HoTT and homotopy theory are explored. Chapter
8 begins with a well-known result from algebraic topology which is a groundbreaking
theorem in HoTT: 7, (S') = Z, the fundamental group of the circle S* is isomorphic
to the integers. In this proof not only is the univalence axiom required but also
higher inductive types (used, in particular, to define both S! and the homotopy
groups). Other important results in algebraic topology are also translated to HoTT
in this chapter.

Category theory is considered in Chapter 9, studying different possible definitions
in HOTT as well as the implications of these alternative concepts. Chapter 10
concentrates on the category of sets, discussing the relations with previous results
in topos theory. The last chapter of the book (Chapter 11) deals with analysis and
the reals. It is interesting in its development and also acts as an illustration for the
fact that HoTT can be a language for other parts of mathematics far from logic,
homotopy or categories.

The non-expert will read the book with a mixture of pleasure and surprise,
seeing how, from a rather sober formal language, some difficult results (in algebraic
topology, in particular) are replayed in an original way.

As can be expected in so young a discipline, light comes with some shadows.
These are related to language and intuition (and the strains between them), to the
completeness of the development and, finally, to the foundational character of the
theory.

A confusing use of language appears when it is claimed that HoTT allows the
computation of an object, as in the case, for example, of homotopy groups. It is
one thing to prove that a homotopy group is isomorphic to a concrete group (a
concrete group that must be previously known by other means) and another thing
is to describe an automated procedure to determine such a group. The distinction is
important to make precise what one can expect about HoTT (in its current degree
of development). Only at the end of Chapter 8 is the theorem stated that, for all
n > 3, mp41(S™) = Zj, for some k, which could raise the issue of a real computation
to determine k (but, even so, all the development would be directed by the fact
that & = 2 would be the expected result).

The trade-off between informal presentation and rigorous formal proofs makes
some parts of the text difficult to follow. For instance, the word mere (and its
variants merely, etc.) refers to a very concrete technical constraint, and then some
statements and descriptions of proofs look rather contorted. Perhaps some more
formal notation could be of help in those cases.

Commenting now on the formal language itself, since the concrete type theory
in which HoTT is being described is, at the same time, being introduced, some
doubts arise about whether some definitions are forced to respond to the intuitions
the authors had in mind. This for example happens when discussing the types
A where there exists a term a such that Id4(a,b) is inhabited for any other term
b: A. After insisting that identities should be interpreted as paths, one could guess
that such a type A would be identified with a (path-)connected space. In contrast,
such a space is defined as contractible; the reason given (“the meaning of ‘there
exists’ in this sentence is a continuous/natural one”) does not seem very convincing.
Another example can be found on page 175: “The same is true in type theory, if we
formulate these conditions appropriately” (emphasis by the reviewer). This point
seems especially frail in the decisions involving higher inductive types, where to
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impose equalities judgmental or propositional could have important consequences
in the resulting theory.

With respect to the completeness of the approach, the difficulties are not hidden
and they are commented on in detail throughout the book. Nevertheless, it is not
until the end of the book (the last paragraphs of the last section of the appendix)
that some consequences of the introduction of the univalence axiom are presented.
For instance, univalence implies that there is, at least up to now, no proof of the
canonicity of the type theory (that is to say, there could be a term of type N that
does not reduce to a numeral) and no proof of the constructive nature of the theory
(in particular, it is not known whether it could be enhanced with a computational
content). As for the consistency of the theory, a simplicial model is known (due to
Voevodsky), ensuring consistency up to that of Zermelo-Fraenkel with the Axiom of
Choice. It is a highly non-constructive model and, furthermore, covers the Axiom
of Univalence but not higher inductive types.

From the completeness point of view, the concept of higher inductive type is
the weakest aspect of the book. These types are imperative (in conjunction with
the univalence axiom) for the most appealing results of the theory, but nevertheless
there is not a complete treatment of them (even from the syntax point of view). This
could be justified if their interpretation could be considered straightforward, but
this does not seem to be the case. In fact, in the examples developed, the mentioned
decisions about a propositional equality imply the occurrence of numerous axioms
(it is laboriously manifest when trying to emulate the corresponding induction
schemes with the proof assistant Coq), which could, in principle, raise some doubts
about the consistency of the theory, depending on the higher inductive definitions
allowed.

These gaps make the choice of the subtitle of the book (“univalent foundations
of mathematics”) debatable, although it is true that HoTT is presented frequently
in other publications as a new foundation for mathematics. The incomplete spec-
ification of higher inductive types, the lack of a constructive semantics and the
excessive reliance on types and terms whose existence is imposed by axiom, and
not by construction, make it premature to claim that new foundations of mathe-
matics are described in the book. Several current lines of research are intended to
overcome these shortcomings.

These observations do not cloud at all either the interest of the theory or, of
course, the importance of the book under review. It will last as an accessible and
rigorous introduction to a new and fascinating discipline under way. As it is being
developed by an extremely competent team of researchers, in a collective endeavor
without any precedent, undoubtedly it will continue producing enlightenments in
the future.

Julio Rubio
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Voevodsky, Vladimir

Products of families of types and (II, \)-structures on C-systems.
Theory and Applications of Categories 31 (2016), Paper No. 36, 1044-1094.

In his 1978 Ph.D. thesis [Generalised algebraic theories and contextual categories,
Oxford Univ., 1978], John Cartmell introduced the notion of contextual category
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for the purpose of formulating the categorical semantics of dependent type theories
as introduced by Per Martin-Lof around 1970. This notion was used a decade later
in the reviewer’s thesis [Correctness and completeness of a categorical semantics
of the calculus of constructions, Univ. Passau, 1988], which studied the categorical
semantics of T. Coquand and G. P. Huet’s calculus of constructions.

In a series of papers the author has started a very detailed investigation of
contextual categories, now called C-systems, in a form which is as detailed and
formalist as required for a blueprint for a formalization in a computer-assisted
system such as Coq.

The main mathematical contribution of the paper under review is a reformu-
lation of Cartmell’s account of dependent types (here called “Cartmell-Streicher
structures”) as so-called (II, A)-structures. This reformulation is closer to syntax
than previous formulations which are closer in spirit to the “quantifiers as adjoints”
paradigm introduced by F. W. Lawvere in the late 1960s. In this sense there is some
similarity with P. Dybjer’s notion of “categories with families” which, however, is
even further away from the spirit of categorical logic.

In the reviewer’s opinion, more categorical accounts, based on Grothendieck
fibrations and formulated in terms of “display” maps, are more transparent and
more concise. Of course, in order to interpret syntax, these more abstract versions
have to be endowed with a so-called “splitting” (in the sense of “split fibrations”
as already considered by A. Grothendieck and his school). Such split models can
be transformed (purely mechanically) into models which are closer to syntax like
the C-systems favored by the author.

The style of exposition is dictated by the author’s desire to give a blueprint
for formalization. This goes as far as renaming “Theorems” as “Problems” and
“Proofs” as “Constructions”, which certainly is in accordance with the Curry-
Howard paradigm of “propositions-as-types”.

This paper clearly demonstrates how mathematics will change when it is formu-
lated in a style ready-made for formalization in computer-based proof assistants.
Certainly, different readers will come to different conclusions whether such a change
is beneficial or not. I suspect that most mathematicians will stay at least skeptical.

Thomas Streicher
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