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The central topic of group theory is the study of symmetries of geometric and
algebraic structures. The structure is reflected then in the algebraic properties of
the group of symmetries. Intimate relation between group theory and geometry is,
for example, the main idea of Felix Klein’s Erlangen program. Another example
of this relation is the study of discrete groups of isometries of the hyperbolic plane
started by Felix Klein and Henri Poincaré, where the structure of the group is
naturally described by the associated tessellations of the plane.

A straightforward way of transforming a finitely generated group into a geometric
object is via the notion of the Cayley graph, introduced by Arthur Cayley for finite
groups [Cay78]. Later, Max Dehn used them (under the name Gruppenbild) in the
study of algorithmic problems in fundamental groups [Deh87]. The main idea of
M. Dehn was to use the geometry of the space to understand algebraic structure of
the group, i.e., to “geometrize” group theory.

If G is a group with a chosen finite generating set S, then its (right) Cayley graph
is the graph with the set of vertices G, where two vertices g1, g2 € G are connected
by an edge if and only if g; = gss for some s € SUS™!. The Cayley graph is a
natural visualization of the group. For example, it is natural to imagine the infinite
cyclic group Z as an infinite chain, and the free abelian groups Z" as n-dimensional
grids. These geometric visualizations are precisely the Cayley graphs.

The set of vertices of the Cayley graph is naturally a metric space: the distance
between two vertices is the smallest number of edges in a path connecting them.
This is the word metric on the group: the distance between g; and ¢o is equal to
the shortest length of a representation of gi 19, as a product of the elements of
S U S~L. This metric is left-invariant the distance between g1 and ¢, is equal to
the distance between hg, and hg, for all g1, 92, h € G.

The idea of considering groups as metric spaces is implicitly present in the works
of Max Dehn, and it was developed and popularized by Mikhael Gromov [Gro87,
Gro93]. Geometric intuition, language, and methods have opened new approaches
and directions in group theory: theory of hyperbolic groups [Gro87] (i.e., groups
that are negatively curved as metric spaces) and its generalizations (e.g., vari-
ous versions of the notion of nonpositively curved groups [BH99], relatively hy-
perbolic groups [Far98], acylindrically hyperbolic groups [Osil], etc.); growth of
groups [Gro81l[Man12] and other asymptotic invariants of geometric nature [Gro93].
Modern group theory cannot be imagined without geometric methods.

The word metric on a finitely generated group G depends on the choice of the
generating set. On the other hand, if d; and ds are the word metrics on the
same group defined using two generating sets, then there exists L > 1 such that
L7Ydi(g1,92) < da(g1,92) < Ldi(g1,92) for all g1,g92 € G. In other words, two
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word metrics are bi-Lipschitz equivalent. A weaker equivalence relation is quasi-
isometry: two metric spaces (X1, d;) and (Xa, ds) are quasi-isometric if there exist
maps f1: X1 — Xy and fp : Xo — X such that sup,cy, di(z, f2 0 fi(z)) < oo,
SUp,¢ x, do(, f1 0 f2(x)) < oo, and there exists C' > 1 such that da(f1(x), fi(y)) <
Cdy(z,y)+C for all x,y € Xy, and dy (fa(x), f2(y)) < Cda(z,y)+C for all z,y € Xo
(maps between metric spaces satisfying the latter properties are called large-scale
Lipschitz).

Quasi-isometry is the natural isomorphism relation between metric spaces in
the context of geometric group theory. For example, the fundamental group of a
compact Riemannian manifold is quasi-isometric to its universal covering. More
generally, if a group G acts on a geodesic metric space X by isometries so that
the action is proper (for every € X and R > 0, the set of elements g € G such
that d(z,g(z)) < R is finite) and cobounded (there exists a bounded subset of X
intersecting every G-orbit), then G is quasi-isometric to X.

A group theoretic notion is considered geometric if it is invariant under quasi-
isometries. It is not always easy to decide which group theoretic properties are
geometric. For example, the fact that the property to contain a finite index sub-
group isomorphic to Z? (for a given d) is geometric is rather nontrivial (see [Sha04]).
The property of containing a nilpotent subgroup of finite index is a geometric prop-
erty, by M. Gromov’s theorem on groups of polynomial growth [Gro81], but the
same statement for solvable subgroups is not true [Dyu00].

Quasi-isometry is the isomorphism relation in a naturally defined large-scale
category. The objects of the category are metric spaces, the morphisms are large-
scale Lipschitz maps f : (X1,d1) — (X2,d2) up to the equivalence: f; ~ fo if
Supgex, da(fi(2). fo()) < oo.

Let us say that a relation R C X x X on a metric space (X,d) is bounded if
SUP (g, g2)er (91, g2) < 00. It is an easy exercise to prove that a map f : G1 — G
between finitely generated groups is large-scale Lipschitz if and only if it maps
bounded relations on G7 to bounded relations on Gs5. The same statement is
true for graphs and, more generally, for quasigeodesic metric spaces (for example
for Riemannian manifolds). It is not true for general metric spaces, so that it
is natural to enlarge the large-scale category to the coarse category. Namely, a
map [ : (X1,d1) — (X2,ds) between metric spaces is coarsely Lipschitz if there
exists a nondecreasing function ® : [0, +00) — [0, +00) such that da(f(z), f(y)) <
O(dy(x,y)) for all z,y € X;.

Note that a relation R C G x G is bounded if and only if the set {g; ‘g2
(91,92) € R} is finite. This characterization uses neither the word metric nor the
fact that G is finitely generated, so that the notion of a bounded relation can be
naturally generalized to infinitely generated groups. The properties of the set of
all bounded relations can be axiomatized, which leads to the notion of a coarse
structure; see [Roe03].

The idea that the notions and methods of geometric group theory are inter-
esting and important—mnot only in the class of finitely generated groups, but also
for the much larger class of locally compact groups—became popular only rela-
tively recently. But it has already proved its fruitfulness; see, for example, the
papers [CCMTI5LICTI1T].

Many geometric notions (i.e., notions invariant under the isomorphisms in the
large-scale or coarse categories) can be naturally extended to the class of locally
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compact groups. Instead of using a word metric, one can use the notion of an
adapted pseudometric. Here a pseudometric is a nonnegative symmetric function
d(x,y) satisfying the triangle inequality and such that d(z, x) = 0. Informally, it is
a metric that allows zero distance between different points. A pseudometric d on
a locally compact group G is adapted if it is left-invariant, its balls have compact
closures, and every point has a neighborhood of finite diameter. We do not require
that the metric is continuous with respect to the topology of G (as we are interested
in large-scale and coarse rather than topological properties). A metric is said to
be geodesically adapted if it is adapted and quasigeodesic (i.e., quasi-isometric to a
geodesic metric space).

One can show [CdIH16, Proposition 1.D.1] that for a o-compact group G any
two adapted metrics are coarsely equivalent. In fact, the corresponding coarse
structure is defined by the condition that a relation R C G is bounded if and
only if the set {g~'h : (g,h) € R} has compact closure. Moreover, by [CAIH16,
Proposition 1.D.1], a group is o-compact if and only if it has an adapted pseudo-
metric.

This approach nicely extends the techniques of geometric group theory to a much
larger domain. For instance, one can consider such notions as coarse connectedness,
being coarsely or large-scale geodesic, coarse simple connectedness, etc. A space X
is said to be coarsely connected if there exists R > 0 such that for any two points
x,y € X there exists a sequence © = xg, x1, T2, ..., T, = y such that d(z;,z;41) < R
for all ¢. The name “coarsely connected” is justified by the fact that a space is
coarsely connected if and only if it is coarsely equivalent to a connected metric
space. Many notions of asymptotic group theory also can be generalized to the
locally compact setting: growth functions, asymptotic dimension, amenability, etc.

The coarse and large-scale properties of metric spaces have natural interpretation
in the class of locally compact groups. For example, a locally compact group is
compactly generated if and only if it is coarsely connected. Similarly, a locally
compact group is compactly generated if and only if it is coarsely geodesic with
respect to any adapted pseudometric. In fact, the word metric (defined with respect
to a compact generating set) can be used in the case of compactly generated groups.
Note, however, that the word metrics usually do not agree with the topology on
the group and are sometimes less natural than other quasigeodesic metrics (for
example, in the case of Lie groups). The analogy with classical geometric group
theory is complete: any two compact generating sets define quasi-isometric metrics
on the group. Moreover, any two pseudometrics with respect to which the group is
quasigeodesic are quasi-isometric to each other [CAIH16, Proposition 4.B.10].

On the other hand, there are many new notions and topics in large-scale geom-
etry of locally compact groups, not present in the discrete case. Sections 4.D and
4.E of [CdIH16] give examples of such topics (locally elliptic groups and capped
subgroups).

A finitely generated group has a finite presentation by generators and defining
relations if and only if it is quasi-isometric to a simply connected metric space. In
one direction it follows from the well known fact that a finitely presented group is
a fundamental group of a finite simplicial complex. The universal covering of the
complex will be quasi-isometric to the group and simply connected.

An analogous fact is true for locally compact groups: a o-compact, locally com-
pact group G is coarsely simply connected if and only if it is compactly presented.
It follows that being compactly presented is a property of the coarse equivalence
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class of the group. Here a compact presentation is given by a compact generating
set S and a set R of defining relations such that the lengths of the elements of R
as words in S are bounded. The definition of coarse simple connectedness is a nat-
ural generalization of simple connectedness to the coarse category. In particular,
a coarsely geodesic space is coarsely simply connected if and only if it is coarsely
equivalent to a simply connected space. For example, every connected and simply
connected Lie group is compactly presented. Many interesting examples of com-
pactly presented groups and their properties are discussed in [CdIH16, Chapter 8§].
It is interesting that compact presentability of topological groups can be used to
prove finite presentability of discrete groups; see [CAIH16l Section 1.E].

The monograph Metric geometry of locally compact groups by Yves Cornulier
and Pierre de la Harpe is the first book devoted to large-scale geometry of locally
compact groups. It is an excellent introduction into the subject, with detailed
exposition of all fundamental theorems and a great variety of examples and appli-
cations. It also contains new results, published for the first time in the monograph
(for example, Section 4.D on locally elliptic groups, and Section 8.C on a topological
version of the Bieri—Strebel splitting theory).

The book consists of eight chapters. Chapter 1 is an introduction with an
overview of the main topics of the book. Chapter 2 is a concise but compre-
hensive introduction to classical results on topological and structural properties of
locally compact groups. Chapter 3 describes the coarse and large-scale categories of
pseudometric spaces and introduces the main large-scale properties: coarse connect-
edness, coarse and large-scale geodesicity, coarsely ultrametric spaces, asymptotic
dimension, growth, and amenability. Chapter 4 describes locally compact groups as
objects of the coarse (in the o-compact case) and the large-scale (in the compactly
generated case) categories. The main results of this chapter are existence of adapted
and geodesically adapted pseudometrics on locally compact groups, and how coarse
and large-scale structures on groups are inherited from the space on which the group
acts geometrically. Other subjects of Chapter 4 are locally elliptic groups, capped
subgroups, amenability and geometric amenability of locally compact groups.

Chapter 5 contains a wide variety of examples of compactly generated locally
compact groups. This class is a natural generalization of the class of finitely gener-
ated groups, i.e., of the main objects of study of classical geometric group theory.
Examples discussed in Chapter 5 include connected groups, abelian and nilpotent
groups, Lie groups, algebraic groups over locally compact fields, isometry groups of
metric spaces, and many more.

The culmination of the book falls within Chapters 6-8 and is devoted to the
generalization of the notion of a finitely presented group: coarsely simply con-
nected spaces and compactly presented groups. As was already mentioned above,
compactly presented groups constitute an interesting and natural class of locally
compact groups.

The book is written in a clear and accessible style, with many motivating exam-
ples and applications.
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