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NEW APPLICATIONS OF THE POLYNOMIAL METHOD:
THE CAP SET CONJECTURE AND BEYOND

JOSHUA A. GROCHOW

ABSTRACT. The cap set problem asks how large can a subset of (Z/3Z)™ be
and contain no lines or, more generally, how can large a subset of (Z/pZ)™
be and contain no arithmetic progressions. This problem was motivated by
deep questions about structure in the prime numbers, the geometry of lattice
points, and the design of statistical experiments. In 2016, Croot, Lev, and
Pach solved the analogous problem in (Z/4Z)"™, showing that the largest set
without arithmetic progressions had size at most ¢™ for some ¢ < 4. Their
proof was as elegant as it was unexpected, being a departure from the tried
and true methods of Fourier analysis that had dominated the field for half a
century. Shortly thereafter, Ellenberg and Gijswijt leveraged their method to
resolve the original cap set problem. This expository article covers the history
and motivation for the cap set problem and some of the many applications of
the technique: from removing triangles from graphs, to rigidity of matrices,
and to algorithms for matrix multiplication. The latter application turns out
to give back to the original problem, sharpening our understanding of the
techniques involved and of what is needed for showing that the current bounds
are tight. Most of our exposition assumes only familiarity with basic linear
algebra, polynomials, and the integers modulo N.

1. INTRODUCTION

The published proof [39] of the Cap Set Conjecture is so elegant, elementary,
and short—and others have already provided expositions of it [63,130}138]—that
we can hardly do better here. Although we’ll include a quick proof in Section[2 our
main purpose here is to provide motivation for the conjecture, put it in its proper
historical context, and discuss some of the consequences of the new technique.

The Cap Set Conjecture says that the largest subset of (Z/3Z)™ which contains
no lines—that is, no three points z,y, z such that « + y = 2z, or equivalently (mod
3), * +y + z = 0—has size at most ¢" for some c strictly less than 3.

If you are an (additive) combinatorialist, you may find this problem intrinsically
interesting and immediately fall in love with it. For the rest of us, however, it is
natural to wonder how one arrives at this conjecture. Why were people studying
such questions in the first place? What connections does it have to other areas of
mathematics? As is often the case in mathematics, if we take the time to get to
know the problem a bit better—take it to dinner, ask about its history, its family,
what kind of recreational activities it enjoys—we find that these questions have
good answers, and we come to appreciate a problem whose upbringing is perhaps
not so much like our own. My main goal in this exposition is to share some of the
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answers to these questions. And, okay, sure, I'll show you the proof, too—how can
I resist?

One final note before diving in: I have attempted to make this exposition ac-
cessible to as wide an audience as possible, starting from the early undergraduate
level. As this may well include students who haven’t seen group theory before, or
have little exposure to combinatorics, I will spell out (nearly) all the details for
expository purposes, including some combinatorial arguments that are easy exer-
cises once you've seen a bit of combinatorics. We ask for a little patience from
our readers for whom such arguments are too standard to be worth writing down.
In the few cases where I wanted to make some remark that was difficult to make
under these conditions, footnotes are there to help the reader along; if such remarks
confuse you, you ought to be able to skip over them and still understand the rest
of the article. Conversely, if such footnotes annoy you, you ought to be able to skip
over them without losing much. But my hope is that the footnotes will help entice
readers with less background to learn new and exciting things!

1.1. A frivolous and fun motivation. The popular imagination is perhaps drawn
to this problem because of its connection with the card game SET®. (There are
other expositions which use the game of SET to introduce readers to some of the
mathematics we consider here, such as [29,[96].) The SET deck consists of 81 cards,
which are illustrated in Figure [Tl

(il
(i

FIGURE 1. A Set in the popular card game.

Each card has four attributes, each of which can take three values: color (values:
red, green, purple), shape (diamond, oval, squiggle), number (1,2,3), and fill (solid,
shaded, open). A “Set” is a collection of three cards such that, in each attribute, ei-
ther all cards have the same value, or all cards have distinct values. Figure [I] shows
a Set in which all the cards are distinct in each attribute (they have three different
colors—or, if you're reading this in black and white, are all the same color—three
different shapes, three different numbers, and three different fills). As another exam-
ple, the cards (red,diamond,1,solid), (red,diamond,2,shaded), (red,diamond,3,0open)
also form a Set. Twelve cards are laid face up, and players compete to find Sets as
fast as possible. When the players agree there is no Set on the table, three more
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cards are laid face up until someone finds a Set. This raises the natural question:
How many cards can be on the table with no Set?

If we identify the values of each attribute with the elements of the integers mod 3,
then each card corresponds to a point in (Z/37Z)%, and a Set is precisely a collection
of three points #,7, 7 € (Z/37)* such that Z+ 7+ Z = 0 (mod 3) (we leave this
as an exercise for the reader). Since 2 = —1 (mod 3), this is the same as saying
J— & =Z—¢ (mod 3); in other words, the points Z, ¥/, Z' lie on a line. Our question
thus becomes: How large can a subset of (Z/3Z)* be and still contain no line? If
we generalize this from dimension 4 to arbitrary dimension n, we get the cap set
problem.

In dimension 4, the answer turns out to be 20 cards [I03]. Note that this answer
was found three years before Marsha Jean Falco invented the game (which she
did to help her visualize the combinatorics of genes related to epilepsy in German
Shepherds [119]) and almost 20 years before the game was made public. Why were
people looking at such questions? Our next motivation is older and quite a bit
deeper.

1.2. Motivating additive combinatorics with the primes. Additive combi-
natorics is the study of the interrelation between the additive and combinatorial
structure of sets. Of course, this just begs the question of what we mean by ad-
ditive structure in the first place. To give some meaning to the notion of additive
structure and why it might be interesting, let’s start with the example of the nat-
ural numbers N = {1,2,3,...}. In terms of just addition, it seems pretty simple:
Start from 1, and just keep adding 1. It looks like a (discrete) ray, heading off in
one direction. In terms of just multiplication, it looks a bit more complicated, but
not so much more: Every number can be written uniquely as a product of primes.
This implies that the multiplicative structure of N looks like the additive structure
of the set of sequences of elements of Ny := N U {0}, only finitely many of which
aren’t zero (which we denote N5*°): To any such sequence of natural numbers
(a1,az,...,a4,0,0,0,...), we may associate the number 2%13%25% . po¢ where pq is
the dth prime number. This identification shows that the multiplicative structure
of N is the same as the additive structure of N§°°, an infinite-dimensional grid, as
regular as can be.

When we consider both the multiplicative and additive structure of N together
though, something remarkable happens. Note that our notion of size in N is essen-
tially additive: How many times you need to add 1 to get to a given number. Thus,
the two simplest questions we can ask that mix the additive and multiplicative
structures on N are the following.

(1) How big is the nth prime p,? (Additive structure of a multiplicatively
defined sequence)

(2) What is the factorization of n? (Multiplicative structure of an additively
defined sequence)

These also turn out to be some of the deepest questions about the interaction
between additive and multiplicative structure. The first will be traditionally rec-
ognized as deep, leading quickly to the Prime Number Theorem and the Riemann
Hypothesis. The depth of the second question can already be glimpsed in the
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techniques used in algorithms for factoring numbers [211[88[99][T05L121] (see, e.g.,
[87, 107136 for surveys).

The algorithmic viewpoint adds evidence for the idea that it is the mizture
of the additive and multiplicative structures that leads to complexity. When we
represent numbers additively—that is, in a way that makes addition easy, say,
in base 10—multiplying them is relatively easy but factoring them seems to be
difficult, or at least a much deeper problem. But when we represent numbers
multiplicatively—in a way that makes multiplication easy, say, using their prime
factorizations—converting them to base 10 becomes as easy as multiplying them
was before (just multiply the prime factors), but adding them becomes equivalent
to factoring numbers written in base 10 [30]. The lesson is that, regardless of
whether we view the multiplicative structure of N through an additive lens or its
additive structure through a multiplicative lens, we run into the same, much deeper
complexity than if we only considered one structure at a time.

We may also ask the next questions along these lines:

(1') What is the additive gap p,+1 — pn between successive primes?
(2") What is the relationship between the factorization of n and that of n + 17

Only in 2013 was it shown that there is a universal constant C' such that p, 11 —
prn < C for infinitely many n [139]; C' was eventually improved to 246 [95,[104],
and the Twin Prime Conjecture is that C' can be lowered all the way to 2. The
relationship between the factorization of n and n + 1 leads [I00] to notoriously
difficult problems like the Collatz “3n+1” Conjecture, about which Erdds famously
said, “Mathematics may not be ready for such problems” [72] p. 330] (see also [98]).
Guy'’s chapter [(2] Problem E16] and Lagarias’s annotated bibliography [83] are
excellent sources of references on this difficult problem.

Now, a zeroth-order heuristic for questions (1’) and (2’) is that the answer to
both is essentially random: The factorizations of n and n + 1 are “independent” of
one another, and the prime gap p,4+1—p, jumps around “randomly”. There is some
truth in this heuristic (see, e.g., [T0,4556]). But along with the randomness, there
is also significant structure present, as evidenced already by the aforementioned
results.

We may thus ask, for example, what further additive structure is there to the
prime numbers? A natural generalization of (1’) is to ask for structure in the
differences between several primes (not necessarily consecutive). Here, perhaps the
simplest structure to ask for would be for a set of primes with a common distance
between them, that is, which form an arithmetic progression p,p + r,p + 2r,p +
3r,...,p+dr. A classical folklore conjecture, going back perhaps two centuries,
is that the primes contain arithmetic progressions of every length—quite a lot of
additive structure for a multiplicatively defined set!

Green and Tao [68] proved this conjecture in 2004, but we will see that its
history provides motivation and impetus for many topics in additive combinatorics,
including our main topic, the Cap Set Conjecture.

1.3. Additive combinatorics more generally. As a young boy, Erdds (re)proved
that Zp prime 1 /p = oo, and it has been postulated by several authors that this early
exciting mathematical experience, in combination with the long-standing conjecture
about arithmetic progressions in the primes, led to:
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Conjecture 1.1 (Erdés, 1940s or 1950s, see [40H42] 122}). If A C N satisfies
Y onca % = o0, then A contains arbitrarily long arithmetic progressions.

Apparently, Erdés particularly liked the idea that the reason the primes should
contain arbitrarily long arithmetic progressions actually had little to do with the
primes themselves—just a statement about their density. In his 1976 talk [41],
Erdés offered $3000 USD for its resolution—the highest prize he had ever offered
at that point—and in 1996 he upped the prize to $5000 USD [43], which I believe
was his third-largest ever As pointed out by Soifer [122] p. 354], the high prize
and the frequency with which he raised this conjecture in his talks and writings
suggests it was one of his favorites.

Gowers [62] points out that Erdés’s conjecture is “morally” about sets A such
that the density of A in {1,..., N} is around 1/log N. For if the density is 1/ log N,
then the sum diverges, while if the density is, say, 1/(log N (loglog N)?), then it
converges. Now, of course, arbitrary subsets need not have a density function that
varies so smoothly as a function of N. But Erdds’s conjecture is sandwiched be-
tween two statements about sets of a certain density. Forif ) _, 1/n diverges, then
there are infinitely many N such that [AN{1,..., N}| > 1/(log N (loglog N)?), so to
prove the conjecture, it suffices to show that subsets of density 1/(log N (loglog N)?)
contain arbitrarily long arithmetic progressions; to disprove the conjecture, it suf-
fices to find a set of density 1/log N that does not contain arithmetic progressions.
Nonetheless, the conjecture is what it is. It remains open even to prove that a set
A satisfying the hypothesis contains 3-term arithmetic progressions.

However, before Erdds put forth this conjecture, he was indeed thinking about
the density of sets. In his 1936 paper with Turdn [48], they conjectured:

1Regarding the date of this conjecture, the earliest written reference I could find for the case
of 3-term arithmetic progressions was a 1973 seminar report [40, Conjecture 1.2], and for general
arithmetic progressions was a talk from 1976 [4I]. This conjecture is often attributed to Erdés and
Turdn’s 1936 paper [48], but the conjecture does not appear there in print—even as a question—
and in his later writings, including a touching tribute to Turdn [41l p. 40], although Erdés raises
the problem in connection with his work on the primes with Turdn, he refers to it as an “old
conjecture of mine” (emphasis added). Soifer [122] p. 355] found references in a 1982 talk in
which Erdés says it was more than 40 years old, and a 1986 talk in which Erdés said it was
“about 30 years ago,” so we conclude with Soifer that the conjecture was made sometime between
the early 1940s and mid-1950s.

Regarding its motivation from arithmetic progressions in the primes, we have at least the
following evidence. In [40], Erdé&s relates it with Goldbach’s Conjecture—which, in particular,
implies that for any prime p, 2p = p1 + p2 for some other primes p1, p2, and hence the primes
have infinitely many 3-term arithmetic progressions—and Chowla’s unconditional result [23] that
there are infinitely many 3-term arithmetic progressions in the primes. (The earlier paper of van
der Corput proving the same [I34] was apparently forgotten until later.) In his 1977 paper [41]
he writes down the conjecture as stated here, that is, for arbitrarily long arithmetic progressions,
and points out that, in particular, it would imply arbitrarily long arithmetic progressions in the
primes, and therefore resolving the conjecture should be quite hard. In 1981, he restates the
conjecture yet again [42] p. 28], this time explicitly “in connection” with the problem of showing
arbitrarily long arithmetic progressions in the primes.

2The only larger Erdés prizes I'm aware of are $10,000 USD to show that p,+1 — pp, is “large”
infinitely often, and $25,000 USD to show there are only finitely many consecutive pairs of primes
pn such that p, < %, though he offered only $100 USD for a disproof; see [82] for details
on these large prizes and a list of other Erdés prizes.
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Conjecture 1.2 (Erdés and Turén [48]). If A C N has positive upper density—that
is, limsupy_, o M > 0—then A contains infinitely many k-term arith-

metic progressions, for every k.

While the primes do not have positive upper density—indeed the Prime Number
Theorem states that their density up to N is ~ 1/log N, so their upper density is
zero—this conjecture turned out to be a crucial step toward proving that there are
arbitrarily long arithmetic progressions in the primes. Szemerédi [126] proved the
Erd6s—Turdan Conjecture, and Szemerédi’s proof was a crucial ingredient in Green
and Tao’s proof [68] that the primes contain arbitrarily long arithmetic progressions.

When encountering a difficult conjecture, two natural tactics are to consider
special subcases or to consider analogous conjectures in slightly different settings.
First, instead of arbitrarily long arithmetic progressions, let’s ask for any nontriv-
ial arithmetic progressions at all. By “nontrivial” we mean consisting of at least
three distinct points. Okay, great: We’'ll focus on 3-term arithmetic progressions
for a bit. Historically, this has indeed been a good place to start; for example,
two decades before Szemerédi’s Theorem was proved, in 1953 Roth [I08] proved
the analogous result for 3-term arithmetic progressions, by a significantly easier
argument. (Szemerédi himself proved the k = 4 case in 1969 [125], before proving
the general case.) In terms of arithmetic progressions in the primes, it’s trivial to
show existence of a 3-term arithmetic progression (3,5,7), and almost 70 years be-
fore Green and Tao, van der Corput [I34] showed there were infinitely many 3-term
arithmetic progressions in the primes. But even the existence of infinitely many
4-term arithmetic progressions in the primes—or even a single 24-term arithmetic
progression—remained open until Green and Tao’s result. Moreover, while 3-term
arithmetic progressions have a nice formulation in terms of convolutions of Fourier
transforms, 4-term arithmetic progressions do not; a conundrum which eventually
led to higher-order Fourier analysis (see, e.g., [I37] for a nice discussion of this
difficulty and how it was overcome). Okay, fine, 4 is a lot harder than 3, so let’s
stick with 3-term arithmetic progressions.

And now, instead of only considering subsets of N (or Z), let’s consider subsets of
arbitrary abelian groupsﬁ These are, arguably, the most natural settings in which
the notion of “additive structure” makes sense, since these are precisely the sets
which have a notion of addition As a start, it should be clear that if we have
A C N and we consider AN{l,..., N}, then from the point of view of arithmetic
progressions, this is essentially equivalent to considering A as a subset of Z/NZ,
the integers mod N. If we're considering 3-term arithmetic progressions, maybe
we should instead consider A as a subset of Z/2NZ, just to make sure there’s
no accidental wrapping around, but philosophically, and even mathematically, this
turns out to make little difference. And note that we can indeed rephrase, for
example, Szemerédi’s Theorem in terms of AN {1,...,N}: For all k € N,e > 0,
there exists Ny such that if N > Ny and [AN{1,...,N}| >N, then A contains a

31f you don’t know what an abelian group is, don’t be scared! The integers Z, the integers mod
a number Z/NZ, and vectors of such (Z/mZ)™ are all abelian groups. In fact, these are almost the
general case, so just keep these in mind as your examples, and you should have smooth sailing.

4Qkay, technically maybe we should consider abelian semigroups. But many semigroups can
naturally be embedded into groups, and those that can’t have an addition operation which differs
quite substantially from our intuition for addition: for example, if z + z +x = z +  but = # 0,
then our addition operation seems to be somewhat far from our main interest, namely N.
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k-term arithmetic progression. Okay, great, so other abelian groups might be good
models for the phenomena we're interested in, but considering only cyclic groups
(the integer mod N) seems to really be considering the same phenomena, rather
than phenomena in analogous settings.

At the “opposite end” of some sort of natural spectrum, we might consider n-
dimensional vectors over the integers modulo m, for small m and n — oo, such as
(z)2Z)",(Z/3Z)",(Z/AZ)™. To what extent can we use results about arithmetic
progressions in these sets, which look more like vector spaces (and indeed, when m
is prime, are vector spaces), to understand arithmetic progressions in N?

There are two answers to this question, one historical and one formal. Histori-
cally, it’s been useful to first consider the vector spaces (Z/pZ)™ (p prime), where
we have lots of substructures to play with and induct on. To transfer results from
this setting to Z/NZ, one fruitful approach is to use so-called Bohr sets, which
are kind of an “approximate subspace” (in some Fourier-analytic sense). For any
given result, however, this transference remains something of an art, but has been
very effective in the past. The papers [64,[137] are entirely devoted to the analogy
between vector spaces over finite fields and Z.

Formally, there is also a tool for comparing the additive structure of subsets
in one abelian group with subsets of another abelian group which I can’t resist
mentioning: Freiman homomorphisms [53] (for a textbook treatment, see, e.g.,
[132, Section 5.3]). For me, when I first learned of this notion, it helped clarify
what is meant by additive structure in general; I hope it has the same effect for
you. Let’s define an additive set to be a subset A of an abelian group Z, and let’s
say that its “k-additive structure” is completely determined by all equalities of the
form a; +as+-+ay = a} +a5H+-+aj, where a;,a; € A. For example, the 2-additive
structure captures any k-term arithmetic progressions: ai,as,as,...,a; form an
arithmetic progression if and only if ¢;41 —a; = a;42 — a1 foralle=1,... k-2,
which we can rewrite entirely additively as a; + a;42 = a;41 + aj41-

Definition 1.3 (Freiman homomorphism). A Freiman k-homomorphism between
additive sets A C Z and B C W is a function f: A — B such that, for all a;,a; € A

ai+-dap=a\+--+ar = flar)+--+ flax) = f(a}) + -+ f(a}).

A Freiman k-isomorphism is a bijective Freiman k-homomorphism whose inverse
is also a k-homomorphism; equivalently, we require f to be a bijection such that
the one-way implication above becomes two-way: a; +---+ap = a} +--- 4+ aj, if
and only if f(a1) + -+ f(ax) = f(a1) + - + flag).

Although this is not how many of the results were transferred from finite fields
to the integers, in principle this notion could let us transfer (some) results about
arithmetic progressions in one abelian group, such as (Z/mZ)™, to another abelian
group, such as Z. At any rate, as I said, I think this notion helps clarify what we
mean by additive structure.

1.4. The Cap Set Conjecture. Now, for arithmetic progressions, (Z/2Z)™ isn’t
interesting, as it only has trivial arithmetic progressions (of length 2): If x, y, z form
an arithmetic progression, then z = y+ (y — z) = x, because we’re working modulo
2. So the simplest interesting “toy model” to consider in our family (Z/mZ)™ is
(Z/3Z)™. By a similar argument, because 3 = 0 in (Z/3Z)", it has no arithmetic
progressions of length larger than 3 (which are proper, that is, consisting of all
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distinct elements). But that’s alright, because 3-term arithmetic progressions were
where we wanted to start anyway. So (Z/3Z)™ has the simultaneous virtues of
(1) being analogous to, but not the same as, our original question(s) in N, (2)
among such analogous structures, being the simplest one which is still interesting;
and (3) forcing us to focus our attention on the smallest case, namely that of 3-
term arithmetic progressions, without having to worry about any “higher” additive
structure.

Before getting into the Cap Set Conjecture itself, let’s return to history to moti-
vate it from two other angles. The first angle is geometric. Harborth [73] introduced
the function s(m,n) to be the smallest number s such that any s points in Z" con-
tains a subset of size m whose centroid also has integer coordinates. It is not hard
to see that this is equivalent to the smallest s such that any sequence of s elements
in (Z/mZ)™ contains a subsequence of length m whose sum is zero. For m = 3, note
that this is nearly the same as the largest subset of (Z/3Z)" which contains no 3-
term arithmetic progression, since modulo 3 we have that x, y, z form an arithmetic
progression if and only if  +y = 2z if and only if 4+ y+ 2z = 0 (the only difference
is that s(m,n) allows sequences with repeated elements). Alon and Dubiner [5[0]
were perhaps the first to raise this question for m = 3 explicitly, but their primary
interest in those papers was the case of small n and large m, which is closer to our
original motivation of Z/NZ than to our new toy model of (Z/3Z)™. For general
m,n, the current best bounds are still those due to Harborth [73]:

(m—-1)2"+1<s(m,n) < (m—-1)m"+1.

(Note that the upper bound is larger than the size of (Z/mZ)™: the question is
about sequences of elements which need not be distinct.) Alon and Dubiner [51[0]
asked whether there was some ¢ < 3 such that s(3,n) < ¢™.

Finally, a third motivation. When studying the design of statistical experiments,
Bose in 1947 [I7] was led to study so-called caps: subsets of the projective geometry
}P’(IF;‘) over a finite field IF, that contain no three collinear points. In particular, he
was interested in the size of the largest caps. This question was taken up by Segre,
who provided upper and lower bounds on the maximum size of a cap [I17,[11§],
and has been well-studied since (e.g., a quick search on MathSciNet reveals at least
a dozen papers in the last five years alone). Over F3 = Z/3Z, caps have become
known as “cap sets” ] and a cap set is essentially the same as a set of points in
(Z/3Z)™ containing no 3-term arithmetic progression; indeed, the extremal sizes of
these two objects have identical asymptotic behavior as n — oo

With these motivations in mind, let us recall what’s known about 3-term arith-
metic progressions in Z/NZ and in (Z/3Z)"™. For any abelian group Z, let r3(Z)
be the size of the largest subset of Z without 3-term arithmetic progressions. If

5 Apparently, Tao [128] mistakenly introduced the term “cap set”. He writes [I30]: “...it seems
I may have inadvertently propagated a slightly incorrect terminology in [128]: sets in F% free of
collinear triples are known as affine caps or simply caps in the design theory literature, rather
than cap sets. The latter terminology seems to have become rather entrenched, though, at least
in additive combinatorics circles...”.

61f you aren’t familiar with how to compare the asymptotic behavior of two functions f,g: N —
N, it’s not hard, but now would be a good time to consult Appendix [A] The only difference here
is the difference between affine space F§ and projective space P(F7).
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FIGURE 2. History of upper bounds on r3(Z/NZ) and

r3((Z/3Z)™). In all cases, ¢ denotes some constant strictly be-
tween 0 and 1/2, but each use of & denotes a different constant.
The O hides terms of the form (loglog N)¢ or smaller. Note that
Behrend’s [12] and Elkin’s [37] lower bounds on r3(Z/NZ) grow
faster than N'=¢ for any € > 0.

we think of 3-term arithmetic progressions as some of the simplest nontrivial addi-
tive structures a set could have, r3(Z) is an upper bound on the size of (mostly)
“unstructured” subsets of Z.

Figure[2 shows the history. Since we want to compare Z/NZ against (Z/3Z)"™, we
will always use N to denote |Z]|. Lower bounds on r3(Z) come from constructions
of sets without 3-term arithmetic progressions. In Z/NZ, the current best bound
is due to Elkin [37], who constructed such a set of size > N(log N)'/4/ecVIoe N for
some ¢ > 0 (improving on Behrend’s classic bound [12] by +/log N; see [70] for a
shorter, albeit less constructive, proof). In (Z/3Z)", the current best bound is due
to Edel [34], who constructed a cap set of size > NO-724851 n case you're a little
rusty on your asymptoticsEl N/ eOWlogN) orows faster than N'—¢ for arbitrarily
small € > 0, but slower than N/(log N)¢ for arbitrarily large c¢. In contrast, Edel’s
lower bound is of the form N-72.

It is thus natural to ask where the truth lies for (Z/3Z)™: Does r3((Z/3Z)")
grow more quickly than (3")17¢ for all € > 0, or is there some ¢ < 3 such that
r3((Z/3Z)™) < ¢"? While this was raised as a question by several authors as early
as 1993 [5L61[22,[34], and it seems plausible that other experts may have believed
the upper bound to be ¢” for some ¢ < 3, the earliest reference we can find in which

7 What’s the sound of an analytic number theorist drowning? “Log log log log: - -” The same
is true for algorithms researchers.
8Due to I. Rusza, see [97].
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TABLE 1. Lower bounds on 73((Z/3%)™). The bounds for d < 6
are tight [I06]. The current best bound, due to Edel [34], uses a

recursive construction to build a cap set of size ~ 7.21 x 105° in
(2/32)480 (N ~ 10229).

L d ] r3((Z/32)7) > | 3((Z/32)") > |

1 2 2n

3 9 [17] 9"/3 ~ 2.08"

4 20 [103] 20"* ~ 2,117

5 45 [36] 4575 x~ 2.14™
6 112 [22,35] 1127"/6 =~ 2.19"
62 [ 2(2-11210+2.10-112%-12) [34] ~ 2.20"

480 | 3280 4+ 8°(7)1127° x 12° [37] ~ 2.217"

someone explicitly expressed the belief that r5((Z/3Z)") < ¢™ for some ¢ < 3 is
from 2004 [64]; other authors expressed the opposite belief [128].

Conjecture 1.4 (Cap Set Conjecture [64] (cf. [BLGL22L34])). r5((Z/3Z)™) < c™ for
some ¢ < 3.

Before we come to its resolution, let’s pause to discuss the lower bounds known
on the cap set problem. Within Z/3Z, we have that the set {0,1} is a cap set; it
follows that {0,1}™ is a cap set of size 2" in (Z/3Z)"™, for x +y+z =0 in (Z/3Z)"
if and only if z; + y; + z; = 0 for each coordinate 1 < ¢ < n. Similarly, if we have a
cap set C of size s in (Z/3Z)?, then we get a cap set of size s"/¢ in (Z/3Z)" (when
d divides n) by partitioning the n coordinates into n/d groups of d, and considering
the cap set C™/?. Table [ shows the bounds achieved using this idea.

Note that this technique always produces lower bounds of the form ¢” for some
¢ < 3. The only hope to disprove the conjecture this way would be to find an infinite
family of better and better such constructions, and given the level of complexity
of Edel’s construction, finding such an infinite family (of course, before we knew it
was impossible) seemed like a tall order.

Given the lack of consensus on which way this conjecture should be resolved, it
was then quite a surprise to see it resolved in 2016. All the previous upper bounds
on r3((Z/3Z)™) had used Fourier analytic techniques (with one exception due to
Lev [90], though the techniques there were still philosophically close to Fourier
analysis), and several people had speculated on ways to extend these techniques
to get better bounds (e.g., [61,128]). Then in 2016, Croot, Lev, and Pach [28]
left Fourier analysis behind and introduced a beautiful new use of the polynomial
method to show that r3((Z/4Z)") < (4™)926" In retrospect, the case of Z/4Z in
some ways seems harder than the Z/pZ case with p prime. Why were they looking
at the Z/47Z question? Lev was kind enough to provide an answer (personal com-
munication, 2018): their initial motivation was to improve Sanders’s result “Roth’s
Theorem in (Z/4Z)™ [I11I]. Very shortly thereafter, and nearly simultaneously
with one another, Ellenberg and Gijswijt leveraged the Croot—Lev—Pach technique
to give a positive resolution to the Cap Set Conjecture [39]. This exponentially
small upper bound on r3((Z/3Z)™) was all the more surprising because it shows a
striking asymptotic difference between arithmetic progressions in Z/NZ and those
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in (Z/3Z)™. Moreover, while Fourier methods work in both settings, the Croot—
Lev—Pach use of the polynomial method yields only trivial bounds for Z/NZ.

Such a strong upper bound is also tantalizing in its connection with the integers.
Gowers observed [62, p. 273] that if the upper bound on r3(Z/NZ) could be im-
proved from its current record of N (loglog N)*/log N [16] to N loglog N/log N, it
would give an alternative proof of Roth’s theorem in the primes (a theorem due to
Green [65] with improved bounds by Helfgott and de Roton [75]). The new greatly
improved bound on cap sets perhaps provides renewed hope that the upper bound
on r3(Z/NZ) could at least be improved by this seemingly tiny amount to give a
purely combinatorial proof of Roth’s theorem in the primes.

Even for cap sets, there is still an exponential gap between the upper bound of
2.756™ [39] and the lower bound of 2.217™ [34], and closing this gap is an interest-
ing problem. Improving the lower bound “just” requires a new construction; the
smallest dimension in which a finite construction could get within .01 of 2.756 is at
least d = 5971 We'll see in Section B2 through its connection with algorithms for
matrix multiplication (of all things!), that the Croot-Lev—Pach—Ellenberg—Gijswijt
technique extends from sets without arithmetic progressions to so-called tricolored
sum-free sets, and that in the tricolored setting the upper bound of ~ 2.756" is
indeed tight [T9]. Thus any attempt to improve the upper bound must differ sub-
stantially enough to not extend to the tricolored setting. Alternatively, to improve
the lower bound, one might try to turn the Kleinberg-Sawin-Speyer construction
of a tricolored sum-free set [79] into an ordinary cap set of the same size, but this
too seems difficult. See the end of Section Bl for a more detailed discussion of the
difficulties in improving the upper bound.

2. PROOF OF THE CAP SET CONJECTURE

The method introduced by Croot, Lev, and Pach in [28], which ultimately led
to the resolution of the Cap Set Conjecture in [39], is an application of the poly-
nomial method. In general, the polynomial method is the application of algebraic
geometry to combinatorics (and sometimes other fields that, at first blush, seem
unrelated to algebraic geometry). In particular, natural combinatorial structures
can often be defined in terms of polynomial equations, and then by reasoning about
these systems of polynomial equations (the domain of algebraic geometry) we can
often learn about the original combinatorial structures. In addition to the Cap Set
Conjecture, the polynomial method was also instrumental in the recent solution
of another long-standing combinatorial problem, the finite field Kakeya problem
[B1] (see also [33] for nearly tight bounds, again using the polynomial method).
For general introductions to the polynomial method see [76, Chapter 16] (in the
context of extremal combinatorics), [132, Chapter 9] (in the context of additive
combinatorics), and [129] for a recent tutorial and survey.

The version of the Ellenberg—Gijswijt proof we will follow here is the symmetric
version due to Tao [130]. The idea is essentially the same as Ellenberg-Gijswijt,

9We calculated this using the exact upper bound from [28], reproduced below as Lemma
That is, for each d = 2,3,...,597, we raised the formula from Lemma 25 to the 1/d power and
reported the first value of d where this value was at least 2.756 — .01 = 2.746. While we could
ask the same for even more generous bounds, such as getting within .1 of 2.756, the result there
is d = 8 which is so small that we believe that the upper bound given by Lemma 2] is far from
being tight. For example, at d = 6 this formula gives an upper bound on r3((Z/37)%) of 153, but
the true value is 112 [106].
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FIGURE 3. Visualizing a three-variable function F': X XY x Z —
7./37Z as a three-dimensional array or “3-tensor.”

only the syntax is different. In the original proof [39], when studying solutions to
the equation x 4+ y + z = 0—which is clearly symmetric in all three of z, y, and
z—they single out two of the variables and consider the rank of a matrix of the
form M, , = f(z +y) for some polynomial(s) f. What makes Tao’s version more
symmetric is that each of the three variables is put on an equal footing.

2.1. Tensors. Since we want to consider solutions to the equation x+y+z = 0 with
x,y,z € (Z/3Z)", we will consider three-variable functions F': X XY x Z — Z/3Z,
where XY, Z C (Z/3Z)". (Almost everything we say will apply to Z/pZ with p a
prime, but we’ll stick with p = 3 for consistency.) Just as we could visualize a two-
variable function on a finite domain F': X XY — Z/37Z as a |X| x |Y| matrix with
entries from Z/3Z, when X,Y, Z are finite sets we may visualize a three-variable
function as a three-dimensional array of numbers (see Figure B)—sometimes called
a 3-tensor—where the rows are indexed by the elements of X, the columns by the
elements of Y, and the “depths” (the row-like thing, but in the third dimension)
by the elements of Z. We thus refer to |X|, |Y|, and |Z| as the side lengths of the
3-tensor F.
The first observation follows.

Observation 2.1. If A C (Z/3Z)™ is a cap set, then the function

1 z4+y+2=0,

F(z,y,z) =do(x +y +2) = {0 otherwise

when restricted to A x A x A, satisfies

1 fz=y=z

Flaxaxa(z,y,2z) = {0 otherwise

In other words, F|axaxa looks like a three-dimensional version of the identity
matrix (see Figure M). The proof of this observation follows directly from the
definition of cap set.

If a tensor F' has this property—that is, if F(z,y,2) # 0 if and only if v =y =
z—we call F' a diagonal tensor. (For the purposes of this article, unlike a “diagonal
matrix,” which can have zero entries on its diagonal, when we speak of a “diagonal
tensor”, we mean that all of its diagonal entries are nonzero.)

Continuing the analogy with matrices, what we would like is some notion of rank
for 3-tensors such that

(1) diagonal tensors have rank equal to their side length (just as diagonal ma-
trices do); but
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FIGURE 4. Cap sets correspond to diagonal tensors; in this pic-
ture, the only nonzero entries are along the body diagonal D.

(2) the function do(z + y + 2z) (on all of (Z/3Z)™ x (Z/3Z)" x (Z/3Z)™) has
rank exponentially smaller than its side length 3™; and
(3) the rank of a tensor is always at least the rank of any of its sub-tensors,
gotten by restricting F': X XY x Z — Z/3Z to X' xY' x Z' for X' C
XY CY,Z CZ.
Given such a notion of rank, we quickly prove the Cap Set Conjecture:

Proof of the Cap Set Conjecture, assuming a notion of rank satisfying (1)—(3).
Let F(z,y,z) = do(x + y + z) be the tensor above. Then for any cap set A,

|A] = rank(F|axaxa) by property (1), since F|axaxa is diagonal
< rank(F) by property (3)
< " for some ¢ < 3, by property (2).
And that’s it! ]

The following notion is a direct generalization of the rank of matrices, which
we'll see has the desired properties. Showing that it satisfies properties (1)—(3)
above will then turn the above proof of the Cap Set Conjecture into a Proof.

Definition 2.2 (Tao [I30]). Given a 3-tensor F': X XY x Z — Z/3Z, its slice-rank
is the least r such that F' can be written as the following sum of r terms:

F(x,y,z Zfz 2)gi(y, 2 Zfz Y)gi(@, 2) Zfz 2)gi(z,y).

i=a+1 i=b+1
Any such expression for F', even with r not minimal, is called a slice decomposition.

This notion was introduced by Tao [130] in developing this symmetric version
of the Ellenberg—Gijswijt proof, and following [14] we call it slice-rank. Further
properties of slice-rank were elaborated in [I4}[I5]T31].

A 3-tensor of slice-rank 1 thus has the form f(x)g(y, z) (or any of its symmetric
versions, gotten by permuting the variables). In terms of our three-dimensional
array visualization, we may think of ¢g(y, z) as a matrix placed on a horizontal slab
coming out of the page, and then the function f(z)g(y,z) consists of stacking up
a bunch of scalar multiples of this slab on top of one another. In other words, a
3-tensor has slice-rank 1 iff its two-dimensional layers (in at least one of the three
directions) are all scalar multiples of one another.

Property (3), that slice-rank cannot increase when passing to subtensors, is the
easiest to see:

Observation 2.3. For any tensor F: X XY x Z — Z/3Z, and any X' C X, Y’ C
Y, 7' C 7
slice-rank(F|x/xy'xz/) < slice-rank(F).
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Proof. Given a slice decomposition for F' with functions f;(e), g;(e, ®), we get a slice
decomposition for F'|x/xy/xz by restricting each f; and g; to the primed subsets.
That is, for f;: X — Z/3Z, we restrict it to f! = fi|x/: X' — Z/3Z, and restrict
9i: Y X Z =737 to gily'xz: Y' x Z' = Z/37Z, and so on. |

Property (1), that the slice-rank of diagonal tensors is maximal, can be shown
by induction from the 2-variable (i.e., 2-tensor, i.e., matrix) case, which we leave
as an exercise.

Lemma 2.4 (Tao [130]). The slice-rank of a diagonal tensor is equal to its number
of nonzero entries.

Finally, Property (2), the exponential upper bound, brings us to the key idea of
the proof, which is an application of the polynomial method.

2.2. Key idea of the proof. The following lemma is the key idea from Croot,
Lev, and Pach in [28] and Ellenberg and Gijswijt in [39], which unlocks the whole
proof. Since a polynomial F(Z,#,Z) on ((Z/3Z)"™)3, is, in particular, a function
F:(Z/3Z)" x (Z/3Z)" x (Z/3Z)" — Z/3Z, we may view it as a 3-tensor of side
length 3™. In the language of slice-rank we have the following.

Lemma 2.5 (Croot, Lev, and Pach in [28], slightly generalized by Ellenberg and

Gijswijt in [39]). If F(21, ..y Tny Y1y« s Yns 21, - - -, 2n) 1S a polynomial over Z /37
of degree < d, then, when viewed as a 3-tensor of side length 3™ as above, we have

i n!
slice-rank(F) < 3 E .
alblc!
a,b,c>0

a+b+tc=n

b+2c<d/3
. . e/ e/ e// e//
Proof. Each monomial m in F' has the form m = ' 25 - - - x8ryy* - yn" 27" -+ 20",

where the exponents satisfy >, (e; + e; + e;) < d. If we consider the degrees of
this monomial in the z’s, the y’s, and the 2’s separately, namely d,(m) := ) e;,
dy(m) =), €, d.(m)=">", e/, then we have d,(m)+d,(m)+d.(m) = deg(m) < d.
Therefore, for each m at least one of d;(m), dy(m), and d,(m) must be < d/3.

Now, let M, be the set of terms (=monomials together with their coefficients)
for which d,(m) < d/3, let M, be the set of terms for which dy(m) < d/3, and
define M, similarly. Although not strictly necessary, it will make things simpler if
My, My, M, are disjoint, so let’s remove from M, anything in M,, and then remove
from M, anything in M, or in M,. Then we can write F' as

F(z,y,z) = Z m + Z m + Z m.
meM, meM, meM,

The key trick here is to rewrite each of these three sums by factoring out the
relevant variables. For example, factor out the x variables as much as possible from

2 men, M
_ €1 .62 €n— Yo
E m = E Ty L™ Ty gel,.‘.,en(y>z)u
meM, €1,...,en, >0
Zi e;<d/3

where the g., . are precisely what they need to be to make this equality hold;
but the only fact we need about the g’s is that they only depend on ¥, Z, and not
on &, as then the right-hand side here is a slice decomposition of the left-hand side.
(The g’s here are overlined because we’re about to replace them.)
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The next thing to note is that we can also restrict the e; so that they are all at
most 2. For any o € Z/3Z, note that a® = a, and thus the polynomial z3, as a
function on Z/37Z, computes the same function as the polynomial . This lets us
reduce the degree of each variable in each monomial until it is strictly less than 3.
We are then left with

— €1 .62 € walle
E : m = E : Ty Lo ~~xn"gel ----- en(yaz)'

meM, e1,...,en€{0,1,2}

The g¢’s here may be combinations of some of the g’s from before, but again, all
we care about is that they do not depend on Z. Thus each term in this sum has
slice-rank 1, and we have

slice—rank< Z m) <

meM,

{(er,.. en) €{0,1,2}" 1) "e; < d/3}

K2

By swapping the role of 7, ¥, and z, we get the same bound on M, M and
> menr. M and thus have

(2.1) slice-rank(F) < 3 |{(e1,...,en) €{0,1,2}" : > e; < d/3}

K3

All that remains is to show that the set on the right-hand side has the size
claimed in the statement of the lemma. Given (eq,...,e,) € {0,1,2}", let a be
the number of e; that are 0, let b be the number of e; that are 1, and let ¢ be the
number of e; that are 2. Then

(2.2) a+b+c=n,

for each e; takes exactly one of these three values. Also, we have that ) . e, =
a-0+b-14c-2,50 ) ,e; <d/3if and only if

(2.3) b+ 2c < d/3.

Thus we can rewrite (Z1)) as

(2.4) slice-rank(F') < 3 Z {(e1,...,e,) with a 0’s, b 1’s, and ¢ 2's}|.
a,b,c>0
a+b+c=n
b-+2c<d/3
Finally, given values of a, b, ¢ satisfying the constraints (Z2]) and (23], we need

to know how many vectors (eq, ..., e,) have a 0’s, b 1’s, and ¢ 2’s. Every such vector
comes from permuting the coordinates of the vector (0,0,...,0,1,1,...,1,2,2,...,2)
(with @ 0’s, b 1’s, and ¢ 2’s). There are n! such permutations. However, this
is significantly overcounting, since if we permute only those coordinates with the
same value, we get back the same vector. Thus we have overcounted by a factor of
alble!, so our final count is

n!
aldble!’

Combining (24) with (Z3]) yields the lemma. O

(2.5) {(e1,...,en) € {0,1,2}" : there are a 0’s, b 1’s, and ¢ 2’s}| =
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2.3. Finishing it off. We now use the key Lemma to prove property (2) for
slice-rank, which will thus complete the proof of the Cap Set Conjecture. The
techniques used here are completely standard, going back probably at least two
centuries; we include them so all our readers can see how everything fits together.

Observation 2.6. Let Fy: (Z/3Z)" — Z/37Z be any function. Then the 3-tensor
F:(Z/3Z)" x (Z/3Z)"™ x (Z/3Z)" — Z/3Z defined by F(x,y,z) = Fo(r +y + 2)
can be written as a polynomial of degree at most 2n.

Proof. The idea is to use interpolation to write the function Fjy as a polynomial.
More formally, for oo € Z/37Z, we can write the indicator function d,(x), which is 1
if and only if z = a, and it is 0 otherwise, as

Sa(z) =1—(z — )

Then for any & € (Z/3Z)", we can write the indicator function dz(%) as

n n

(55;(3?) = Héai (J?z) = H (1 — (J,‘Z - Ozi)Q) .

i=1 i=1
Note that degdsz = 2n. Thus, we can write any function Fj as a polynomial of
degree at most 2n,

Fo(®) =Y. 0a(@F(a). O
ae(z/3z)n

In particular, since the 3-tensor we care about, F(z,y, z) = do(x+y+ 2), has the
form in the preceding observation, we may apply the key Lemma to a function
of degree < 2n.

And now we come to the crucial (if standard) estimate. This estimate is best
phrased in terms of the Shannon entropy of a probability distribution with three
outcomes. Recall that for aq,...,qr > 0 summing to 1, the entropy of the cor-
responding k-outcome distribution is h(aq,...,af) = Zle a;log(l/a;). To see
how entropy might arise in estimating the sum from Lemma 28] recall Stirling’s
Formula: a! ~ (a/e)*v/2ma. In particular, log(a!) ~ aloga, and this is indeed
how entropy arises here. In the proof we’ll need two standard properties of the
entropy: (1) it is strictly convex; and (2) it attains its maximum value uniquely

when ay = -+ = ag, = 1/k, namely, h(1/k,...,1/k) = logk.
Lemma 2.7. Let
= max e,
@,8,720
atpf+y=1
B+2v<2/3

Then 6 is strictly less than 3, and the sum from Lemma is asymptotically equal
to

|
3y " gn(i+o(1)
aldble! '
a,b,c>0
a+b+c=n
b+2c<2n/3

Proof. Let 6 be as in the statement of the lemma. By the standard properties
of entropy mentioned above, the maximum value of h(a,8,7) is log3, uniquely
attained at the uniform distribution & = 8 = v = 1/3. However, the constraint
B+ 2y < 2/3 is violated by the uniform distribution, so no distribution satisfying
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this constraint can have entropy as large as log 3. Thus every term in the expression
for 6 is strictly less than e!°8% = 3, hence 6 is also.
Now, to see the second part, if a + b+ ¢ = n, Stirling’s Formula gives us

am = (GG O Ve
n" n
- a®bbee \ dr2abe

1 nn 1+0o(1)
T oo (a“bbcc) '

(If you’re not familiar with the o(1) notation in the exponent, now might be a good
time to quickly consult Appendix [A])

Now, since a + b+ ¢ = n, and we want to consider the behavior as n — oo, it’s
useful to rescale these three to get a probability distribution that essentially doesn’t
depend on n: For a = a/n, 8 =b/n,v = ¢/n, we have a, 3,7 > 0 and a+ S+~ = 1.
This allows us to rephrase the preceding estimate in terms of entropy:

n! 1 1o\
a'blc! 2 \ aeBb~e

1
= 5 (exp (—(aloga+ blog B + clog~y
1
21

))1+0(1)

(exp (—n(aloga + Blog B+ ylog~) (1 +o(1))
= 5 e (nh(a, 5,7)(1 4 0(1)).

Our sum can thus be rewritten asymptotically as

~E S e hla/nbinem+on).
a,b,c>0

a+b+c=n
b+2c¢<2n/3

Since this is a sum of exponentials, and the sum only has O(n?) terms, as n gets
large this will be dominated by the single largest exponential. For if the largest is
€™ and the next largest is e¢’", with €’ < C, then even if all the remaining terms
had magnitude e'™, they would still only add up to O(n2e€™) < eC'n(i+o(1)
which is still o(e“™).

To find the single largest term, we need to maximize the entropy h(c,,7)
subject to the constraints that «, 3, form a probability distribution satisfying
B+ 2~ < 2/3. This is precisely the maximization in the definition of 6. (]

While the preceding lemma is already enough to prove the Cap Set Conjecture, a
routine Lagrange multiplier calculation will find the exact values of «, 3, that give
the value of 6 (see [I30]). Since entropy is convex, simple numerical hill-climbing
will also yield the correct maximum value to any desired accuracy. The largest
value of h(a, 8,7) subject to the constraint 5 4 2y < 2/3 is ~ 1.013455, resulting
in an upper bound of ~ exp(1.013455 - - -n(1 4 o(1))) = 2.756 - - -»(1He(1),
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2.4. Bread crumbs of the proof. This completes the proof of the Cap Set Con-
jecture. Here are the bread crumbs of the proof (this is how I remember it).

(1) Observe that a cap set corresponds to a diagonal 3-tensor, which is a sub-
tensor of F(x,y, z), the indicator function of z + y + z = 0. Since diagonal
3-tensors are like diagonal matrices, the size of the cap set is the slice-
rank of the diagonal 3-subtensor, which is therefore upper bounded by the
slice-rank of F itself.

(2) Write the indicator function F' as a polynomial. Note that it has degree
< 2n (it’s a product of n indicator functions, each of which has degree 2).

(3) Pigeonhole the monomials by degree, d = 2n pigeons into three holes (one
for each of z,y, z).

(4) Group together the monomials which have z-degree < d/3, (and similarly
for y-degree and z-degree)

(5) Count monomials and estimate the growth rate using entropy maximiza-
tion.

3. TRICOLORED SUM-FREE SETS AND THE QUESTION OF TIGHT BOUNDS

For both r3(Z/NZ) and r3((Z/3Z)™) there is still a gap between the best up-
per and lower bounds known: in the former case, between N/(log N)'*¢ [16] and
N/ecVieg N=(1/4)loglog N [T937] ' and in the latter between 2.756" [39] and 2.217"
[34). In both cases, however, if we broaden our scope to slightly more general
objects, we find that the upper bounds are essentially tight.

3.1. Tight bounds in the integers? An arithmetic progression is a sequence of
integers satisfying x4z = 2y. In the case of the integers (or Z/NZ), if we generalize
to other translation-invariant linear equations—that is, of the form Zle a;x; =0
where ). a; = 0—we find essentially tight bounds. Translation invariance is a
natural condition here, as we want to consider subsets of Z satisfying some condition
on their relative differences x; — x;, which are unaffected by translating the entire
subset by an additive constant.

Recently, Schoen and Sisask [I16] (following [I15], who showed the k = 6 case)
showed that any subset A C {1,...,N} of size > N/exp(c(log N)'/7) contains
distinct elements x1,...,z4 such that

T, + 29 + x3 = 324.

Behrend’s construction for arithmetic progressions adapts easily to this setting, re-
sulting in essentially tight bounds for the preceding linear equation: The difference
is only between 1/2 and 1/7 in the exponent of the exponent (and that’s not a
typol!).

In fact, their argument works for any translation-invariant equation with at
least four terms. As z + y = 2z is of this form with only three terms, improving
their result from four terms to three terms would show that Behrend’s construction
is essentially tight for r3(Z/NZ). It’s worth noting, given our discussion above,
that their techniques also give similar bounds for such equations over finite fields
(but over finite fields no construction as large as Behrend’s is known for four-
term equations, even though such a construction is not ruled out by the Cap Set
Conjecture). In fact, they first present the argument over finite fields, as it is
simpler, and then use Bohr sets to extend the argument to the integers, as discussed
above.
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This result has the following interesting implication. Either:

e their result extends to the three-term case, in which case Behrend’s bound
is essentially tight for r3(Z/NZ); or

e showing a significantly better lower bound must use techniques that are
sensitive to the difference between 3-term linear equations and 4-term linear
equations.

(A lower bound of the form N/(log N)¢ for some ¢ > 1 would show that Bloom’s
upper bound is nearly tight.) We note that, although the difference here is be-
tween 3-term and 4-term linear equations, this situation actually seems quite differ-
ent than the syntactically similar difference between 3-term and 4-term arithmetic
progressions. In particular, since 3-term arithmetic progressions can be captured
by a single equation, they are relatively easy to analyze using Fourier analysis.
Since 4-term arithmetic progressions require two equations (x; + x3 = 2z and
o + ¢4 = 2x3), there is no single Fourier expression that captures them, thus
necessitating the “higher-order Fourier analysis” suggested by Gowers [59,[60] and
developed by Green, Tao, and Ziegler [69]. In contrast, both the k =3 and k =4
cases considered in this section are still just a single equation and thus are—at least
in principle—amenable to standard Fourier-analytic techniques. The difference, if
any, between 3-term and 4-term linear equations is apparently more subtle.

3.2. Tight bounds in vector spaces over finite fields? In the case of (Z/3Z)",
a slightly different generalization yields 2.756™ as a tight bound, matching the
Ellenberg—Gijswijt upper bound. This generalization was motivated by algorithms
for matrix multiplication (see Section [£2)), but our starting point here will be a
simple observation about slice rank, which generalizes the fact that the rank of a
matrix is invariant under change of basis. Given a tensor F': X xY x Z — F and
an invertible | X| x | X| matrix S, |Y| x |Y| matrix T, and |Z] X |Z| matrix U, we
may use these as change of basis matrices on FX, F¥', and FZ to get a new tensor
Fay2) = S, S\ T(y,y U (2, ) Fla,y, 2).

)

Observation 3.1. If F, F': X xY x Z — T are two 3-tensors that differ by a change
of basis (as above), then slice-rank(F') = slice-rank(F”).

Proof. Suppose slice-rank(F') = r. Then there is a slice decomposition

F(x,y,z Zfz 2)gi(y, 2 Zfz Y)gi(@, 2) Zfz 2)gi(z,y).

i=a+1 1=b+1

Given a change of basis (S,T,U), let us apply it to the preceding decomposition.
Now, for simplicity, let’s just consider the first summation ), f;(2)gi(y, z) of the
slice decomposition of F', and how it appears in the expression for F’. The other
two summations will be handled similarly (one advantage of the symmetry of the
notion of slice-rank). We have

Z S(x,x/)T( Z 2 Zfz gz Y,z
zy,z
—ZZSxx fila ZTyy (2,2)gi(y, 2)
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Note that, by defining f;(z") = >°, S(x,2') fi(x), f{ only depends on ', since we
sum over all values of x. Similarly, the function

gy, 2 ZT v, 0)U (2, 2)gi(y, 2)

depends only on 3/, 2. Using these new functions of x’, 3/, 2/, the preceding expres-

sion becomes
Zfz ACRESE

thus our first sum can be Written after the change of basis using exactly as many
slice-rank 1 terms as before, and similarly for the second and third sums. Thus
slice-rank(F') = slice-rank(F"). O

Although this may seem a rather trivial consequence of the definition, note that
when we considered a cap set A C (Z/3Z)™, it at least felt important that we
were using values from the same set A for all three variables x,y, z. But the above
change-of-basis observation says that we can change basis in X independent from Y’
independent from Z. In particular, if we change bases using permutation matrices,
this corresponds to simply reordering the elements of (Z/3Z)" in each of XY, Z.
What does a diagonal subtensor of our favorite tensor, F(z,y,2) = do(z + y + 2),
look like after permuting basis elements? It’s a restriction of F' to A x B x C with
A,B,C C (Z/3Z)" such that F(a;,bj,ck) = 1 if and only if § = j = k, where
A={a1,...,a4)}, and similarly for B,C. This leads to the following notion.

Definition 3.2 (Tricolored sum-free set [8,[14]). A tricolored sum-free set of car-
dinality ¢ in an abelian group Z consists of three subsets (a1, ...,as), (b1,...,be),
(c1,...,¢ce) with all a;,b;,c, € Z, such that

(Vz,j,k)[al—i—bJ—I—ck =0<<=1= :]{J]
(The indexing is only relevant for identifying the matching between A, B, and C'.)
Cap sets are examples of tricolored sum-free sets, but they are far from the only

ones.
From our observations above, we thus have the following.

Lemma 3.3. For any finite abelian group Z, let rCOI(Z) denote the size of the
largest tricolored sum-free set in Z, and let Fy be the |Z| X |Z| x |Z| tensor defined
by Fz(x,y,2z) = 0o(x +y + 2). Then we have

r$°(Z) < slice-rank(Fy).

Proof. From the discussion above, tricolored sum-free sets yield diagonal subtensors
in some basis. Apply Observation 3.1l and Definition 2.4] |

Finally, for tricolored sum-free sets, Kleinberg, Sawin, and Speyer proved that
the Ellenberg—-Gijswijt bound is essentially exactly tight.

Theorem 3.4 (Kleinberg, Sawin, and Speyer [9], with a lemma from Norin [T0T]
and Pebody [102]). Let 6 = 2.756 be the base of the exponent in the Ellenberg—
Gigswigt bound (as in Lemma 270). There is a tricolored sum-free set in (Z/3Z)" of
size > gn(1—o(1))
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To me, one of the really cool things here is not just that they achieved a tight
bound, but also their method of proof. They use a pullback of Behrend’s construc-
tion in the integers! Namely, in outline, they essentially

(1) choose three random mappings hi, he, hs: Z" — Z/pZ for a large prime
p ~ exp(cn) for some c;
(2) use Behrend’s construction to get a large set S C Z/pZ without arithmetic
progressions; and
(3) build their tricolored sum-free set as a large subset of {(a,b,c) € (Z/3Z)™ :
hl(a) = hQ(b) = hg(C) € S}
The o(1) in the exponent of Theorem B4 hides a factor which is nearly exactly the
density of the Behrend/Elkin construction relative to the prime p. One striking
aspect of this construction is that it uses a construction which is not known to be
tight in the integers, to prove a tight lower bound in (Z/3Z)™.

Finally, let us return to the question of tight bounds on 75((Z/3Z)™). Of course,
we may take Theorem [3.4] as some indication that the Ellenberg—Gijswijt bound
is already tight for cap sets. At the end of Section [[.4] we began discussing what
is needed for improving the lower bound. But already this little bit about the
proof of Theorem [3.4] may give us some inspiration: Perhaps by taking pullbacks
of Behrend’s construction, we can indeed get an infinite family of better and better
cap sets in (Z/3Z)¢ for d — oo that would meet the Ellenberg-Gijswijt bound.

To improve the upper bound, the key barrier to be avoided (at the moment)
is the use of slice-rank itself. This is not particular to Tao’s symmetric formu-
lation; rather, any technique (such as the Croot-Lev—Pach or Ellenberg—Gijswijt
techniques), which yields a slice-rank upper bound falls prey to this limitation. For
slice-rank is an upper bound on the size of tricolored sum-free sets, and Theorem [3.4]
says that these bounds cannot be further improved. Thus, to improve the upper
bound what is needed is a method that is somehow sensitive to the difference be-
tween a tricolored sum-free set and a cap set, or equivalently, between a diagonal
tensor in arbitrary bases versus a diagonal tensor in three identical bases. Said
another way, one needs a property of 3-tensors that is invariant under change of
bases of the form (5,5, S), but not invariant under change of bases of the form
(S, T,U).

4. APPLICATIONS AND EXTENSIONS

Next we come to the question of the relationship between the Cap Set Conjec-
ture and other problems or even other areas of mathematics. In this section we’ll
cover several applications of the Croot—Lev—Pach polynomial method, as well as
extensions of the Cap Set Conjecture motivated by other questions. Since Croot,
Lev, and Pach first posted their preprint, progress on these applications has hap-
pened very rapidly, and there is more than we can possibly cover in this short
space. I will cover those with which I am most familiar. Here are some that are
left out (I cannot hope to be exhaustive): relations between polynomials, namely, a
polynomial Sarkézy’s Theorem [67]; sum-sets as unions of sum-sets of subsets [38];
k-colored sum-free sets [94]; Harborth’s original question about zero-sum-avoiding
sequences and Erdés—Ginzburg—Ziv constants [51]; subsets containing no right an-
gles [57]; and ordered tricolored sum-free sets [78]. As our purpose here is just to
highlight a few of the many connections the Cap Set Conjecture has with other
areas of mathematics, we won’t be quite as expository in this section as we’ve been
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so far, but will point the reader to the relevant literature for further details. We
will, however, give at least some motivation for each of the problems considered.

4.1. Sunflowers. If you thought addition and lines were pretty basic mathematical
objects, let’s leave them behind for a moment to get even more basic: we’ll just
consider sets and their intersections. A sunflower is a collection of sets Ay, ..., Ay
such that their pairwise intersections are the same as their k-wise intersection:
AinA; = AinAsn---N A for all ¢ # j. (If you draw the Venn diagram of
such a collection of sets, you'll see where the name comes from.) This notion was
introduced by Erdés and Rado [46] in 1960 as a generalization of Dirichlet’s box
argument, and it has since found many uses in combinatorics, number theory, and
computer science (see the introduction to [§] for many excellent references).

Dirichlet’s box argument says that for any finite list 2o, . . ., 2 of a®+1 elements,
there is a sublist of size (a 4+ 1) such that either all the elements of the sublist are
equal, or all are distinct from one another. This should sound a little familiar, as
x+y+2z=0in Z/37Z if and only if x = y = z or z,y, z are all distinct from one
another. We'll see that the connection between sunflowers and cap sets is very tight
indeed.

Theorem 4.1 (Erdés and Rado [46]). Let F be a family of sets each of size s. If
|F| > (k= 1)%s!, then F contains a k-sunflower.

Conjecture 4.2 (The Sunflower Conjecture [46]). For every k > 0, there is a
constant ¢y, such that “(k —1)%s!” in the above theorem can be replaced by “(cx)®.”

This conjecture itself has also had many applications in extremal graph the-
ory, the construction of Ramsey graphs, and circuit complexity (again, see [§] for
references).

A slight variant of the Sunflower Conjecture, which will bring us even closer to
cap sets, follows.

Conjecture 4.3 (The Erdés—Szemerédi Sunflower Conjecture [47]). There is a
constant ¢ < 2 such that any family F of subsets of [n] = {1,...,n} of size |F| > "
contains a 3-sunflower.

The difference between this conjecture and the preceding one is that this one
doesn’t require every set in JF to have the same size, it does depend on the size
of the ambient set from which F is built, and it only posits the existence of a
3-sunflower (instead of k-sunflowers for arbitrary k).

In connection with the complexity of matrix multiplication (see Section 2],
Alon, Shpilka, and Umans [8] studied the Sunflower Conjecture and several of its
variants, showing implications and equivalences between them. They introduced
the following notion, which draws out the connection with cap sets.

Definition 4.4 (Sunflowers in (Z/mZ)™ [8, Definition 2.7]). A k-sunflower in
(Z/mZ)™ is a collection of k vectors vy,...,vx € (Z/mZ)"™ such that for every
coordinate ¢ € [n], either all the v; have the same value in their ith coordinate or
these values are all distinct. Equivalently, for each 7, |[{(v1):, (v2)i, ..., (vk)i }| must
be either 1 or k.

This is equivalent to a k-sunflower of sets (the usual notion) if the ambient set
is partitioned into n pairwise disjoint blocks of size m, and every set in F contains
exactly one element from each block.
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Observation 4.5. A 3-sunflower in (Z/3Z)™ is the same as a cap set.

Conjecture 4.6 (Sunflower conjecture in (Z/mZ)™ [8, Conjecture 2.8]). For every
k, there is a constant by such that for all m,n, any set of > (bg)™ wvectors in
(Z/mZ)™ contains k vectors forming a k-sunflower.

While this sounds different from the original Sunflower Conjecture, Alon, Sh-
pilka, and Umans showed that the two are actually equivalent [8, Theorem 2.9].

By Observation 5] the Cap Set Conjecture thus resolves the k = 3 case of a
weak form of Conjecture [£.6] in which we also restrict m to be 3. We’ll see in the
next section that the same method used to resolve the Cap Set Conjecture was then
applied to resolve the full Sunflower Conjecture.

4.2. Algorithms for matrix multiplication, and tricolored sum-free sets
in other abelian groups. Multiplying matrices—and its computationally equiv-
alent sibling, solving linear systems of equations—is a fundamental linear algebra
primitive used throughout the algorithmic world. Understanding its complexity is
a central question in algebraic complexity theory that has led to new insights and
conjectures in the representation theory of finite groups and algebraic geometry
(see, e.g., Landsberg [84] and references therein).

The naive method of multiplying two n x n matrices takes O(n?) steps, which
was thought to be optimal until Strassen showed [124] that this could be done in
only O(n?®1) steps. This led to the introduction of the exponent w of matrix
multiplication, namely

w = inf{w : n X n matrices can be multiplied in O(n") steps }.

The best lower bound known [85], although significantly nontrivial to prove, is still
only a constant multiple of the obvious Q(n?): Any algorithm must at least read
all 2n? entries of the input matrices. Currently, the best algorithm known takes
O(n?3729) steps [86], but it is a folklore conjecture that w = 2. Closing this gap
is a major open problem in algebraic complexity theory.

Starting in 1969 with Strassen’s result, there was a relatively steady stream
of improvements to the best upper bound for w. This culminated in 1990 when
Coppersmith and Winograd [26] used the Salem—Spencer construction [110] of
arithmetic-progression-free sets to develop an infinite family of matrix multipli-
cation algorithms, whose exponent was limited to 2.375477---. This was the first
hint of a relationship between matrix multiplication and arithmetic progressions.
Then progress on w hit a standstill for 20 years.

Although improvements in the upper bound on w would wait until 2010, in 2003
Cohn and Umans [25] introduced a new approach to algorithms for matrix multipli-
cation, which will draw out just how deep the connection is between such algorithms
and arithmetic progressions. Briefly, their approach requires finding finite groups
with only low-dimensional irreducible representations and containing three subsets
satisfying a certain condition (see Definition 7] below). In 2005, with Kleinberg
and Szegedy [24] they showed how to use this approach to develop new algorithms,
and to capture the Coppersmith—Winograd algorithm as a Cohn—Umans-style con-
struction in abelian groups of bounded exponent (that is, an infinite family of finite
abelian groups such that every element of every group in the family had order
< b). Starting in 2010, by analyzing higher tensor powers of the basic object used
by Coppersmith and Winograd, Stothers [123], then Vassilevska Williams [135],
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and finally Le Gall [86] made improvements, resulting in the current world record
w < 2.3728639 - - -. However, it was then shown [9] that this particular technique—
analyzing higher tensor powers of Coppersmith—Winograd—could get an exponent
no better than 2.3078 - -.

Shortly after the resolution of the Cap Set Conjecture [39], Blasiak, Church,
Cohn, Grochow, Naslund, Sawin, and Umans in [14], and independently N. Alon,
showed that Cohn—Umans-style constructions in an abelian group yielded not cap
sets, but tricolored sum-free sets (first introduced in connection with matrix multi-
plication in [§], and elaborated in [I4]). To get a sense for where these come from,
let’s see how Cohn and Umans proposed using a finite group to multiply matri-
ces. The idea is that the group algebra C[G] is a direct sum of matrix algebras
ClG) =2 M4, (C) @ --- @ Mg, (C), where the d; are the dimensions of the irreducible
representations of G. If we could somehow embed n X n matrix multiplication into
C[G] with n > max{d;}, then we could recursively multiply the smaller d; x d; ma-
trices in order to multiply n x n matrices, thereby getting a nontrivial algorithm.
One then gets a nontrivial upper bound on w as the infimum of w falsifying the
inequality n* <, di¥ [25].

To embed a matrix product larger than any of the d; into a group algebra, Cohn
and Umans proposed the following construction. If we want to multiply A-B = C,
we'll use three subsets S,T,U C G, such that A is an |S| x |T| matrix and B is
a |T| x [U] matrix. We embed A into the group algebra as t1(A4) = >, ; aijsitj_l
and B into the group algebra as 12(B) =, bjxtjuy . We would like to be able
to read off the entries of C as the coefficients of the group elements siulzl in the
product ¢1(A)t2(B). When we perform this multiplication, however, we end up
with Zi,j,j’,k ai,jbjgksit;ltj/u;l. If the only way that a group element sitjfltj/u,;l
can be of the form s;u;," is with i = ¢/, j = j/, and k = &/, then indeed we get that
the coefficient of siugl in the product is precisely Ej a; ;bj 1 = ci, as desired.
Rewriting this condition we have the following.

Definition 4.7 (Triple product property (TPP) [25]). Given a group G, three
subsets S, T, U C G satisfy the triple product property if
si_,lsitj_ltj/ulzluk/ =l<=i=4andj=j and k=F.

In fact, the constructions of [241[26L[861123][135] are all instances of a generaliza-
tion of this called the simultaneous triple product property—in which one embeds
several independent copies of matrix multiplication simultaneously—but the pre-
ceding definition is already enough to give us the flavor of the connection with
tricolored sum-free sets. For if we write Q(S) = S71S = {s7!s' : 5,8’ € S}, then
the TPP can be rewritten as Vg1 € Q(S5), ¢2 € Q(T), ¢z € Q(U),

Q1423 =1 <= q =g =q3 = 1.

This condition is precisely the nonabelian generalization of the defining condition of
a tricolored sum-free set (the nonabelian version is sometimes called a multiplicative
matching [I,[114]). And here, we finally see where this notion of tricolored came
from: it is because we wanted three different sets to index the rows of A, the rows
of B, and the columns of C.

Blasiak et al. [I4] extended the Ellenberg-Gijswijt bound from vector spaces
(Z/pZ)™ to (Z/mZ)™ for arbitrary m, and even more generally to abelian groups
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of bounded exponent. This generalization implies the (Z/mZ)™ Sunflower Conjec-
ture .6l which was previously shown equivalent to the original Sunflower Conjec-
ture [8]. Additionally, using the connection between TPP constructions and
tricolored sum-free sets, they showed the following.

Theorem 4.8 (Blasiak, Church, Cohn, Grochow, Nasland, Sawin, and Umans
[14]). One cannot show that w = 2 using simultaneous TPP constructions in fami-
lies of abelian groups of bounded exponent.

This includes and goes significantly beyond the class of Coppersmith—Winograd-
style algorithms [26186123][T35]. This result was recently extended to certain non-
abelian groups as well [I5] by generalizing the Croot—Lev—Pach method to the group
rings F,,[G] when G is an arbitrary (not necessarily abelian!) finite p-group. For
limitations on a different generalization of the Coppersmith—-Winograd technique,
see [23]. Thus, if w = 2, proving so requires significantly new techniques—perhaps
Cohn—Umans-style constructions in nonnilpotent groups?

4.3. Triangle removal. Szemerédi’s Regularity Lemma is a powerful tool in graph
theory, essentially giving the structure of an arbitrary graph. A well-known conse-
quence of the regularity lemma is the following.

Theorem 4.9 (Triangle Removal Lemma, Szemerédi and Ruzsa [109]). If a graph
G on n vertices contains only o(n®) triangles, then by removing only o(n?) edges
one can make the resulting graph triangle-free. More precisely, if G has < on’
triangles, then one can remove £(8)n? edges, where (6) — 0 as § — 0.

While on the surface this seems to have little to do with arithmetic progressions
and cap sets, we note that the Triangle Removal Lemma can be used to give a
very simple proof [109] of Roth’s result [I08] that r3(Z/NZ) < o(N). To see the
connection, we give the brief proof here.

Proof of Roth’s Theorem from the Triangle Removal Lemma [109]. Suppose A C
[N] has size |A| > eN. We build a graph G as follows. Its vertex set V will
be the disjoint union of three sets Vi, V5, V3, each of size 3N, which we identify
with [3N] (so |V]| = 9N). The edges are as follows: (i,7) € Vi x V, is an edge
if and only if j —4 € A; (j, k) € Vo x V5 is an edge if and only if k — j € A;
and (k,7) € V3 x V7 is an edge if and only if % € A. There are no other edges.
Then (i,j,k) € Vi x Vo x V3 form a triangle if and only if j —¢ = a; € A and
k—j=a3 € Aand % =ay € A if and only if a1, as, az is an arithmetic progres-
sion in A, for we have as — a1 = % — j = a3 — az. Note that this also allows the
trivial arithmetic progression (a, a,a), as nothing here forces the difference % —J
to be nonzero. For each i € [3N] and each a € A we get a triangle corresponding to
the trivial arithmetic progression (a, a, a), namely the triangle with vertices ¢ € V7,
i+a € Va, and i + 2a € V3. Since |A| > eN, we thus have at least |A||Vi| > 3eN?
triangles in G. Furthermore, these triangles are all disjoint from one another, so
to make G triangle-free would require removing at least 3e N2 edges (one for each

such triangle). As this is not o(|V|?) = o(81N?) = o(IN?), it must not be the case

10 This well-known version of the lemma appears to have first been stated in [55] Theorem 7],
where the result is actually proved for arbitrary graphs H in place of triangles, and in 7], Propo-
sition 4.4] where it is shown for cliques of arbitrary size. See also [44]. Although not phrased this
way in [109], in some sense this was just because the community at the time was focused on other
questions and missed asking for such a clean result. We thank R&dl for this historical insight.
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that G has only o(IN?3) triangles, by the Triangle Removal Lemma. In other words,
there is some § > 0 that depends only on e (but not on A nor N) such that G
contains at least §|V|3 = 7295 N3 triangles. However, the total number of triangles
corresponding to the trivial arithmetic progressions is |A||Vi| < 3N2, so at least
7296 N3 — 3N? of the triangles correspond to proper arithmetic progressions in A.
In particular, since ¢ is independent of N, for sufficiently large N it must be the
case that A contains at least one proper arithmetic progression of length 3. (]

With this connection in mind, it is natural to define a triangle in an abelian
group Z to be three elements z,y, z € Z such that z +y + z = 0.

Theorem 4.10 (Green [66]). Let Z be an abelian group of order N. If A C Z has
only o(N?) triangles, then by removing only o(N) elements from A, one can make
the resulting set triangle-free.

As with the original Triangle Removal Lemma, we can rephrase this in terms of
0,e. Unfortunately, the (previous) best quantitative upper bound was that 1/0 was

of the form 22° | where the height of this tower was log(1/¢) [49]. But with the
techniques used to resolve the Cap Set Conjecture (and the result of [I4]), Fox and
Lovész showed a tight bound, dropping this from an exponential tower all the way
down to a polynomial! They also generalized it from a single set A to a tricolored
version: given A, B,C C Z, we say (a,b,c) € Ax Bx C'is a triangle if a+b+c = 0.

Theorem 4.11 (Fox and Lovész [50]). For each prime p there is a constant C, such
that the following holds. If A, B,C C (Z/pZ)™ have only SN? tricolored triangles
where § = (£/3)¢» (and N = p", as usual), then by removing only eN elements
from AU BUC, one can make the resulting set triangle-free. Furthermore, this is
essentially tight, in that it only holds with 6 < ¢Cr»—e(),

Continuing the recurring theme of the relationship between (Z/pZ)"™ and Z/NZ,
Aaronson [I] extended this connection between tricolored sum-free sets and triangles
to Z/NZ.

4.4. Matrix rigidity. A natural question in computational complexity is: For
a fixed matrix A, how hard is it to compute the function x +— Axz? The naive
approach, for n x n matrices, takes O(n?) arithmetic operations. There are sev-
eral famous matrices for which this number can be reduced, most notably Fourier
matrices, which can be applied in only O(nlogn) operations, nearly linear in the
dimension of the vector space. Aside from a few other highly structured classes of
matrices, very little is known about this question in general. (And if we can’t even
answer this question with modern techniques, what hope do we have of proving
P # NP any time soon?) Two natural properties of a matrix A that make the
corresponding linear function easy to compute are (1) sparsity, that is, if A has
only very few nonzero entries, or (2) low rank. And any two such “easy” cases can
be added together. That is, if an n X n matrix A is the sum of a matrix A" with
only s nonzero entries and a matrix A” of rank r, then z — Az can be computed
in O(s + rn) arithmetic operations. For a given matrix A, this raises the question
of how few entries need to be changed to make the difference have low rank.

Definition 4.12 (Matrix rigidity [133]). The rank-r rigidity of a matrix A, denoted
R (), is the least number s such that A is the sum of a matrix A’ with < s nonzero
entries and a matrix A” of rank < r.
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Perhaps the most natural way to express the computation of an n-dimensional
linear function = — Ax is with a linear circuit: a sequence of instructions g1, ..., ge
either of the form g; = x; for some coordinate z; of the input, or a linear combina-
tion g; = a19;, + 05295, for constants «a;, and previous instructions j;, jo < j. The
“output” of such a sequence is its last n values. The size of the linear circuit is the
number £ of instructions. The O(nlogn)-step algorithm for the Fourier transform,
for example, translates into a linear circuit of size O(nlogn). To any such linear
circuit we may naturally associate a directed acyclic graph on vertex set [¢] with
arrows from g; — g; if g; appears as a summand in the instruction g;. The depth
of a linear circuit is the length of the longest directed path in this graph.

Theorem 4.13 (Valiant [133]). For every n, let A, be an n X n matriz over a
field. If Ra, (n/loglogn) > Q(n'™e) for some ¢ > 0, then for sufficiently large n,
the linear function A,, cannot be computed by linear circuits of size O(n) and depth
O(logn).

It is not hard to see that Ra(r) < (n —r)? for all r, and Valiant proved that
almost all matrices are at least this rigid. However, to date, the best lower bound on
any ezplicit matrix A is Ra(r) > Q(”T2 log %) [54,120]. Other techniques that have
been used to study rigid matrices include elimination theory [81], degree bounds
[91192], spectral methods [77], and algebraic geometry [58]. For a mostly up-to-date
survey that also includes relations to other areas, see [93]. For a long time it was
believed that the Hadamard matrices were sufficiently rigid to apply Theorem [4.13],
but this was recently disproved [4].

And now, we can add to this list of techniques the Croot—Lev-Pach polynomial
method.

Theorem 4.14 (Dvir and Edelman [32]). Let p be a fixed prime, and let € > 0.
For any function f: (Z/pZ)" — Z/pZ, let N = p", and let My be the N x N matriz
My(z,y) = f(x +y). Then there is a 6 > 0 such that for all sufficiently large n,

RMf(le‘s) < N*¢. In particular, such matrices are not rigid enough to apply
Theorem I3l

5. CONCLUSION AND OUTLOOK

Originally motivated by trying to find structure in the prime numbers, we were
led to study arithmetic progressions in vector spaces over Z/pZ as a model for
arithmetic progression in the primes or in Z. This turns out to be quite a fruitful
toy model, and the Cap Set Conjecture was developed as a keystone problem whose
solution was expected to unlock the mysteries of many other problems in combina-
torics and number theory. And indeed, as evidenced by the long list of applications
already, the technique used to resolve the Cap Set Conjecture had precisely the de-
sired effect! (It may be worth noting that almost none of these applications follow
as corollaries of the result itself; they only followed by using the Croot—Lev—Pach
technique.)

Of course, the Erdés Conjecture on arithmetic progression (Conjecture [
stands out as one of the most significant open problems we’ve discussed. Clos-
ing the gap between the best known upper and lower bounds for r3(Z/NZ) and
r3((Z/pZ)™) is also an interesting open problem. On the one hand, closing the
gap for r3((Z/pZ)™) may seem like something of a “clean-up operation”, given how
close the bounds now are. On the other hand, the discussion in Section [J] reveals
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that closing these gaps seems to require really novel methods, and one might hope
that such new methods would have other applications.

In addition to the many variants of the cap set question already resolved by the
polynomial method, there are many other variants of of the cap set question that
remain open. For example, what about r4((Z/pZ)™), the size of the largest subset of
(Z/pZ)™ free of four-term arithmetic progressions? As discussed by Tao [130], the
most natural extension of the slice-rank method yields only trivial bounds for this
question. Another example asks about sets that are free of arithmetic progressions
in particular directions. Namely, if Z is an abelian group and D C Z, we can ask
for the size of the largest subset A C Z which contains no arithmetic progressions
of the form a,a+d, a+2d with d € D. In particular, Lev asked about the size of the
largest subset of (Z/3Z)™ free of arithmetic progressions whose common difference
was in {0, 1}"; is it bounded by ¢" for some ¢ < 37

As another example, while in (Z/37Z)", the concepts of an arithmetic-progression-
free set and a line-free set coincide; in (Z/mZ)"™ with m > 3 they differ. What is
the size of the largest line-free set in (Z/4Z)™? In particular, is it < ¢ for some
¢ < 47 In Fy this question was recently answered by Bennett [13]. For more open
questions in along these lines, and in additive combinatorics more generally, see
[27].

Along the way, we’ve discussed many constructions of additive sets with various
properties [T2L[17,221[34H37L[70,[79,[103]. Are these constructions native to the groups
they were designed for? Or can they be used in other groups as well? It may be
fruitful to study this question from the following angle. Along with the notion
of Freiman isomorphism, for any additive set A there is a notion of a ”universal
ambient group” for that additive set:

Definition 5.1 (Universal ambient group (see, e.g., [I32, Section 5.5])). Let A C Z
be an additive set and k € N. An abelian group U is a universal ambient group
(of order k) for A if there is a Freiman k-isomorphism A = A’ C U, and for every
additive set B C W, every Freiman k-homomorphism A’ — B extends to a unique
group homomorphism U — W.

Tao and Vu [132] showed that universal ambient groups always exist, and coined
the term, though the idea was embedded in [80] (see [71, Chapter 20 Notes] for
details; that chapter is also a good source for further results on universal ambient
groups). As a way of getting at the preceding questions, it might be interesting to
develop a generalization of Freiman homomorphisms for multi-colored additive sets
(whatever that ought to mean), and to determine the universal ambient groups for
the constructions mentioned in this exposition.

Finally, given all the applications of the Croot—Lev—Pach technique in such a
short period of time, what other applications of the polynomial method are waiting
to be explored?

APPENDIX A. QUICK REVIEW OF ASYMPTOTIC GROWTH

In this appendix we consider many quantities as a function of some (usually
integer) parameter N, as N — oo. This allows us to get at the essence of cer-
tain constructions and bounds—and to compare different constructions with one
another—without getting caught up in the details of their ezact sizes (which can
often be hard to compute) or how large N must be before one sees a difference
between two techniques.
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The most common notations we will be using follow.

o f(N)~ g(N). limy_eo % =1, and we say that f and g are asymptot-
ically equal. The advantage of this notation is that it lets us focus on the
highest-order terms only.

e f(N) < O(g(N)). There is a constant ¢ > 0 such that for all sufficiently
large N (that is, “there is an Ny such that for all N > Ny”) f(N) <
cg(N). For most purposes, it is equivalent to say that limpy_sco % is
finite (these are not entirely equivalent as there are functions f, g such that
this limit doesn’t exist, yet nonetheless f(N) < O(g(N)), but I don’t think
we encounter any such pathologies here).

Similarly, we may use the notation O(g(N)) in a formula to denote an
unspecified function f such that f < O(g), e.g., O(n?)e™. The advantage
of this notation is that it lets us focus on the highest-order terms and
not worry about multiplicative constants, that are independent of N. For
example, N and 100N are both O(N), even though N ¢ 100N.

o f(N)<o(g(N)). For all ¢ > 0, for all sufficiently large N, f(N) < cg(N).
Equivalently, lim,, s, % = 0. If you think of O as the asymptotic version
of <, then o is the asymptotic version of <. Again, we may use o(g(N)) in
a formula to denote an unspecified f such that f < o(g).

e 0o(1). This is a particular case of the preceding that shows up frequently,
namely an unspecified function of N that goes to zero as N goes to in-
finity. This is especially useful when it appears in exponents, such as
cn(l—i—o(l))' For examp1e7 c'n? = nt2log.n — C?L(l—‘,—(l/n)ZlogC n) _ cn(l—i—o(l))'
The advantage of this notation is that it lets us focus on the exponen-
tial growth rate without worrying about lower-order multiplicative terms
(even when they depend on N). For we have that ¢ < d if and only if
c1+e)) = o(gr+eM)) even if the two o(1) terms are different. Let
f(N),g(N) <o(1). Then

o n(+f(n) . )N\
A T T <d1+g(n)>
im ()"

= () =0
The jump from the first to second line here is allowed because if ¢ < d, then
there is some g9 > 0 such that if 0 < € < &g, we have ¢!t¢ < d'*¢, and

there is some ng such that for all n > ng, we have f(n), g(n) < €.

Here is a list of the most frequent growth rates we’ll be considering and the relations
between them. If you haven’t seen these before, working out the relations for
yourself is a nice but not terribly difficult exercise that helps acquaint you with

these growth rates. They are listed in strictly increasing order, so that if you see
f(N),g(N) in this list, it means that f(N) < o(g(N)).

(log N)*/2 log N, (log N)? (log N)?,...,v/N,N*™ N N2 N3, ... 101V, 2N N 3V,

Indeed, (log N)¢ < o((log N)¢) for constants ¢,d > 0 if and only if ¢ < d,
and, similarly, N¢ < o(N9) and exp(cn) < o(exp(dn)) if and only if ¢ < d. In
particular, for exponentials of the form ¢ (¢ > 1), the base of the exponent
matters: ¢V < o(d") if and only if 1 < ¢ < d.
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Furthermore, for growth rates that are exponentially separated, altering con-
stant exponents never changes this, for example, (loglog N)¢ < o((log N)#) for any
constants ¢ > 0, > 0, no matter how large ¢ is and how small ¢ is. Similarly,
(log N)¢ < o(N¢), and N¢ < o((1+¢)™) for all ¢ > 0, > 0.
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