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SELECTED MATHEMATICAL REVIEWS

related to the paper in the previous section by
ISABELLE GALLAGHER

MR1014927 (90k:82045) 82A40; 35Q20, 45K05, 76P05

DiPerna, R. J.; Lions, P.-L.

On the Cauchy problem for Boltzmann equations: global existence and
weak stability.

Annals of Mathematics. Second Series 130 (1989), no. 2, 321-366.

This remarkable paper gives the first existence proof of large amplitude global
solutions to the Boltzmann equation. So far, only classical L> global solutions
having small amplitude either near equilibria [the reviewer, Proc. Japan Acad. 50
(1974), 179-184, MR0363332] or near vacuum [R. Illner and M. Shinbrot, Comm.
Math. Phys. 95 (1984), no. 2, 217-226; MR0760333] were known. Here, weak L*-
solutions of arbitrary amplitude are constructed for initial data satisfying only the
physically natural condition that the total mass, energy and entropy be finite. Thus,
this paper establishes a foundation of the L'-theory of the Boltzmann equation.

The difficulty in the L'-theory is the lack of continuity properties of the nonlinear
collision operator. What the authors essentially show in this paper is that this can
be overcome by introducing a new type of the weak solution, called the renormalized
solution. The definition of the renormalized solution involves a new normalization
of the Boltzmann equation so that the nonlinear term becomes, roughly speaking,
continuous, which ensures weak L' stability in the sense that a sequence of classical
L' solutions satisfying only a priori bounds for the physical quantities mentioned
above converges weakly in L' to a renormalized solution. This is impossible if
one requires the limit to be a classical solution. Applying this stability result to
approximate solutions constructed in an appropriate manner, the authors prove the
global existence of renormalized solutions.

The ideas for proving the stability are also nice. In particular, the entropy
equality, which is a fundamental equality in the celebrated Boltzmann H-theorem
but has never been used effectively as an a priori estimate, is used here in a subtle
way, combined with recent compactness results for velocity averages, to prove the
continuity of the nonlinear term. Also, supersolutions and subsolutions are defined
to study the limit, the proof being strongly measure-theoretic.

The uniqueness and regularity of renormalized solutions are important open
problems.

Seiji Ukai
From MathSciNet, October 2018

MR1115587 82C40; 82C31

Bardos, Claude; Golse, Francois; Levermore, David

Fluid dynamic limits of kinetic equations. I. Formal derivations.
Journal of Statistical Physics 63 (1991), no. 1-2, 323-344.

The authors discuss the connection between kinetic theory (Boltzmann, Fokker-
Planck, BGK-like equations) and macroscopic fluid dynamics (Euler, Navier-Stokes
119
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equations). Formal limits are systematically derived and some rigorous results
are given concerning the validity of these limits. The ranges of parameters are
described for which these equations provide a good approximation to the solution
of the kinetic equation. Three theorems are proved concerning the existence and
uniqueness of solutions of Navier-Stokes equations. The authors demonstrate that
the connection between kinetic and macroscopic fluid dynamics results from two
types of properties of the collision operator C'(F'): (i) conservation properties and
an entropy relation that implies that the equilibria are Maxwellian distributions
for the zeroth-order limit; (ii) the derivative of C'(F') satisfies a formal Fredholm
alternative with a kernel related to the conservation properties of (i). Properties
(i) are sufficient to derive the compressible Euler equations; properties (ii) are used
to obtain Navier-Stokes equations—they depend on a more detailed knowledge of
the collision operator.

Andrzej Fuliniski

From MathSciNet, October 2018

MR1213991 82C40; 76A02, 76D05, 76P05
Bardos, Claude; Golse, Francois; Levermore, C. David

Fluid dynamic limits of kinetic equations. II. Convergence proofs for
the Boltzmann equation.

Communications on Pure and Applied Mathematics 46 (1993), no. 5, 667-753.

This is a further discussion of the connections between kinetic theory (Boltzmann
equation) and macroscopic fluid dynamics (Navier-Stokes equations). The authors
deal with solutions of the Boltzmann or Navier-Stokes equations in the weakest
possible sense that is compatible with basic physical properties, such as conservation
laws or the entropy inequality. It is shown that any properly scaled sequence
of renormalized solutions of the Boltzmann equation due to R. J. DiPerna and
P.-L. Lions [Ann. of Math. (2) 130 (1989), no. 2, 321-366; MR1014927] has
fluctuations that converge to an infinitesimal Maxwellian with fluid variables that
satisfy the incompressibility and Boussinesq relations. However, such solutions
lack local conservation laws of momentum and energy. If an assumption of local
momentum conservation is added, the momentum densities globally coverge to a
solution of the Stokes equation.

Part T has been reviewed [MR1115587].

Andrzej Fuliniski

From MathSciNet, October 2018

MR1340046, 76C05; 35-02, 35Q35, 76-02
Chemin, Jean-Yves

Fluides parfaits incompressibles.
Astérisque No. 230 (1995), 177 pp.

The theory of the Euler equation for an incompressible inviscid fluid has been
revived in the early nineties, mainly by researchers from the Ecole Polytechnique.
After a 28-year-long wake, two main open questions were solved in 199}: the persis-
tence of smooth vortex patches [J.-Y. Chemin, in Séminaire sur les Equations aux
Dérivées Partielles, 1990-1991, Exp. No. XIII, 11 pp., Ecole Polytech., Palaiseau,
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1991; see MR1131573; Ann. Sci. Ecole Norm. Sup. (4) 26 (1993), no. 4, 517-542;
MR1235440] and the existence of solutions for vortex sheet initial data [J.-M. De-
lort, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 1, 85-88; MR1086507; J.
Amer. Math. Soc. 4 (1991), no. 3, 553-586; MR1102579]. Since these results deal
with planar motions, the last big problem to elucidate is whether smooth solutions
of 3D flows survive, or blow up in finite time.

The book under review has two main goals, namely to present the classical theory
(Wolbiner, Yudovich and others) on the one hand, and the new theory on the other
hand. The true quality of this text is that it unifies the past and the present by
an intensive use of Sobolev and Holder estimates of the paraproduct given by the
Littlewood-Paley decomposition (see Chapters 2 and 3). In these, the space C}
plays the role of a Hélder space instead of C'. Although the former is larger than
C1, it still fits well enough with the theory of ODEs so that a flow may be defined
for such velocity fields. Thus Lagrangian properties may be addressed.

The Euler equation is introduced in Chapter 1 as a consequence of the least action
principle. This is a true mathematical definition, which is not fully convincing from
a mechanical point of view for several reasons. First, it cannot be generalized to real
(that is, viscous) fluids. Secondly, although it may be adapted to the compressible
case, the variational principle does not distinguish a time arrow, so that it cannot
select a physically admissible solution from among others. One might argue that
incompressible inviscid flows do not need an “entropy condition”, since they admit
unique global smooth solutions, but this is not entirely true: the 3D flows might
not be smooth beyond some finite time; even in 2D, vortex sheet initial data would
yield very weak solutions for which we are not able to prove uniqueness.

Nevertheless, regarding the mathematical scope of this book, this definition of a
fluid is certainly acceptable. It is followed in Chapter 2 by a very neat presentation
of the Littlewood-Paley theory. This part could be of great help, even for gradu-
ate students. It ends with a study, via paradifferential calculus, of the quadratic
operator v = velocity LS pressure = p := —A~19;0;(v;v;).

Chapter 3 is devoted to estimates of the velocity in terms of estimates of the
vorticity (v). A special emphasis is given to the notion of tangential regularity
with respect to a geometrical structure, anticipating the vortex patch problem.

Chapter 4 presents a new approach to Wolibner’s classical solutions (1933). The
Euler equation is seen as an abstract evolution equation with a quadratic operator
IT satisfying tame estimates. In dimension two, one also assumes the transport
equation for the vorticity, but in all cases, one does not make use of energy conser-
vation.

Chapter 5 considers first Yudovich’s theory [V. I. Yudovich, Z. Vy¢cisl. Mat. i
Mat. Fiz. 3 (1963), 1032-1066; MR0158189] for initial data with bounded vorticity
in 2D. The solution is still unique and its structure is preserved. However, the
Holder regularity of the flow may decay as time increases and an explicit example
shows (Section 5.3) that it does decay in general. The especially important Section
5.5 proves the persistence of 2D vortex patches. This result, due to the author (see
above) and independently to P. Serfati [C. R. Acad. Sci. Paris Sér. I Math. 318
(1994), no. 6, 515-518; MR1270072], seemed unbelievable when announced in 1991.
Indeed, numerical experiments of N. J. Zabusky [J. Comput. Phys. 30 (1979), no. 1,
96-106; MR0524163] suggested that singularities of the boundary of the patches
would develop, presumably in finite time. A. J. Majda [Comm. Pure Appl. Math.
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39 (1986), no. S, suppl., S187-5220; MR0861488] even conjectured, concerning the
boundary of piecewise constant vortex patches, that there are smooth initial curves
such that the curve becomes nonrectifiable in finite time.

In the same (wrong) direction, S. Alinhac [J. Funct. Anal. 98 (1991), no. 2, 361—
379; MR1111574] studied a quadratic approximation of the equation governing the
evolution of the boundary and found some evidence of finite time breakdown. Thus
it is fair to say that the author’s result is one of the biggest achievements of the
last decade in the mathematical theory of fluid flows.

The next chapter is devoted to the problem of vortex sheets in two space dimen-
sions. Intermediate results were obtained by R. Di Perna and Majda [Comm. Pure
Appl. Math. 40 (1987), no. 3, 301-345; MR0882068|. It is the weakest of the 2D
theories, in the sense that it provides only the existence of a weak solution and says
nothing about regularity and uniqueness. Since the Birkhoff-Rott equation, which
formally governs the evolution of Lipschitz vortex sheets, is linearly ill-posed, we
do not expect the geometric structure of the solution to persist for positive time in
general. In particular, the flow should not be well-defined as a measure-preserving
one-to-one mapping.

The key point in Delort’s analysis is the study of a singular integral. It assumes
that the singular part of the initial vorticity is nonnegative (or nonpositive). This
severe restriction seems to be justified by numerical experiments of R. Krasny, but
who knows?

Chapters 7 (wave front, Gevrey regularity) and 9 (vortex patches with non-
smooth boundaries) are less fundamental. However, Chapter 8 presents recent
results about the time regularity of the flow which are far from obvious. In short,
the flow is analytic with respect to time in the classical theory (velocity in C",
r > 1). Tt is still Gevrey-3 in Yudovich’s theory (Q2(v) bounded). Nevertheless, the
space regularity is much weaker, since the velocity field is not smoothed out. The
results are due to the author [J. Math. Pures Appl. (9) 71 (1992), no. 5, 407-417,;
MR1191582].

Overall, this book is a wonderful piece of mathematics and offers an almost
complete overview on the field of the mathematical theory of incompressible inviscid
fluids (although one might wish to learn about initial-boundary value problems).
It clearly shows how big the difference is between the 2D and the 3D cases (the
reader should be aware of the fact that a few theorems and sections make sense
only in 2D, although the author does not say so). This book fills a wide gap. As
far as the reviewer knows, there has not existed a detailed overview on this topic.
Such a new book in a classical field is a rare event and most of the researchers in
theoretical fluid mechanics will want to have it in their private libraries.

Denis Serre

From MathSciNet, October 2018

MR1755865 (2002b:76028) 76D03; 35A05, 35Q30, 76D05
Amann, Herbert

On the strong solvability of the Navier-Stokes equations.
Journal of Mathematical Fluid Mechanics 2 (2000), no. 1, 16-98.

As is known, the problem of unique solvability “in the large” for general three-
dimensional nonstationary Navier-Stokes equations remains unsolved, and consti-
tutes one of the most challenging questions of the last millennium. Some essential
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progress has been achieved recently in this field, mainly with the semigroup ap-
proach. However, each author has his own solution, and the spaces where unique-
ness is proven are not comparable to each other; in fact “there are infinitely many
solutions due to the possible choices of underlying spaces” [see O. A. Ladyzhen-
skaya, The mathematical theory of viscous incompressible flow (Russian), Second
English edition, revised and enlarged. Translated from the Russian by Richard A.
Silverman and John Chu. Mathematics and its Applications, Gordon and Breach,
New York, 1969; MR0254401].

The article under review starts with a critique of most of those papers where
existence of a local (or global) solution is proven in a “suitable space” (in general
different in each paper) while uniqueness is proven under additional artificial re-
strictions on that solution. One of the aims of the paper is to fill this gap. More
generally, the present paper is an attempt to show that there is an analog to most
of the above theorems; this goal is reached by the use of refined topological and
functional tools.

Let us begin with some definitions of functional spaces used throughout the
paper: (1) Ly, denotes the projection of the Lebesgue space L, into the subspace
of solenoidal vector fields orthogonal to gradient fields; (2) L,((0,7T); Ls») is the
Bochner space of functions in Q x (0,7) having the spatial norms L, , summable
in time with exponent r; (3) D([0,T); D) is the space of infinitely differentiable
solenoidal vector functions in £ x [0,%); (4) S is the Stokes operator —vA; (5) nj
are the little Nikol’skil spaces, that is, the closures of H, 4 in the Besov spaces By .,
and nj, , are their projections on solenoidal fields. Another tool is the concept
of finest locally convex topology on the union |J E, of a family of Banach spaces
{Eq: @ > ag; Eoy — Eo} such that each of the natural inclusions Ez — |J E,
is continuous. Thus, the direct limit of the family {F,: « > ag} is defined as
UFEs = lim, E,. This topology is applied in particular to the little Nikol’skii
spaces, denoted n,. é:;m/ ", where m/3 < r < oo. Finally, we recall the concept of
spaces well suited for the Navier-Stokes equations, used in [M. Cannone and Y. F.
Meyer, Methods Appl. Anal. 2 (1995), no. 3, 307-319; MR1362019].

Let us recall various definitions of solutions to the Navier-Stokes system: The
very weak solution in the space L,(0,T; L, ), used by E. B. Fabes, B. F. Jones
and N. M. Riviere [Arch. Rational Mech. Anal. 45 (1972), 222-240; MR0316915].
The mild solution in E, where E is a Banach space of distributions on which the
Stokes semigroup {exp~**: t > 0} is strongly continuous and the integral

t
/ exp*(t*T)S[—P(u -Vu)], ué€E,
0

is well defined. The maximal strong solution v, that solution for which there exists
a maximal existence time ¢ such that v € C([O,t*),n;olvoyg), used in this paper.
The strong g-solution on [0, ¢), also used in the present paper.

Actually, the author proves the existence of a unique maximal strong solution, for
rough initial data, and the coincidence of various concepts of generalized solutions;
moreover he obtains some improvements over previous uniqueness and smoothness
theorems. For simplicity, the domains of motion, called “standard domains”, are
either R™, m > 2, or domains with compact boundaries, or half-spaces.

The main results of the paper are the following.
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Theorem 1. Suppose m < ¢ < r < oo and v? € n;é;m/q.
a unique maximal solution of the Navier-Stokes equations in C((0,t%), H?

r,0,0
CY((0,tT), Ly,o) satisfying

There exists
n

—14+m/q

limv(t) =vo inngq, ",

t—0

lim t(l_m/‘I)/Zv(t) =0 inL

t—0 T

Theorem 2. Suppose m < ¢ < r < oo and v0 € H;é;m/q. (i) There exists a

unique maximal strong solution of the Navier-Stokes equations satisfying
limv(t) =v° in H(;ler/q
t—0

and, if ¢ > m,

im t(1—m/a)/2 =0 i
P_I)%t v(t) =0 in L,.

It is smooth for 0 < ¢ < #¥. (i) Let 7, , be one of the spaces Hgo 5y By 0.0
nf]’o,[,, 1 <r < oo, for some s € ((—=1+m/q)4,2]; then

%im v(t) =" in F;

—0 0,0

provided v% € F3, . (iii) If ¢ > m then v € L.((0,t), L), with ¢t < ¢}, r € [2, oc]
and s € [m,00), and 2/r +m/s = m/q. (iv) Given ¢ > 0, there exists R > 0 such
that ¢ (v%) >t for [|v°]| —1+m/a < R.
0,0
In two theorems, theqauthor proves the equivalence of various definitions of
solution; let us call them v(-,v°). Concerning the blow-up in time, the following

holds. Theorem 3. Suppose m/3 < ¢ < oo and v° € H;é;m/q. (i) If tT < oo then

lim ()|, = o0

for all r > m with » > ¢ and every s > —1 4+ m/r. (ii) Suppose r > m with r > ¢
and —1 4+ m/r < s < 0. Then
[o()]] 12

0,0

> C(t+ _ t)f(s+1fm/r)/2’

where 0 < t7 — ¢ < 1, and c is independent of 0.

These theorems are proved for standard domains.

We now turn our attention back to the basic problem of uniqueness of the
global weak Leray-Hopf solution. The following theorem guarantees uniqueness
and smoothness on the maximal existence interval of strong solutions v(-,v°); the
novelty relies on the following uniqueness result.

Theorem 4. Suppose {2 is a standard domain and v° € Ly , N L, », ¢ > m. Then
v := v(-,v") is a weak solution on [0,T], T € (0,¢%). It belongs to C([0,tT), Ls)
and satisfies the strong energy identity

t
l()IZ, + 2V/ IVo(r)llL,dr =llv(s)lZ,, 0<s<t<t™

If u is any Leray-Hopf weak solution then v(-,v°) C u. In particular, u is smooth
on (0,t1).

We would like to end with some comments on the results achieved, and on the
bibliography in this paper.



SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 125

The results are achieved within the theory of semigroups, based essentially
on fine estimates on the Stokes operator. This approach utilizes interpolation-
extrapolation techniques to yield sharp results on the convective term.

The present paper is compared with those papers that use the same tools, and
from this perspective the results here improve or generalize the previous ones. In
particular, the author extends the results of Cannone and Meyer [op. cit.] to do-
mains with boundary.

The article under review provides a detailed description of the spaces of initial

data for the velocity; these spaces are very general. In particular, both H ~1+m/q

q,0,0
and n;é;m/ ? can have negative exponent for ¢ sufficiently large. The author pro-

vides a generalization of the spaces where blowup can occur; in particular they can
be Lebesgue spaces. The equivalence of various definitions of weak solutions ap-

pears to be very useful. A crucial point improved in this paper consists in the proof

H71+m/q

of natural extensions of Sobolev type embedding theorems for the spaces H_ ,

—14m/q .
orn,q, ' in the presence of a boundary.

The author proves the existence of a unique extension of the Helmholtz projec-
tor to negative spaces; this allows him to obtain sharp results for the nonlinear
convection term which improve known continuity estimates. The new uniqueness
theorem for very weak g-solutions is proved in a rather simple way.

The article under review quotes almost a hundred articles in its bibliography,
and fills a large lacuna in the existence of solutions of the Navier-Stokes equations.

The article provides a valuable insight into a very modern field, sheds new light
on the resolution of a key problem, and is very clearly written. In particular, the
introduction contains the outline of the proof and is perfectly accessible even to the
non-expert in this area.

Mariarosaria Padula

From MathSciNet, October 2018

MR1842343 (2002m:76085)| 76P05; 35F20, 35Q35, 76A02, 76D05, 82C40
Lions, P.-L.; Masmoudi, N.

From the Boltzmann equations to the equations of incompressible fluid
mechanics. I, II.

Archive for Rational Mechanics and Analysis 158 (2001), no. 3, 173-193, 195-211.

These two papers are the first ones of a series devoted to the mathematical
derivation of incompressible fluid mechanics from the Boltzmann equation in the
appropriate scaling when the Mach number and the Knudsen number go to zero.
It may be viewed as an extension of previous work of C. Bardos, F. Golse and
C. D. Levermore [C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 11, 727-732;
MR1054287; J. Statist. Phys. 63 (1991), no. 1-2, 323-344; MR1115587; Comm. Pure
Appl. Math. 46 (1993), no. 5, 667-753; MR1213991; C. R. Acad. Sci. Paris Sér. I
Math. 327 (1998), no. 3, 323-328; MR1650310]; for a different approach to the same
problem, see A. De Masi, R. Esposito and J. L. Lebowitz [Comm. Pure Appl. Math.
42 (1989), no. 8, 1189-1214; MR1029125]. In the first paper the authors show that
the global (renormalized) solutions of the Boltzmann equation [R. J. DiPerna and
P.-L. Lions, Ann. of Math. (2) 130 (1989), no. 2, 321-366; MR1014927] converge,
as the mean free path goes to zero with appropriate scalings, to global (weak)
solutions of the incompressible Navier-Stokes equations. The main difference with
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respect to the results of Bardos et al. is that the proof in the present paper allows
rather general initial conditions and is global in time. However, the authors need
to impose, as was done by Bardos et al., various conditions on the solutions of the
Boltzmann equation which are not known to hold. In the second paper the latter
conditions are somewhat relaxed or even completely suppressed (in the special case
of Stokes’ linear equations). Similar results are obtained for incompressible Euler
equations, under one extra assumption on the behavior of the solutions for large
speeds.

Carlo Cercignani

From MathSciNet, October 2018

MR2025302 (2005f:76003) 76A02; 35F20, 35Q30, 76D03, 76D05, 76P05, 82C40
Golse, Francois; Saint-Raymond, Laure

The Navier-Stokes limit of the Boltzmann equation for bounded
collision kernels.

Inventiones Mathematicae 155 (2004), no. 1, 81-161.

In 1934, J. Leray [Acta Math. 63 (1934), 193-248; JFM 60.0726.05] established
the existence of weak solutions to the incompressible Navier-Stokes equation in the
whole space, for any initial velocity field with finite kinetic energy. With this work
he hoped to develop a framework in which qualitative properties of solutions for
fluid mechanics equations could be studied with a lot of generality (no assumptions
of smallness, only physically relevant assumptions such as the finiteness of the
total kinetic energy). Ome of the important contributions in this field was the
construction by R. J. DiPerna and P.-L. Lions [Ann. of Math. (2) 130 (1989),
no. 2, 321-366; MR1014927] of weak (“renormalized”) solutions to the Boltzmann
equation. The main result of the paper under review can be summarized informally
as follows: Limits of suitably rescaled sequences of DiPerna-Lions solutions are
Leray solutions.

This striking result can be considered as the culminating point of fifteen years
of efforts by various authors (Bardos, Golse, Levermore, Lions, Masmoudi, Saint-
Raymond). It is the first asymptotic theorem relating the Boltzmann and Navier-
Stokes equations without any unphysical restriction of size or smoothness, and may
be seen as a major event, be it considered from the point of view of the theories
of weak solutions of partial differential equations (since it bridges two of the most
famous such theories, the ones by Leray and by DiPerna-Lions) or from the point of
view of mathematical limits from Boltzmann to hydrodynamics equations (a part
of Hilbert’s Sixth Problem about the derivation of macroscopic fluid mechanics
equations from mesoscopic, or ideally microscopic, models).

The starting point in the paper is the classical Boltzmann equation, describing
a dilute gas in which particles interact via binary collisions; the reader can consult
the long survey by the reviewer [in Handbook of mathematical fluid dynamics, Vol.
I, 71-305, North-Holland, Amsterdam, 2002; MR1942465] for a mathematically
oriented introduction to this model and many references. In the version used by
the authors, the Boltzmann equation reads

6f 1 3 3
— 4+ AV —_(,) > r eR cR
915 v :Cf I: (f7f)a t_ 9 I v Y
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where ¢ stands for time, x for position, v for velocity, and the unknown f = f(¢, z,v)
is a nonnegative function having the meaning of a time-dependent particle density
in phase space. Here the parameter Kn > 0 is the Knudsen number, which can
be defined heuristically as the inverse of the mean number of collisions that one
particle undergoes in a unit of time. Finally, Boltzmann’s collision operator Q(f, f)
is defined by

/ v, / do B(v = v.,0) [f(0) f(0)) = F(0)F(0.)],
R3 S2

:+2 Pl *2 !

Here the nonnegative function B(v — vy, o) is Boltzmann’s collision kernel, de-
pending on the microscopic interaction. For technical reasons it is assumed by
the authors that B is bounded from above and below by positive constants; it is
also assumed that the solutions of certain linear equations involving the linearized
Boltzmann operator have at most polynomial growth. This latter assumption is
known to be satisfied at least when B only depends on the angle between v — v,
and o (Maxwellian collision kernel), and it is reasonable to conjecture that it holds
true with much more generality.

Here are a few sketchy explanations about the physical context of this study.
When the Knudsen number is very small, collisions are expected to occur very
frequently and drive the solution very close to a time-dependent local Maxwellian
state,

e~ lv—u(@)?/(2T(2))
@2rT(x))3/2

where p, u and T respectively have the meaning of a density, a mean velocity field
and a temperature. Thus, in this regime it should be possible to approximate
solutions of the Boltzmann equation by a hydrodynamic equation. The rigorous
justification of this creed is an extremely difficult problem, mostly open. The Boltz-
mann equation is a model for a compressible gas, and its natural hydrodynamical
limit is the compressible Euler equation. However, incompressible models can also
occur as approximations of the Boltzmann equation in a regime where not only is
the Knudsen number very small, but also the solution is a very small perturbation
of the equilibrium, which is the global Maxwellian

6_|U‘2/2

(27T)3/2 ’

This is the situation studied by the authors: they introduce a sequence ¢, — 0
playing the role of a vanishing Knudsen number, and introduce a sequence (f,,)nen

such that each f,, is a solution to the Boltzmann equation (in the sense of DiPerna
and Lions) with Knudsen number ¢,,; then they set

fu(tyz,v) = M (z,0)[1 + engn(ent, z,v)].

The problem is to study the asymptotic behavior of g,, which can be seen as
a (rescaled) fluctuation of f,,. The time-rescaling by a factor ¢, is in some sense
compulsory, since the hydrodynamical evolution in short time is dominated by linear
acoustics, and the Navier-Stokes equation only arises as a longer-time correction.
Before stating the result more precisely, we feel that further explanations and
notation will be useful. To ensure that g, is of size O(1) (in the distribution sense),

M(z,v) = p(z)

M(z,v) =
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it is assumed that the relative H functional (or Kullback information) of f,, with
respect to the equilibrium M is of the order £2:

/(%log% — % —l—l) M dvdx = O(Ei).

By a compactness argument, combined with a variant of Boltzmann’s H Theorem,
the sequence Mg, converges weakly, up to extraction of a subsequence, to Mg,
where g is a fluctuation of the Maxwellian,

2
g(t,x,v) = p(t,z) +u(t,x) - v+ 0(t,x) <|U|T_3> .

By integrating g, against the test functions 1, v and |v|?/2 with respect to
the reference measure M (x,v)dv, one defines functions p, (¢, z) (scalar), u,(t,x)
(vector-valued) and 6,,(¢, z) (scalar), which can be seen as fluctuations in the den-
sity, velocity and temperature fields, respectively. Again, up to extraction of a sub-
sequence, one may assume that they converge weakly to p(t, z), u(t, z) and (¢, z).
The main result in this paper ensures that these limit fields obey the incompressible
Navier-Stokes equation. More precisely,

- the limit velocity field u(t, z) is a weak (Leray) solution to the incompress-
ible Navier-Stokes equation,

%—f—u'vzu—ﬁ—Vp:VAzu,

where p is the pressure, V, - u = 0 (incompressibility relation) and v > 0
is a viscosity, which can be computed in terms of the collision kernel;
- the limit temperature 6(t, z) is advected by the flow and dissipated by the
heat conductivity x (Fourier law),
00

& . — kA
8t+u V.0 = kA0,

where, again, x can be computed in terms of the collision kernel;
- the limit density is determined from the limit temperature via the Boussi-
nesq relation, p + 6 = 0.

It is part of the results of the authors that the incompressibility condition and the
Boussinesq identity will be satisfied for positive time even if they do not hold true
initially. In that case, the initial data for the limit equation should not be the limits
of (pn, un,8,) at time 0, but rather the limit of

2 3 3 2
<gpn - gonapuvu gen - gpn)

at time 0, where P is the Leray projector on divergence-free vector fields.

Good note should be taken that even if the authors only consider perturbations
of equilibrium, their result is definitely “in the large”: in the end, solutions of the
Navier-Stokes equation with arbitrarily large velocity field (only assumed to have
finite kinetic energy) are obtained.

More precise statements can be found in the paper itself; one can also find
there a thorough discussion of the history of the results and a very clear, synthetic
presentation of the new tools which led to the solution. Here below are some details
worth noting.
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The study of the behavior of DiPerna-Lions solutions of the Boltzmann equation
in the small Knudsen number limit was started by Bardos, Golse and Levermore in
the early nineties [C. Bardos, F. Golse and C. D. Levermore, Comm. Pure Appl.
Math. 46 (1993), no. 5, 667-753; MR1213991]. They set up the problem in a clear
way, studied the various scalings, and showed how to obtain weak compactness
by entropy estimates and a crucial strong compactness in the x variable by the
technology of velocity-averaging lemmas. More generally, they pushed the theory
as far as they could, and stumbled on three well-identified main problems:

(i) All the proofs of hydrodynamical limits, formal or rigorous, relied crucially
on the local conservation laws (mass, momentum, kinetic energy), but these con-
servation laws are still an open problem for the Boltzmann equation.

(ii) The existence of fast acoustic waves prevented the strong compactness, be-
cause of rapid time-oscillations (sound propagation), and passing to the limit using
only weak compactness looked challenging.

(iii) Some key equi-integrability estimates were lacking, in particular the equi-
integrability of the family |v|2¢2 /(2 + en9n)-

Bardos, Golse and Levermore showed that, roughly speaking, the resolution
of these three problems would make it possible to pass to the limit. Additional
problems were the lack of high-order moment estimates, seemingly turning the
control of the heat flux into a hopeless task, so that the discussion was restricted to
the momentum equation; and some technical estimates about eigenfunctions, which
were known only for certain very particular collision kernels.

All these difficulties have been solved in the last years, starting with the acoustic
waves problem. It was understood independently by E. Grenier [C. R. Acad. Sci.
Paris Sér. I Math. 321 (1995), no. 6, 711-714; MR1354711] and S. H. Schochet [J.
Differential Equations 114 (1994), no. 2, 476-512; MR1303036] that it was possible
to “filter” acoustic waves in the incompressible limit of the compressible Navier-
Stokes equations, thanks to an adequate “change of coordinates”. Later, Lions
and N. Masmoudi [C. R. Acad. Sci. Paris Sér. T Math. 329 (1999), no. 5, 387—
392; MR1710123] devised a convenient approach to this problem, based on a clever
compensated compactness argument, and were able to adapt it to the problem of
the Boltzmann equation [Arch. Ration. Mech. Anal. 158 (2001), no. 3, 173-193,
195-211; MR1842343].

The next important progress was the surprising discovery by Golse and Lever-
more [Comm. Pure Appl. Math. 55 (2002), no. 3, 336-393; MR1866367] that it
is not absolutely necessary to derive local conservation laws: under some a priori
estimates, local conservation laws may be established asymptotically in the limit
of small Knudsen number. This was achieved with the help of very clever but
very elementary bounds coming ultimately from entropy production estimates and
convexity inequalities.

In the paper under review, Golse and Saint-Raymond find a way to bypass diffi-
culty (iii) (the equi-integrability estimate stated above remaining an open problem),
and this allows them to present a complete proof of the limit to the incompressible
Navier-Stokes system. This achievement was made possible by an impressive re-
finement of tools that were already known, but have been put here to a new degree
of precision and efficiency: in particular,

- several careful decompositions of the fluctuation g, into a part which is
O(1/e,), and a remainder;
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- a new, limit case of the velocity-averaging lemma: roughly speaking, if a
family of densities is bounded in L', is locally uniformly integrable in the
velocity variable and satisfies a transport equation with right-hand side
bounded in L', then it is locally uniformly integrable in all variables.

This is also combined with a clever use of estimates on the bilinear Boltzmann
operator, due to Caflisch and Grad. Surprisingly enough, in their proof the authors
introduce both an artificial Boltzmann operator (to help control the distance of the
distribution to the associated local Maxwellian distribution) and an artificial time
variable (for instance to prove the new velocity-averaging lemma via dispersion
estimates in the artificial variable). The first idea can be traced back to Lions [J.
Math. Kyoto Univ. 34 (1994), no. 2, 391-427, 429-461; MR 1284432 (p. 423)], while
the application of the second one is reminiscent to the definition of real interpolation
trace spaces; yet both tricks have a certain flavor of mystery, and seem to leave room
for simplification.

All in all, the proof is of an incredibly high technical level, and the detail of
the computations is very difficult to master, although enormous efforts have been
made in the style and presentation to facilitate the task of the reader and make
the paper as self-contained as possible. These results were presented and com-
mented on, together with other contributions about incompressible limits from the
Boltzmann equation, by the reviewer in a Bourbaki seminar [Astérisque No. 282
(2002), Exp. No. 893, ix, 365-405; MR1975186]; in that reference the reader will
find much more about the history of the program, bibliographical references and
some sketches of proofs which may help in understanding the techniques.

By no means can the results presented here be considered as a final answer to
the problem of the hydrodynamic approximation of the Boltzmann equation. On
a technical level, the assumption of bounded collision kernel is not physical, and
it would be desirable to relax it so as to allow at least the hard spheres kernel
B(v — v4,0) = |v — vi|]. This is probably just a (horribly tedious) technical prob-
lem. On a more fundamental level, some parts of the proof are definitely non-
constructive; and even if these parts were replaced by constructive arguments, the
proof would involve Reynolds numbers that are too large to be realistic, by many
many orders of magnitude. Finally, the proof as it stands covers only the case of the
whole space. These remarks show that there is still a lot of room for improvement,
but do not aim at diminishing the merit of this paper, probably one of the major
contributions in mathematical fluid mechanics over the last decade.

Cédric Villani
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Contents:

C. Villani, “Entropy production and convergence to equilibrium”, 1-70.
MR2409050

F. Rezakhanlou, “Kinetic limits for interacting particle systems”, 71-105.
MR2409051

This nice book is based on two courses given, respectively, by Fraydoun Reza-
khanlou and Cédric Villani at the Centre Emile Borel of the Institut Henri Poincaré
in a special semester organized in the fall term of 2001 by Frangois Golse and Ste-
fano Olla.

The first course, by Villani, deals with the issue of the relaxation to equilib-
rium of the Boltzmann equation. The second course, by Rezakhanlou, deals with
the issue of the Boltzmann-Grad limit for deriving the Boltzmann equation from
a many-particle system. The connecting thread through these lectures is the use
of entropy. As recalled in the interesting introduction by Golse and Olla, varia-
tional characterizations of Maxwellian equilibria of the Boltzmann equation and
variational characterizations of chaotic data in many-particle systems both illus-
trate how entropy can be used as a way to measure the distance to some particular
“limit” distribution (an asymptotic limit in the first case, a many-particle limit in
the second case).

Let us give more details about the courses. The first course (Villani) is con-
cerned with obtaining a constructive rate of relaxation to equilibrium for the Boltz-
mann equation by relating the relative entropy and the entropy production func-
tional. The author begins with some motivations for his program of research, going
back to Boltzmann, Kac and McKean. He then presents recent results, together
with useful reminders from information theory, Cauchy and regularity theory for
the Boltzmann equation and Kac’s problem for particle systems. Highlights in-
clude, first, a very clear presentation of the author’s work [C. Villani, Comm.
Math. Phys. 234 (2003), no. 3, 455-490; MR1964379] proving Cercignani’s con-
jecture for the spatially homogeneous Boltzmann equation with super-quadratic
collision kernels. This conjecture states that the entropy production functional
D(f) = —dH(f)/dt > 0 (with H(f) = [ flog f) and the (increasing) relative en-
tropy functional —H(f|M) = —(H(f) — H(M)) with respect to the equilibrium
Maxwellian distribution M satisfy

D(f) > K H(f|M) for some positive constant K.

The proof involves a fascinating and clever use of a derivation along the Ornstein-
Uhlenbeck semigroup which makes the Landau entropy production functional ap-
pear! The second highlight is a short and understandable introduction to the au-
thor’s work [L. Desvillettes and C. Villani, Invent. Math. 159 (2005), no. 2, 245-316;
MR2116276] proving the “almost exponential” relaxation to equilibrium of the full
(spatially dependent) Boltzmann equation in a bounded domain, under some a pri-
ori moment and regularity assumptions on the solution. Physical and analytical
ideas are explained with special emphasis on the key aspect of “how to depart from
local equilibria”. In the words of Villani, “local equilibria are your worst enemies”
when looking for relaxation to global equilibrium. Indeed, entropy and entropy
production inequalities proved before in the spatially homogeneous case still play a
key role; however, they are degenerate on the set of local equilibria. The key idea
introduced by Desvillettes and Villani is to estimate the second time derivative of
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some relative entropies, and replace one first-order differential inequality by a set
of second-order differential inequalities.

The lecture also discusses many extensions, open questions and perspectives
which should be valuable for many researchers in the field of the Boltzmann equa-
tion.

The second course (Rezakhanlou) is concerned with the Boltzmann-Grad limit.
While the core of the text is somewhat harder to read for non-specialist readers
than the previous course, since it goes quickly into detailed intricate computations,
it begins with a very clear and illuminating introduction presenting a hierarchy
of conjectures and models for studying the Boltzmann-Grad limit. Indeed the
author formulates the issue of chaos propagation in probabilistic terms as a law
of large numbers, which naturally leads to refined conjectures on small (CLT) and
large deviation estimates around the deterministic Boltzmann-Grad limit. He then
presents a hierarchy of stochastic models in the spirit of Kac’s master equation,
with either discrete or continuous space and velocity variables, approximating the
Boltzmann equation or the Boltzmann-Enskog equation (with delocalized collision
process). He also introduces a ladder of scalings generalizing the usual Boltzmann-
Grad scaling.

Rezakhanlou then reviews important recent results he has obtained for the mod-
els and conjectures presented earlier and he sketches some proofs of the following
highlighted results:

(1) [F. Rezakhanlou, Duke Math. J. 93 (1998), no. 2, 257-288; MR1626003] A
central limit theorem for a stochastic discrete velocity model (for scalings one order
better than the Boltzmann-Grad scaling and for bounded collision kernels): the
proof goes through an estimate “a la Tartar” of the modulus of continuity for the
number of collisions for the limit PDE, and a new microscopic analogue of it.

(2) [F. Rezakhanlou, Probab. Theory Related Fields 104 (1996), no. 1, 97-146;
MR1367669] The kinetic limit in space dimension 1 for a stochastic discrete velocity
model: the proof goes through the introduction of a new microscopic version of the
celebrated Bony functional.

(3) [F. Rezakhanlou, Comm. Math. Phys. 248 (2004), no. 3, 553-637; MR2076921]
The kinetic limit of stochastic hard spheres towards renormalized DiPerna-Lions
solutions (for scalings (d + 1)-orders better than the Boltzmann-Grad scaling): the
key ingredient of the proof is an interesting new result of velocity averaging for
the density of (convoluted) empirical measures of N particles following a stochastic
collision process, which allows passing to the chaotic limit in the collision part of
the equation for these empirical measures.

This book, at the crossroads of probability and partial differential equations, will
be useful to all mathematicians interested in entropy methods.

Clément Mouhot
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From a physical point of view, we expect that a gas can be described by a fluid
equation when the mean free path (Knudsen number) goes to zero. In his sixth
problem, on the occasion of the International Congress of Mathematicians held in
Paris in 1900, Hilbert asked for a full mathematical justification of these derivations.
During the last two decades this problem has attracted a lot of interest.

Let us first give some background about this problem (see Chapters 1 and 2 in the
book). The molecules of a gas can be modeled by spheres that move according to
the laws of classical mechanics. However, due to the enormous number of molecules
to be considered, it is hopeless to describe the state of the gas by giving the position
and velocity of each individual particle. Hence, we must use some statistics and
instead of giving the position and velocity of each particle, we specify the density of
particles F'(z,v) at each point z and velocity v. Under some assumptions (rarefied
gas, etc.), it was proved by Boltzmann (and Lanford for a rigorous proof in the
hard sphere case) that this density is governed by the Boltzmann equation

(B) OF +v-V,F = B(F,F).

To derive fluid equations from the Boltzmann equation, one has to introduce several
dimensionless parameters: the Knudsen number Kn (which is related to the mean
free path), the Mach number Ma and the Strouhal number St (which is a time
rescaling). With these parameters, one can rewrite the Boltzmann equation as

1
St 0F +v-V,F = —B(F,F)

with FF = M(1+Ma- f) where M is a fixed Maxwellian. It is worth noting that the
Reynolds number Re is completely determined by the relation Ma = Kn-Re. Several
fluid equations can be derived that depend on these dimensionless parameters:
Compressible Euler system, acoustic waves, Incompressible Navier-Stokes-Fourier
system, Stokes-Fourier system, Incompressible Euler system, etc. There are several
approaches to deal with this problem: the weak compactness method initiated by C.
Bardos, F. Golse and C. D. Levermore, asymptotic expansions [see A. De Masi, R.
Esposito and J. L. Lebowitz, Comm. Pure Appl. Math. 42 (1989), no. 8, 1189-1214;
MR1029125], the energy method [Y. Guo, Comm. Pure Appl. Math. 59 (2006),
no. 5, 626-687; MR2172804; erratum, Comm. Pure Appl. Math. 60 (2007), no. 2,
291-293; MR2275331], etc.

This book gives an overview of some of these results and mainly the deriva-
tion of the Incompressible Navier-Stokes [F. Golse and L. Saint-Raymond, Invent.
Math. 155 (2004), no. 1, 81-161; MR2025302] and Incompressible Euler [L. Saint-
Raymond, Arch. Ration. Mech. Anal. 166 (2003), no. 1, 47-80; MR1952079]
systems.

After the construction of the renormalized solutions to the Boltzmann equation
by R. J. DiPerna and P.-L. Lions [Ann. of Math. (2) 130 (1989), no. 2, 321-366;
MR1014927], there was a program initiated by Bardos, Golse and Levermore [J.
Statist. Phys. 63 (1991), no. 1-2, 323-344; MR1115587; Comm. Pure Appl. Math.
46 (1993), no. 5, 667-753; MR1213991] to derive incompressible models from the
Boltzmann equation. In particular the main objective was to recover the Leray
[J. Leray, Acta Math. 63 (1934), no. 1, 193-248; MR1555394; JFM 60.0726.05]
global weak solutions of the incompressible Navier-Stokes system starting from the
DiPerna-Lions solutions.
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There were five main assumptions in their first work:

(1) Because of a problem coming from the rapid time-oscillations of acoustic
waves, only the time independent case was considered.

(2) Local conservation laws were assumed even though these are not known to
hold for the renormalized solutions.

(3) The lack of high-order moment estimates required the restriction of the dis-
cussion to the momentum equation and no heat equation was derived.

(4) A key equi-integrability estimate was assumed on the solutions of the Boltz-
mann equation. This is due to the fact that the natural space for the Boltzmann
equation is L log L whereas for the Navier-Stokes system the natural space is L2.

(5) Due to a technical estimate for the inverse of the linearized Boltzmann kernel,
only very particular collision kernels were considered.

These five assumptions have been removed one by one in the past two decades:

(1) In [P.-L. Lions and N. Masmoudi, Arch. Ration. Mech. Anal. 158 (2001),
no. 3, 173-193, 195-211; MR1842343] the time-oscillating acoustic waves were
treated using a compensated compactness type argument coming from the com-
pressible-incompressible limit [P.-L. Lions and N. Masmoudi, C. R. Acad. Sci. Paris
Sér. I Math. 329 (1999), no. 5, 387-392; MR1710123].

(2)-(3) In [P.-L. Lions and N. Masmoudi, op. cit., MR1842343 (pp. 195-211)],
the assumption on the local conservation in the momentum equation was removed,
and in [Comm. Pure Appl. Math. 55 (2002), no. 3, 336-393; MR1866367], Golse
and Levermore were able to derive the Stokes-Fourier system. The main idea is to
recover the moment conservation laws at the limit.

(4) The main breakthrough of [F. Golse and L. Saint-Raymond, op. cit.;
MR2025302] was a new L' averaging lemma that allows one to prove the key equi-
integrability estimate.

(5) In [F. Golse and L. Saint-Raymond, J. Math. Pures Appl. (9) 91 (2009), no. 5,
508-552; MR2517786] the result was extended to hard cutoff potentials satisfying
Grad’s cutoff assumption and in [C. D. Levermore and N. Masmoudi, Arch. Ration.
Mech. Anal. 196 (2010), no. 3, 753-809; MR2644440] it was also extended to both
hard and soft potentials. Another important extension was done by D. Arsénio
[“From Boltzmann’s equation to the incompressible Navier-Stokes-Fourier system
with long-range interactions”, Arch. Ration. Mech. Anal., to appear|, who treated
the non-cutoff case.

We also note that the case where the problem is considered in a bounded domain
was treated in [N. Masmoudi and L. Saint-Raymond, Comm. Pure Appl. Math.
56 (2003), no. 9, 1263-1293; MR1980855] where Navier and Dirichlet boundary
conditions were derived starting from the Maxwell boundary condition.

Chapter 3 of this book presents the main mathematical tools used in dealing with
the hydrodynamic limit. In particular several estimates coming from the entropy,
the entropy dissipation and Darrozes-Guiraud information are presented. Also the
new L' averaging lemma is proved.

Chapter 4 deals with the incompressible Navier-Stokes limit using the weak com-
pactness method. In particular the author shows how to combine the ideas from
[N. Masmoudi and L. Saint-Raymond, op. cit.; MR1980855] to treat the case of a
bounded domain with Maxwell boundary conditions.

Chapter 5 deals with the incompressible Euler limit using the relative entropy
method [L. Saint-Raymond, op. cit.; MR1952079].
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Finally, Chapter 6 gives a survey of the known results about the compressible
Euler limit. It is worth noting that if we are interested in starting from the renor-
malized solutions then none of the methods used in the incompressible case can be
adapted. The author gives some open problems and perspectives.

Nader Masmoudi
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In this monograph, the authors are concerned with the rigorous derivation of
the (irreversible) classical Boltzmann equation as a limiting case of (reversible)
Newtonian molecular dynamics. They provide a self-contained re-visitation of the
argument outlined by O. E. Lanford III in his seminal work [in Dynamical systems,
theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), 1-
111. Lecture Notes in Phys., 38, Springer, Berlin, 1975; MR0479206] for the local-
in-time validity of the Boltzmann equation for hard spheres in the Boltzmann-Grad
limit of the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. More-
over, the authors reconsider the results of F. G. King’s thesis [BBGKY hierarchy
for positive potentials, Univ. California, Berkeley, 1975; MR2625983], which extend
Lanford’s argument to a Hamiltonian system of particles with short range, repulsive
potentials.

In essence, following Lanford and King, the monograph shows that for hard
spheres and Hamiltonian systems with short range repulsive interactions, and for
short times, statistical states solving the BBGKY hierarchy converge, in the Bolt-
zmann-Grad limit, to solutions of the so-called Boltzmann hierarchy. In particular,
independent initial states of the BBGKY hierarchy result, in the limit, into factor-
ized solutions of the Boltzmann hierarchy (propagation of molecular chaos), each
factor solving the Boltzmann equation. To prove the convergence, the authors apply
Lanford’s strategy to compare a suitable series expansion of the BBGKY solutions
(in terms of sums of collision trees) with the corresponding one for Boltzmann
hierarchy, by checking the term by term convergence.

The book has the merit that it provides nontrivial missing details of Lanford’s
argument, in particular those concerning the term-wise convergence, incompletely
presented in the previous literature (even in the hard-sphere case), and that it
clarifies some obscure points and fills some gaps of King’s work (mostly related to
the proof of the term-wise convergence).

The monograph is divided into four major parts (15 chapters). The first part is
a selective, contextual introduction to the main problems and results of the book.

Part IT is concerned with the hard-sphere case. It provides a rigorous derivation
of the BBGKY hierarchy and a precise statement for the convergence of solutions
of BBGKY hierarchy (Theorem 8). This part also includes important consideration
on independence, propagation of molecular chaos, and an insight into the strategy
of the convergence proof.
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Part IIT deals with short range repulsive potentials. Here, the derivation of the
BBGKY hierarchy is more delicate. The convergence theorem (Theorem 11) is
formulated for smooth, compactly supported, nondecreasing, repulsive potentials,
singular at the origin (Assumption 1.2.1), which satisfy a condition (8.3.1) ensuring
that the scattering cross-section is well defined.

The principal contribution of the book emerges from Part IV, which concludes
the proofs of the main convergence results (Theorems 8 and 11). The arguments are
similar, both for hard spheres and short range potentials, regardless of the nature
of the interactions. The key point of the analysis is the proof of the term-wise
convergence. This is based on the elimination (control) of re-collisions (which are
“bad” events leading to an evolution different from the Boltzmann behavior). To
control re-collisions, the authors apply explicitly the properties of the scattering
cross-section.

The monograph includes a list of references and a notation index.

After the publication of the printed book, the authors provided an on-line er-
ratum to Chapter 5 at www.ems-ph.org/books/173/Erratum-chapter5.pdf to
remove some inconsistencies relative to the functional framework of the book.

The monograph is a good reference for researchers and graduate students inter-
ested in the fields of mathematical physics and partial differential equations.

An alternative approach (and also extension to stable short range potentials) has
been recently published [M. Pulvirenti, C. Saffirio and S. Simonella, Rev. Math.
Phys. 26 (2014), no. 2, 1450001; MR3190204].

Cecil Pompiliu Grinfeld
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