Advances in Soviet Mathematics 1992; 172 pp; hardcover Volume: 10 ISBN10: 0821841092 ISBN13: 9780821841099 List Price: US$136 Member Price: US$108.80 Order Code: ADVSOV/10
 The four papers in this volume examine attractors of partial differential equations, with a focus on investigation of elements of attractors. Unlike the finitedimensional case of ordinary differential equations, an element of the attractor of a partial differential equation is itself a function of spatial variables. This dependence on spatial variables is investigated by asymptotic methods. For example, the asymptotics show that the turbulence generated in a tube by a large localized external force does not propagate to infinity along the tube if the flux of the flow is not too large. Another topic considered here is the dependence of attractors on singular perturbations of the equations. The theory of unbounded attractors of equations without bounded attracting sets is also covered. All of the articles are systematic and detailed, furnishing an excellent review of new approaches and techniques developed by the Moscow school. Readership Specialists in partial differential equations, dynamical systems, and mathematical physics. Table of Contents  A. V. Babin  Asymptotic expansion at infinity of a strongly perturbed Poiseuille flow
 V. V. Chepyzhov and A. Yu. Goritskiĭ  Unbounded attractors of evolution equations
 M. Yu. Skvortsov and M. I. Vishik  Attractors of singularly perturbed parabolic equations, and asymptotic behavior of their elements
 V. Yu. Skvortsov and M. I. Vishik  The asymptotics of solutions of reactiondiffusion equations with small parameter
