AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Spectre Automorphe des Variétés Hyperboliques et Applications topologiques
Nicolas Bergeron, Unité Mixte de Recherche 8553 du CNRS, Paris, France, and Laurent Clozel, Université Paris-Sud, Orsay, France
A publication of the Société Mathématique de France.
2005; 218 pp; softcover
Number: 303
ISBN-10: 2-85629-186-4
ISBN-13: 978-2-85629-186-3
List Price: US$66
Individual Members: US$59.40
Order Code: AST/303
[Add Item]

This book has two parts. The first is concerned with the differential form spectrum of congruence hyperbolic manifolds. The authors prove Selberg type theorems on the first eigenvalue of the laplacian on differential forms. The method of proof is representation-theoretic; the author hope the different chapters also serve as an introduction to the modern theory of automorphic forms and its application to spectral questions. The second part of the book has a more differential geometric flavor; a new kind of lifting of cohomology classes is proved. The main motivation of this work is given by Arthur's conjectures; these conjectures imply strong restrictions on the spectrum of arithmetic manifolds which, in turn, imply conjectural properties on the geometry of hyperbolic manifolds. Together with precise statements of these conjectures, this text gives proofs of weak forms of them in some particular cases.

A publication of the Société Mathématique de France, Marseilles (SMF), distributed by the AMS in the U.S., Canada, and Mexico. Orders from other countries should be sent to the SMF. Members of the SMF receive a 30% discount from list.


Graduate students and research mathematicians interested in number theory.

Table of Contents

Partie I. Spectre des variétés hyperboliques
  • Théorème de Matsushima
  • Spectre du laplacien sur les quotients arithmétiques
  • Représentations de \(\mathrm{GL}(n)\)
  • Représentations de \(\mathrm{U}(n,1)\)
  • Représentations de \(\mathrm{U}(a,b)(a,b > 1)\)
  • Conséquences des Conjectures d'Arthur
  • Théorème de Luo-Rudnick-Sarnak
  • Démonstration du Théorème 1
  • Démonstration du Théorème 2
  • Démonstration du Théorème 3
Partie II. Homologie des variétés hyperboliques
  • L'espace hyperbolique complexe
  • Espaces symétriques associés aux groupes unitaires
  • Construction de la forme duale
  • Cohomologie \(L^2\) réduite
  • Démonstrations des Théorèmes 4, 5 et 8
  • Bibliographie
  • Index des notations
  • Index terminologique
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia