
Preface  Preview Material  Table of Contents  Supplementary Material 
Graduate Studies in Mathematics 2010; 176 pp; hardcover Volume: 111 ISBN10: 0821849387 ISBN13: 9780821849385 List Price: US$50 Member Price: US$40 Order Code: GSM/111 See also: Ricci Flow and Geometrization of 3Manifolds  John W Morgan and Frederick TszHo Fong Ricci Flow and the Poincaré Conjecture  John Morgan and Gang Tian Low Dimensional Topology  Tomasz S Mrowka and Peter S Ozsvath  In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincaré conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zürich and Stanford University, and it is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Request an examination or desk copy. Readership Graduate students and research mathematicians interested in differential geometry and topology of manifolds. Reviews "This book is a great selfcontained presentation of one of the most important and exciting developments in differential geometry. It is highly recommended for both researchers and students interested in differential geometry, topology and Ricci flow. As the main technical tool used in the book is the maximum principle, familiar to any undergraduate, this book would make a fine reading course for advanced undergraduates or postgraduates and, in particular, is an excellent introduction to some of the analysis required to study Ricci flow."  Huy The Nyugen, Bulletin of the LMS "This is an excellent selfcontained account of exciting new developments in mathematics suitable for both researchers and students interested in differential geometry and topology and in some of the analytic techniques used in Ricci flow. I very strongly recommend it."  Jahresbericht Der Deutschen Mathematiker  Vereinigung 


AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 