AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Connective Real \(K\)-Theory of Finite Groups
Robert R. Bruner, Wayne State University, Detroit, MI, and J. P. C. Greenlees, University of Sheffield, UK

Mathematical Surveys and Monographs
2010; 318 pp; hardcover
Volume: 169
ISBN-10: 0-8218-5189-6
ISBN-13: 978-0-8218-5189-0
List Price: US$97
Member Price: US$77.60
Order Code: SURV/169
[Add Item]

Request Permissions

See also:

The Connective K-Theory of Finite Groups - R R Bruner and J P C Greenlees

Parametrized Homotopy Theory - J P May and J Sigurdsson

This book is about equivariant real and complex topological \(K\)-theory for finite groups. Its main focus is on the study of real connective \(K\)-theory including \(ko^*(BG)\) as a ring and \(ko_*(BG)\) as a module over it. In the course of their study the authors define equivariant versions of connective \(KO\)-theory and connective \(K\)-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory. They prove local cohomology and completion theorems for these theories, giving a means of calculation as well as establishing their formal credentials. In passing from the complex to the real theories in the connective case, the authors describe the known failure of descent and explain how the \(\eta\)-Bockstein spectral sequence provides an effective substitute.

This formal framework allows the authors to give a systematic calculation scheme to quantify the expectation that \(ko^*(BG)\) should be a mixture of representation theory and group cohomology. It is characteristic that this starts with \(ku^*(BG)\) and then uses the local cohomology theorem and the Bockstein spectral sequence to calculate \(ku_*(BG)\), \(ko^*(BG)\), and \(ko_*(BG)\). To give the skeleton of the answer, the authors provide a theory of \(ko\)-characteristic classes for representations, with the Pontrjagin classes of quaternionic representations being the most important.

Building on the general results, and their previous calculations, the authors spend the bulk of the book giving a large number of detailed calculations for specific groups (cyclic, quaternion, dihedral, \(A_4\), and elementary abelian 2-groups). The calculations illustrate the richness of the theory and suggest many further lines of investigation. They have been applied in the verification of the Gromov-Lawson-Rosenberg conjecture for several new classes of finite groups.


Graduate students and research mathematicians interested in connective \(K\)-theory.


"The book is very carefully written, including many diagrams and tables, and also a thorough review of the authors' previous work on the complex case."

-- Donald M. Davis, Mathematical Reviews

Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia