AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Parabolic Geometries I: Background and General Theory
Andreas Čap, Universität Wien, Austria, and International Erwin Schrödinger Institute for Mathematical Physics, Wien, Austria, and Jan Slovák, Masaryk University, Brno, Czech Republic

Mathematical Surveys and Monographs
2009; 628 pp; hardcover
Volume: 154
ISBN-10: 0-8218-2681-6
ISBN-13: 978-0-8218-2681-2
List Price: US$120
Member Price: US$96
Order Code: SURV/154
[Add Item]

Request Permissions

See also:

An Introduction to CR Structures - Howard Jacobowitz

Conformal, Riemannian and Lagrangian Geometry: The 2000 Barrett Lectures - Sun-Yung A Chang, Paul C Yang, Karsten Grove, Jon G Wolfson and edited by Alexandre Freire

Parabolic geometries encompass a very diverse class of geometric structures, including such important examples as conformal, projective, and almost quaternionic structures, hypersurface type CR-structures and various types of generic distributions. The characteristic feature of parabolic geometries is an equivalent description by a Cartan geometry modeled on a generalized flag manifold (the quotient of a semisimple Lie group by a parabolic subgroup).

Background on differential geometry, with a view towards Cartan connections, and on semisimple Lie algebras and their representations, which play a crucial role in the theory, is collected in two introductory chapters. The main part discusses the equivalence between Cartan connections and underlying structures, including a complete proof of Kostant's version of the Bott-Borel-Weil theorem, which is used as an important tool. For many examples, the complete description of the geometry and its basic invariants is worked out in detail. The constructions of correspondence spaces and twistor spaces and analogs of the Fefferman construction are presented both in general and in several examples. The last chapter studies Weyl structures, which provide classes of distinguished connections as well as an equivalent description of the Cartan connection in terms of data associated to the underlying geometry. Several applications are discussed throughout the text.


Graduate students and research mathematicians interested in parabolic geometry, conformal geometry, almost quaternionic structures, and CR-structures.


"An excellent book. Serving both as a timely introduction to parabolic geometry and as a general introductory work for Lie groups and Cartan geometries. ... This review cannot do justice to the power and generality of parabolic geometry theory, but this book certainly does."

-- Mathematical Reviews

Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia