AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Pseudo Limits, Biadjoints, and Pseudo Algebras: Categorical Foundations of Conformal Field Theory
Thomas M. Fiore

Memoirs of the American Mathematical Society
2006; 171 pp; softcover
Volume: 182
ISBN-10: 0-8218-3914-4
ISBN-13: 978-0-8218-3914-0
List Price: US$71
Individual Members: US$42.60
Institutional Members: US$56.80
Order Code: MEMO/182/860
[Add Item]

Request Permissions

In this paper we develop the categorical foundations needed for working out completely the rigorous approach to the definition of conformal field theory outlined by Graeme Segal. We discuss pseudo algebras over theories and 2-theories, their pseudo morphisms, bilimits, bicolimits, biadjoints, stacks, and related concepts.

These 2-categorical concepts are used to describe the algebraic structure on the class of rigged surfaces. A rigged surface is a real, compact, not necessarily connected, two dimensional manifold with complex structure and analytically parametrized boundary components. This class admits algebraic operations of disjoint union and gluing as well as a unit. These operations satisfy axioms such as unitality and distributivity up to coherence isomorphisms which satisfy coherence diagrams. These operations, coherences, and their diagrams are neatly encoded as a pseudo algebra over the 2-theory of commutative monoids with cancellation. A conformal field theory is a morphism of stacks of such structures.

This paper begins with a review of 2-categorical concepts, Lawvere theories, and algebras over Lawvere theories. We prove that the 2-category of small pseudo algebras over a theory admits weighted pseudo limits and weighted bicolimits. This 2-category is biequivalent to the 2-category of algebras over a 2-monad with pseudo morphisms. We prove that a pseudo functor admits a left biadjoint if and only if it admits certain biuniversal arrows. An application of this theorem implies that the forgetful 2-functor for pseudo algebras admits a left biadjoint. We introduce stacks for Grothendieck topologies and prove that the traditional definition of stacks in terms of descent data is equivalent to our definition via bilimits. The paper ends with a proof that the 2-category of pseudo algebras over a 2-theory admits weighted pseudo limits. This result is relevant to the definition of conformal field theory because bilimits are necessary to speak of stacks.


Table of Contents

  • Introduction
  • Some comments on conformal field theory
  • Weighted pseudo limits in a 2-category
  • Weighted pseudo colimits in the 2-category of small categories
  • Weighted pseudo limits in the 2-category of small categories
  • Theories and algebras
  • Pseudo \(T\)-algebras
  • Weighted pseudo limits in the 2-category of pseudo \(T\)-algebras
  • Biuniversal arrows and biadjoints
  • Forgetful 2-functors for pseudo algebras
  • Weighted bicolomits of pseudo \(T\)-algebras
  • Stacks
  • 2-Theories, algebras, and weighted pseudo limits
  • Bibliography
  • Index
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia