AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Intersection Pairings on Conley Indices
Henry L. Kurland

Memoirs of the American Mathematical Society
1996; 184 pp; softcover
Volume: 119
ISBN-10: 0-8218-0440-5
ISBN-13: 978-0-8218-0440-7
List Price: US$53
Individual Members: US$31.80
Institutional Members: US$42.40
Order Code: MEMO/119/571
[Add Item]

Request Permissions

Given an isolated invariant set of a flow on a manifold of dimension \(m\) oriented over a PID \(R\), Kurland defines an intersection class pairing of degree \(-m\) on the tensor product of the singular homology modules of the forward and reverse time Conley indices of the isolated invariant set with values in the Čech homology of the invariant set. Restricting the pairing to elements of degree \(m\) results in an intersection number pairing that is invariant under continuation along a continuous path of flows and isolated invariant sets. More generally, the unrestricted pairing defines continuous lifts to a space of Čech homology classes along such a path. Further, when the homology modules of the Conley indices are torsion free, the intersection number pairing is non-singular. Also, the pairing associated to an isolated invariant set of a product flow is, modulo torsion, the product (up to sign) of the pairings associated to the factor isolated invariant sets. Intersection classes of lowest and highest dimension are computed for any \(R\)-orientable, normally hyperbolic invariant submanifold whose expanding and contracting normal subbundles are also \(R\)-orientable. These computations yield, due to dimensionable considerations, a complete computation of the intersection class and number pairings for hyperbolic critical points and hyperbolic closed orbits. Application is made in an appendix to the existence of solution of a class of singularly perturbed two-point boundary value problems such problems having provided strong motivation for the present study.


Graduate students and research mathematicians.

Table of Contents

  • Introduction
  • Basic notation and background definitions
  • The intersection pairings of \(L, \mathcal L, and \mathcal L\)
  • Statement of the continuation results and examples
  • Construction of bilinear pairings on Conley indices
  • Proofs of the continuation results
  • Some basic computational tools
  • \(\mathcal L\) for normally hyperbolic invariant submanifolds
  • Products of intersection pairings
  • The cap product representation of \(\mathcal L\) and the nonsingularity of \(\#\mathcal L\)
  • Appendices
  • References
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia