AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Thirteen Papers Translated from the Russian
S. D. Berman, K. Buzashi, V. K. Dubovoĭ, S. Yu. Favorov, I. S. Kats, I. V. Lobarev, V. E. Lyantse, Yu. I. Lyubarskiĭ, Kh. B. Maĭorga, A. A. Nersesyan, N. P. Pustovoĭtov, and G. N. Zholtkevich
SEARCH THIS BOOK:

American Mathematical Society Translations--Series 2
1989; 140 pp; hardcover
Volume: 144
ISBN-10: 0-8218-3125-9
ISBN-13: 978-0-8218-3125-0
List Price: US$86
Member Price: US$68.80
Order Code: TRANS2/144
[Add Item]

Topics include group representations, \(p\)-classes, approximation of functions, entire functions, the Laplace operator, and von Neumann algebras

Table of Contents

  • S. D. Berman and K. Buzasi -- On modules over group algebras of groups containing an infinite cyclic subgroup of finite index
  • S. D. Berman and K. Buzasi -- Description of all finite-dimensional real representations of groups containing an infinite cyclic subgroup of finite index
  • I. S. Kats -- Connection between integral characteristics of growth of entire functions and distributions of their zeros
  • Yu. I. Lyubarskiĭ -- Representation of functions from \(H^p\) in a half-plane, and some of its applications
  • V. K. Dubovoĭ -- Indefinite metric in Schur's interpolation problem for analytic functions. I
  • V. K. Dubovoĭ -- Indefinite metric in Schur's interpolation problem for analytic functions. II
  • A. A. Nersesyan -- On uniform and tangential approximation by meromorphic functions
  • S. Yu. Favorov -- On entire functions of completely regular growth of several variables
  • V. E. Lyantse and Kh. B. Maiorga -- On the theory of the one-point boundary value problem for the Laplace operator. I
  • V. E. Lyantse and Kh. B. Maiorga -- On the theory of the one-point boundary value problem for the Laplace operator. II
  • G. N. Zholtkevich -- On the cohomology of von Neumann algebras
  • N. A. Pustovoĭtov -- On approximate algebraic stability criteria, numerical-analytical methods for investigating the dynamics and stability of complex systems
  • I. V. Lobarev -- Eigenvalues and eigenfunctions of the Peierls equation
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia