
Advanced Studies in Pure Mathematics 1996; 453 pp; hardcover Volume: 24 ISBN10: 4314101199 ISBN13: 9784314101196 Order Code: ASPM/24  This volume consists of thirteen papers on algebraic combinatorics and related areas written by leading experts around the world. There are four survey papers illustrating the following currently active branches of algebraic combinatorics: vertex operator algebras, spherical designs, Kerdock codes and related combinatorial objects, and geometry of matrices. The remaining nine papers are original research articles covering a wide range of disciplines, from classical topics such as permutation groups and finite geometry, to modern topics such as spin models and invariants of 3manifolds. Two papers occupy nearly half the volume and present a comprehensive account of new concepts: "Combinatorial Cell Complexes" by M. Aschbacher and "Quantum Matroids" by P. Terwilliger. Terwilliger's theory of quantum matroids unites a part of the theory of finite geometries and a part of the theory of distanceregular graphsgreat progess is expected in this field. K. Nomura's paper bridges the classical and the modern by establishing a connection between certain bipartite distanceregular graphs and spin models. All contributors to this volume were invited speakers at the conference "Algebraic Combinatorics" in Fukuoka, Japan (1993) and participated in the Research Institute in the Mathematical Sciences (RIMS) research project on algebraic combinatorics held at Kyoto University in 1994. Volumes in this series are freely available electronically 5 years postpublication. Published for the Mathematical Society of Japan by Kinokuniya, Tokyo, and distributed worldwide, except in Japan, by the AMS. Readership Graduate students, research mathematicians, physicists, and engineers working in coding theory, numerical integration, combinatorics, group theory, finite geometry, and lowdimensional topology. Table of Contents



AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 