AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Semisolvability of Semisimple Hopf Algebras of Low Dimension
Sonia Natale, Universidad Nacional de Córdoba, Argentina
cover
SEARCH THIS BOOK:

Memoirs of the American Mathematical Society
2007; 123 pp; softcover
Volume: 186
ISBN-10: 0-8218-3948-9
ISBN-13: 978-0-8218-3948-5
List Price: US$64
Individual Members: US$38.40
Institutional Members: US$51.20
Order Code: MEMO/186/874
[Add Item]

Request Permissions

The author proves that every semisimple Hopf algebra of dimension less than \(60\) over an algebraically closed field \(k\) of characteristic zero is either upper or lower semisolvable up to a cocycle twist.

Table of Contents

  • Introduction and main results
  • Conventions and notation
  • Semisimple Hopf algebras
  • The Nichols-Richmond theorem
  • Quotient coalgebras
  • Braided Hopf algebras
  • Cocycle deformations of some Hopf algebras
  • Dimension \(24\)
  • Dimension \(30\)
  • Dimension \(36\)
  • Dimension \(40\)
  • Dimension \(42\)
  • Dimension \(48\)
  • Dimension \(54\)
  • Dimension \(56\)
  • Appendix A. Drinfeld double of \(H_8\)
  • Appendix. Bibliography
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia