AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Géométries à Courbure Négative ou Nulle, Groupes Discrets et Rigidités
Edited by: Laurent Bessières and Anne Parreau, Université de Grenoble I, St. Martin d'Heres, France, and Bertrand Rémy, Université Claude Bernard Lyon 1, Villeurbanne, France
A publication of the Société Mathématique de France.
Séminaires et Congrès
2009; 466 pp; softcover
Number: 18
ISBN-10: 2-85629-240-2
ISBN-13: 978-2-85629-240-2
List Price: US$132
Member Price: US$105.60
Order Code: SECO/18
[Add Item]

This volume gathers lecture notes taken at the 2004 Summer School, which was held at the Institut Fourier (Grenoble). The title of the Summer School ("Negative or zero-curvature geometries, discrete groups and rigidities") has been used for the present volume. In many cases the lecture notes have been rewritten and enhanced.

A publication of the Société Mathématique de France, Marseilles (SMF), distributed by the AMS in the U.S., Canada, and Mexico. Orders from other countries should be sent to the SMF. Members of the SMF receive a 30% discount from list.


Graduate students and research mathematicians interested in negative or zero-curvature geometries, discrete groups and rigidities.

Table of Contents

1. Quelques groupes et géométries
  • J. Maubon -- Symmetric spaces of the non-compact type: Differential geometry
  • P.-É. Paradan -- Symmetric spaces of the non-compact type: Lie groups
  • G. Rousseau -- Euclidean buildings
  • Y. Benoist -- Five lectures on lattices in semisimple Lie groups
2. Quelques rigidités en géométrie différentielle
  • G. Besson -- Calabi-Weil infinitesimal rigidity
  • M. Bourdon -- Quasi-conformal geometry and Mostow rigidity
  • L. Bessières -- Minimal volume
  • M. Burger and A. Iozzi -- A useful formula from bounded cohomology
3. Espaces métriques singuliers
  • G. Courtois -- Critical exponents and rigidity in negative curvature
  • C. Druţu -- Quasi-isometry rigidity of groups
  • P. Pansu -- Superrigidité géométrique et applications harmoniques
4. Déformations, espaces de modules et compactifications
  • F. Paulin -- Sur la compactification de Thurston de l'espace de Teichmüller
  • A. Beauville -- Moduli of cubic surfaces and Hodge theory
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia