AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
A Categorical Approach to Imprimitivity Theorems for \(C^*\)-Dynamical Systems
Siegfried Echterhoff, Westfälische Wilhelms-Universität, Münster, Germany, S. Kaliszewski and John Quigg, Arizona State University, Tempe, AZ, and Iain Raeburn, University of Newcastle, NSW, Australia

Memoirs of the American Mathematical Society
2006; 169 pp; softcover
Volume: 180
ISBN-10: 0-8218-3857-1
ISBN-13: 978-0-8218-3857-0
List Price: US$67
Individual Members: US$40.20
Institutional Members: US$53.60
Order Code: MEMO/180/850
[Add Item]

Imprimitivity theorems provide a fundamental tool for studying the representation theory and structure of crossed-product \(C^*\)-algebras. In this work, we show that the Imprimitivity Theorem for induced algebras, Green's Imprimitivity Theorem for actions of groups, and Mansfield's Imprimitivity Theorem for coactions of groups can all be viewed as natural equivalences between various crossed-product functors among certain equivariant categories.

The categories involved have \(C^*\)-algebras with actions or coactions (or both) of a fixed locally compact group \(G\) as their objects, and equivariant equivalence classes of right-Hilbert bimodules as their morphisms. Composition is given by the balanced tensor product of bimodules.

The functors involved arise from taking crossed products; restricting, inflating, and decomposing actions and coactions; inducing actions; and various combinations of these.

Several applications of this categorical approach are also presented, including some intriguing relationships between the Green and Mansfield bimodules, and between restriction and induction of representations.

Table of Contents

  • Introduction
  • Right-Hilbert bimodules
  • The categories
  • The functors
  • The natural equivalences
  • Applications
  • Appendix A. Crossed products by actions and coactions
  • Appendix B. The imprimitivity theorems of Green and Mansfield
  • Appendix C. function spaces
  • Appendix. Bibliography
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia