AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Hypergéométrie et Fonction Zêta de Riemann
C. Krattenthaler, Université Claude Bernard, Villeurbanne, France, and T. Rivoal, Université de Grenoble I, Saint-Martin d'Héres, France

Memoirs of the American Mathematical Society
2007; 87 pp; softcover
Volume: 186
ISBN-10: 0-8218-3961-6
ISBN-13: 978-0-8218-3961-4
List Price: US$66
Individual Members: US$39.60
Institutional Members: US$52.80
Order Code: MEMO/186/875
[Add Item]

Request Permissions

The authors prove Rivoal's "denominator conjecture" concerning the common denominators of coefficients of certain linear forms in zeta values. These forms were recently constructed to obtain lower bounds for the dimension of the vector space over \(\mathbb Q\) spanned by \(1,\zeta(m),\zeta(m+2),\dots,\zeta(m+2h)\), where \(m\) and \(h\) are integers such that \(m\ge2\) and \(h\ge0\). In particular, the authors immediately get the following results as corollaries: at least one of the eight numbers \(\zeta(5),\zeta(7),\dots,\zeta(19)\) is irrational, and there exists an odd integer \(j\) between \(5\) and \(165\) such that \(1\), \(\zeta(3)\) and \(\zeta(j)\) are linearly independent over \(\mathbb{Q}\). This strengthens some recent results. The authors also prove a related conjecture, due to Vasilyev, and as well a conjecture, due to Zudilin, on certain rational approximations of \(\zeta(4)\). The proofs are based on a hypergeometric identity between a single sum and a multiple sum due to Andrews. The authors hope that it will be possible to apply their construction to the more general linear forms constructed by Zudilin, with the ultimate goal of strengthening his result that one of the numbers \(\zeta(5),\zeta(7),\zeta(9),\zeta(11)\) is irrational.

Table of Contents

  • Introduction et plan de l'article
  • Arrière plan
  • Les résultats principaux
  • Conséquences diophantiennes du Théorème \(1\)
  • Le principe des démonstrations des Théorèmes \(1\) à \(6\)
  • Deux identités entre une somme simple et une somme multiple
  • Quelques explications
  • Des identités hypergéométrico-harmoniques
  • Corollaires au Théorème \(8\)
  • Corollaires au Théorème \(9\)
  • Lemmes arithmétiques
  • Démonstration du Théorème \(1\), partie i)
  • Démonstration du Théorème \(1\), partie ii)
  • Démonstration du Théorème \(3\), partie i) et des Théorèmes \(4\) et \(5\)
  • Démonstration du Théorème \(3\), partie ii) et du Théorème \(6\)
  • Encore un peu d'hypergéométrie
  • Perspectives
  • Bibliographie
Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia