AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Stationary and Time Dependent Gross-Pitaevskii Equations
Edited by: Alberto Farina, Université de Picardie J. Verne, Amiens, France, and Jean-Claude Saut, University of Paris-Sud, Orsay, France

Contemporary Mathematics
2008; 180 pp; softcover
Volume: 473
ISBN-10: 0-8218-4357-5
ISBN-13: 978-0-8218-4357-4
List Price: US$65
Member Price: US$52
Order Code: CONM/473
[Add Item]

Request Permissions

This volume is based on a thematic program on the Gross-Pitaevskii equation, which was held at the Wolfgang Pauli Institute in Vienna in 2006. The program consisted of two workshops and a one-week Summer School.

The Gross-Pitaevskii equation, an example of a defocusing nonlinear Schrödinger equation, is a model for phenomena such as the Bose-Einstein condensation of ultra cold atomic gases, the superfluidity of Helium II, or the "dark solitons" of Nonlinear Optics. Many interesting and difficult mathematical questions associated with the Gross-Pitaevskii equation, linked for instance to the nontrivial boundary conditions at infinity, arise naturally from its modeling aspects.

The articles in this volume review some of the recent developments in the theory of the Gross-Pitaevskii equation. In particular the following aspects are considered: modeling of superfluidity and Bose-Einstein condensation, the Cauchy problem, the semi-classical limit, scattering theory, existence and properties of coherent traveling structures, and numerical simulations.


Graduate students and research mathematicians interested in various aspects of nonlinear equations and their use in mathematical physics.

Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia