Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches

About this Title

Christof Schütte, Freie Universität Berlin, Berlin, Germany and Marco Sarich, Freie Universität Berlin, Berlin, Germany

Publication: Courant Lecture Notes
Publication Year: 2013; Volume 24
ISBNs: 978-0-8218-4359-8 (print); 978-1-4704-1439-9 (online)
DOI: https://doi.org/10.1090/cln/024
MathSciNet review: MR3155191
MSC: Primary 60J20; Secondary 60-08, 82B80, 82D30

Read more about this volume

View other years and volumes:

Table of Contents

Front/Back Matter

Chapters

View full volume PDF

References [Enhancements On Off] (What's this?)

References
  • Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network flows. Prentice Hall, Englewood Cliffs, N.J., 1993.
  • Beauchamp, K. A., Bowman, G. R., Lane, T. J., Maibaum, L., Haque, I. S., and Pande, V. S. MSMBuilder2: Modeling conformational dynamics at the picosecond to millisecond scale. J. Chem. Theor. Comput. 7(10):3412–3419, 2011.
  • Bolhuis, P. G., Chandler, D., Dellago, C., and Geissler, P. Transition path sampling: throwing ropes over mountain passes, in the dark. Annu. Rev. Phys. Chem. 53(1):291–318, 2002.
  • Bond, S. D., Benedict, B. B. L., and Leimkuhler, J. The Nosé–Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151(1):114–134, 1999.
  • Bou-Rabee, N., and Vanden-Eijnden, E. Pathwise accuracy and ergodicity of metropolized integrators for SDEs. Comm. Pure. Appl. Math. 63(5):655–696, 2010.
  • Bovier, A., Eckhoff, M., Gayrard, V., and Klein, M. Metastability and low lying spectra in reversible Markov chains. Comm. Math. Phys. 228(2):219–255, 2002.
  • —. Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6(4):399–424, 2004.
  • Bovier, A., Gayrard, V., and Klein, M. Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7(1):69–99, 2005.
  • Bowman, G., Volez, V., and Pande, V. S. Taming the complexity of protein folding. Current Opinion in Structural Biology 21(1):4–11, 2011.
  • Bowman, G. R., Huang, X., and Pande, V. S. Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49(2):197–201, 2009.
  • Buchete, N.-V., and Hummer, G. Coarse master equations for peptide folding dynamics. J. Phys. Chem. B 112(19):6057–6069, 2008.
  • Chandler, D. Finding transition pathways: throwing ropes over rough mountain passes, in the dark. Classic and Quantum Dynamics in Condensed Phase Simulations, 51–66. Singapore: World Scientific, 1998.
  • Chodera, J. D., Singhal, N., Pande, V. S., Dill, K. A., and Swope, W. C. Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 126(15):155101, 17 pp., 2007.
  • Dellnitz, M., and Junge, O. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2):491–515, 1999.
  • Deuflhard, P., Dellnitz, M., Junge, O., and Schütte, C. Computation of essential molecular dynamics by subdivision techniques. Computational Molecular Dynamics: Challenges, Methods, Ideas, 98–115. Springer, Berlin-Heidelberg, 1999.
  • Deuflhard, P., Huisinga, W., Fischer, A., and Schütte, C. Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra Appl. 315(1–3):39–59, 2000.
  • Deuflhard, P., and Schütte, C. Molecular conformation dynamics and computational drug design. Applied mathematics entering the 21st century. Proc. ICIAM (Sydney, 2003), 91–119. SIAM, Philadelphia, 2004.
  • Deuflhard, P., and Weber, M. Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398:161–184, 2005.
  • Doob, J. L. Classical potential theory and its probabilistic counterpart. Grundlehren der mathematischen Wissenschaften, 262. Springer, New York, 1984.
  • Down, D., Meyn, S. P., and Tweedie, R. L. Exponential and uniform ergodicity of Markov processes. Ann. Prob. 23(4):1671–1691, 1995.
  • Dunford, N., and Schwartz, J. T. Linear operators. Part I: General theory, 1–243. Pure and Applied Mathematics. A series of books and monographs, 7. Interscience, New York, 1958.
  • E, W., Li, T., and Vanden-Eijnden, E. Optimal partition and effective dynamics of complex networks. Proc. Natl. Acad. Sci. USA 105(23):7907–7912, 2008.
  • E, W., Ren, W., and Vanden-Eijnden, E. Probing multiscale energy landscapes using the string method. Preprint, 2002. \arxiv{cond-mat/0205528}
  • E, W., and Vanden-Eijnden, E. Metastability, conformation dynamics, and transition pathways in complex systems. Multiscale modelling and simulation, 35–68. Lecture Notes in Computational Science and Engineering, 39. Springer, Berlin, 2004.
  • —. Towards a theory of transition paths. J. Stat. Phys. 123(3):503–523, 2006.
  • —. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61:391–420, 2010.
  • Elber, R., and Karplus, M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science 235(4786):318–321, 1987.
  • Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3:107–115, 1935.
  • Faradjian, A. K., and Elber, R. Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120(23):10880, 10 pp., 2004.
  • Fischer, A., Cordes, F., and Schütte, C. Hybrid Monte Carlo with adaptive temperature in a mixed-canonical ensemble: efficient conformational analysis of RNA. J. Comput. Chem. 19(15):1689–1697, 1998.
  • —. An uncoupling–coupling technique for Markov chain Monte Carlo methods. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Technical report 00-04, 2000.
  • Fischer, A., Schütte, C., Deuflhard, P., and Cordes, F. Hierarchical uncoupling-coupling of metastable conformations. Computational methods for macromolecules: challenges and applications (New York, 2000), 235–259. Lecture Notes in Computational Science and Engineering, 24. Springer, Berlin, 2002.
  • Fischer, S., Windshügel, B., Horak, D., Holmes, K. C., and Smith, J. C. Structural mechanism of the recovery stroke in the myosin molecular motor. Proc. Natl. Acad. Sci. USA 102(19):6873–6878, 2005.
  • Frauenfelder, H., and McMahon, B. H. Energy landscape and fluctuations in proteins. Ann. Phys. 9(9–10):655–667, 2000.
  • Frauenfelder, H., Steinbach, P. J., and Young, R. D. Conformational relaxation in proteins. Chem. Soc. A 29:145–150, 1989.
  • Frenkel, D., and Smit, B. Understanding molecular simulation: from algorithms to applications. Academic Press, London, 2002.
  • Fritzsche, D., Mehrmann, V., Szyld, D. B., and Virnik, E. An SVD approach to identifying metastable states of Markov chains. Electron. Trans. Numer. Anal. 29:46–69, 2007/2008.
  • Galliat, T., Deuflhard, P., Roitzsch, R., and Cordes, F. Automatic identification of metastable conformations via self-organized neural networks. Computational methods for macromolecules: challenges and applications (New York, 2000), 260–284. Lecture Notes in Computational Science and Engineering, 24. Springer, Berlin, 2002.
  • Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109, 1970.
  • Hérau, F., Hitrik, M., and Sjöstrand, J. Tunnel effect and symmetries for Kramers-Fokker-Planck type operators. J. Inst. Math. Jussieu 10(3):567–634, 2011.
  • Heuser, H. Funktionalanalysis. Second edition. Mathematische Leitfäden. Teubner, Stuttgart, 1986.
  • Horenko, I., Dittmer, E., Lankas, F., Maddocks, J., Metzner, P., and Schütte, C. Macroscopic dynamics of complex metastable systems: theory, algorithms, and application to B-DNA. SIAM J. Appl. Dyn. Syst. 7(2):532–560, 2008.
  • Huang, X., Yao, Y., Bowman, G. R., Sun, J., Guibas, L. J., Carlsson, G., and Pande, V. S. Constructing multi-resolution Markov state models (MSMs) to elucidate RNA hairpin folding mechanisms. Pac. Symp. Biocomput. 15:228–39, 2010.
  • Huisinga, W. Metastability of Markovian systems: a transfer operator approach in application to molecular dynamics. Doctoral dissertation, Free University Berlin, 2001.
  • Huisinga, W., Best, C., Roitzsch, R., Schütte, C., and Cordes, F. From simulation data to conformational ensembles: structure and dynamics based methods. J. Comp. Chem. 20(16):1760–1774, 1999.
  • Huisinga, W., Meyn, S., and Schütte, C. Phase transitions and metastability in Markovian and molecular systems. Ann. Appl. Probab. 14(1):419–458, 2004.
  • Huisinga, W., and Schmidt, B. Metastability and dominant eigenvalues of transfer operators. New algorithms for macromolecular simulation, 167–182. Lecture Notes in Computational Science and Engineering, 49. Springer, Berlin, 2006.
  • Jäger, M., Zhang, Y., Bieschke, J., Nguyen, H., Dendle, M., Bowman, M. E., Noel, J. P., Gruebele, M., and Kelly, J. W. Structure-function-folding relationship in a WW domain. Proc. Natl. Acad. Sci. USA 103(28):10648–10653, 2006.
  • Karatzas, I., and Shreve, S. E. Brownian motion and stochastic calculus. Second edition. Graduate Texts in Mathematics, 113. Springer, New York, 1991.
  • Kato, T. Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin, 1995.
  • Keller, B. G., Prinz, J.-H., and Noé, F. Markov models and dynamical fingerprints: unraveling the complexity of molecular kinetics. Chem. Phys. 396:92–107, 2012.
  • Knyazev, A. V., and Argentati, M. E. Rayleigh-Ritz majorization error bounds with applications to FEM. SIAM J. Matrix Anal. Appl. 31(3):1521–1537, 2009.
  • Kobitski, A. Y., Nierth, A., Helm, M., Jäschke, A., and Nienhaus, G. U. Mg2+ dependent folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis. Nucleic Acids Research 35(6):2047–2059, 2007.
  • Kontoyiannis, I., and Meyn, S. P. Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13(1):304–362, 2003.
  • —. Geometric ergodicity and the spectral gap of non-reversible Markov chains. Probab. Theory Related Fields 154(1–2):327–339, 2012.
  • Krivov, S. V., and Karplus, M. Hidden complexity of free energy surfaces for peptide (protein) folding. Proc. Natl. Acad. Sci. USA 101(41):14766–14770, 2004.
  • Lafon, S., and Lee, A. B. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9):1393–1403, 2006.
  • Lasota, A., and Mackey, M. C. Chaos, Fractals and Noise. Second edition. Applied Mathematical Sciences, 97. Springer, New York, 1994.
  • Lau, K. F., and Dill, K. A. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10):3986–3997, 1989.
  • Lebow, A., and Schechter, M. Semigroups of operators and measures of noncompactness. J. Functional Analysis, 7:1–26, 1971.
  • Liu, J. S. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer, New York, 2008.
  • Mangasarian, O. Perron-Frobenius properties for $Ax-\lambda Bx$. J. Math. Anal. Appl. 36(1):86–102, 1971.
  • Mattingly, J. C., Stuart, A. M., and Higham, D. J. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process Appl. 101 (2):185–232, 2002.
  • Meerbach, E., Schütte, C., and Fischer, A. Eigenvalue bounds on restrictions of reversible nearly uncoupled Markov chains. Linear Algebra Appl. 398:141–160, 2005.
  • Metzner, P. Transition path theory for Markov processes: application to molecular dynamics. Doctoral dissertation, Free University Berlin, 2007.
  • Metzner, P., Noé, F., and Schütte, C. Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data. Phys. Rev. E 80(2):021106, 13 pp., 2008.
  • Metzner, P., Schütte, C., and Vanden-Eijnden, E. Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125(8): 084110, 17 pp., 2006. 084110.
  • —. Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3):1192–1219, 2008.
  • Meyer, C. D. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 31(2):240–272, 1989.
  • Meyn, S. P., and Tweedie, R. L. Markov chains and stochastic stability. Communications and Control Engineering Series. Springer, London, 1993.
  • Muff, S., and Caflisch, A. Kinetic analysis of molecular dynamics simulations reveals changes in the denatured state and switch of folding pathways upon single-point mutation of a $\beta$-sheet miniprotein. Proteins: structure, function, and bioinformatics 70(4):1185–1195, 2007.
  • Nienhaus, G. U., Mourant, J. R., and Frauenfelder, H. Spectroscopic evidence for conformational relaxation in myoglobin. Proc. Natl. Acad. Sci. 89(7):2902–2906, 1992.
  • Noé, F., and Fischer, S. Transition networks for modeling the kinetics of conformational change in macromolecules. Current Opinion in Structural Biology 18(2):154–162, 2008.
  • Noé, F., Horenko, I., Schütte, C., and Smith, J. C. Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J. Chem. Phys. 126(15):155102, 17 pp., 2007.
  • Noé, F., Krachtus, D., Smith, J. C., and Fischer, S. Transition networks for the comprehensive characterization of complex conformational change in proteins. J. Chem. Theory Comput. 2(3):840–857, 2006.
  • Noé, F., Schütte, C., Vanden-Eijnden, E., Reich, L., and Weikl, T. Constructing the full ensemble of folding pathways from short off-equilibrium trajectories. Proc. Natl. Acad. Sci. USA 106(45):19011–19016, 2009.
  • Olender, R., and Elber, R. Calculation of classical trajectories with a very large time step: formalism and numerical examples. J. Chem. Phys. 105(20):9299–9315, 1996.
  • Ostermann, A., Waschipky, R., Parak, F. G., and Nienhaus, U. G. Ligand binding and conformational motions in myoglobin. Nature 404(6774):205–208, 2000.
  • Pande, V. S., Beauchamp, K., and Bowman, G. R. Everything you wanted to know about Markov state models but were afraid to ask. Methods 52(1):99–105, 2010.
  • Pavliotis, G. A., and Stuart, A. M. Multiscale methods: averaging and homogenization. Texts in Applied Mathematics, 53. Springer, New York, 2008.
  • Prinz, J.-H. Improved estimation methods for Markov models and projected Markov models. Doctoral dissertation, Free University Berlin, 2012.
  • Prinz, J.-H., Chodera, J. D., Pande, V. S., Swope, W. C., Smith, J. C., and Noé, F. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics. J. Chem. Phys. 134(24):244108, 14 pp., 2011.
  • Prinz, J.-H., Keller, B., and Noé, F. Probing molecular kinetics with Markov models: metastable states, transition pathways and spectroscopic observables. Phys. Chem. Chem. Phys. 13(38):16912–16927, 2011.
  • Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J. D., Schütte, C., and Noé, F. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134(17):174105, 23 pp., 2011.
  • Rao, F., and Caflisch, A. The protein folding network. Journal of Molecular Biology 342(1):299–306, 2004.
  • Revuz, D. Markov chains. North-Holland Mathematical Library, vol. 11. North-Holland, Amsterdam-Oxford; American Elsevier, New York, 1975.
  • Risken, H. The Fokker-Planck equation. Second edition. Springer, New York, 1996.
  • Roberts, G. O., and Rosenthal, J. S. Geometric ergodicity and hybrid Markov chains. Electron. Comm. Probab. 2(2):13–25, 1997.
  • Roeblitz, S. Statistical error estimation and grid-free hierarchical refinement in conformation dynamics. Doctoral dissertation, Free University Berlin, 2008.
  • Sarich, M. Projected transfer operators: discretization of Markov processes in high-dimensional state spaces. Doctoral dissertation, Free University Berlin, 2011.
  • Sarich, M., Noé, F., and Schütte, C. On the approximation quality of Markov state models. Multiscale Model. Simul. 8(4):1154–1177, 2010.
  • Sarich, M., and Schütte, C. Approximating selected non-dominant timescales by Markov state models. Comm. Math. Sci. 10(3):1001–1013, 2012.
  • Scharkoi, O., Fackeldey, K., Merkulow, I., Andrae, K., Weber, M., Nehls, I., Siegel, D. Conformational analysis of alternariol on the quantum level. Journal of Molecular Modeling, 19(6):2567–2572, 2013.
  • Schultheis, V., Hirschberger, T., Carstens, H., and Tavan, P. Extracting Markov models of peptide conformational dynamics from simulation data. J. Chem. Theory Comput. 1(4):515–526, 2005.
  • Schütte, C. Conformational dynamics: modelling, theory, algorithm, and application to biomolecules. Habilitation dissertation, Free University Berlin, 1998.
  • Schütte, Ch., Fischer, A., Huisinga, W., and Deuflhard, P. A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151(1):146–168, 1999.
  • Schütte, Ch., and Huisinga, W. On conformational dynamics induced by Langevin processes. Equadiff 99, vol. 2, 1247–1262. World Scientific, Singapore, 2000.
  • —. Biomolecular conformations can be identified as metastable sets of molecular dynamics. Handbook of numerical analysis, vol. X, 699–744. North-Holland, Amsterdam, 2003.
  • Schütte, Ch., Huisinga, W., and Deuflhard, P. Transfer operator approach to conformational dynamics in biomolecular systems. Ergodic theory, analysis, and efficient simulation of dynamical systems, 191–223. Springer, Berlin, 2001.
  • Schütte, C., Huisinga, W., and Meyn, S. Metastability of diffusion processes. IUTAM Symposium on Nonlinear Stochastic Dynamics, 71–81. Solid Mechanics and Its Applications, 110. Kluwer, Dordrecht, 2003.
  • Schütte, C., Noé, F., Lu, J., Sarich, M., and Vanden-Eijnden, E. Markov state models based on milestoning. J. Chem. Phys. 134(20):204105, 15 pp., 2011.
  • Schütte, C., Noe, F., Meerbach, E., Metzner, P., and Hartmann, C. Conformation dynamics. ICIAM 07–6th International Congress on Industrial and Applied Mathematics, 297–335. European Mathematical Society, Zürich, 2009.
  • Schütte, C., Sarich, M., and Djurdjevac, N. On Markov state models for metastable processes. Proceedings of the International Congress of Mathematicians, 2010 (ICM 2010), 3105–3131. \doiu{10.1142/9789814324359_{0}182}10.1142/9789814324359_0182
  • Senne, M., Trendelkamp-Schroer, B., Mey, A., Schütte, C., and Noé, F. EMMA: A software package for Markov model building and analysis. J. Chem. Theory Comput. 8(7):2223–2238, 2012.
  • Singhal, N., and Pande, V. S. Error analysis in Markovian state models for protein folding. J. Chem. Phys., 123:204909, 13 pp., 2005.
  • Singleton, G. Asymptotically exact estimates for metastable Markov semigroups. Quart. J. Math. Oxford Ser. (2) 35(139):321–329, 1984.
  • Ueda, Y., Taketomi, H., and G$\bar {\mbox {o}}$, N. Studies on protein folding, unfolding and fluctuations by computer simulation. II. A. Three-dimensional lattice model of lysozyme. Biopolymers, 17(6):1531–1548, 1978.
  • Wales, D. J. Energy landscapes: applications to clusters, biomolecules and glasses. Cambridge University Press, Cambridge, 2003.
  • —. Energy landscapes and properties of biomolecules. Phys. Biol. 2(4):S86–S93, 2005.
  • Walters, P. An introduction to ergodic theory. Springer, 2000.
  • Weber, M. Improved Perron cluster analysis. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) Report, 03-04, 2003.
  • —. A subspace approach to molecular Markov state models via a new infinitesimal generator. Habilitation dissertation, Free University Berlin, 2012.
  • Weber, M., Bujotzek, A., and Haag, R. Quantifying the rebinding effect in multivalent chemical ligand-receptor systems. J. Chem. Phys. 137(5):054111, 10 pp., 2012.
  • Weber, M., and Fackeldey, K. Computing the minimal rebinding effect included in a given kinetics. Multiscale Model. Simul., submitted.
  • Werner, D. Funktionalanalysis. Second edition. Springer, Berlin, 1997.
  • Wigner, E. The transition state method. Trans. Faraday Soc., 34:29–41, 1938.