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To my Parents 



The mathematics that we use 
in spline approximation theory 
is Eulerian in character. 

I.J. Schoenberg, 1973 



Foreword 

The simplest and most versatile functions are the continuous piece-
wise linear functions. Their undesirable corners are eliminated by 
m-1 successive integrations, the result being a spline function 
s(x) of degree m. In other words: While the mth derivative of a 
polynomial of degree m is a constant, the mth derivative s(m) (x) 
of a spline function is a piecewise constant function. Its dis-
continuities are the knots of s(x). 

Besides the m constants of integration obtained by passing from 
s(m) (x) to s(x), the spline s(x) depends also on the jumps of 
s(m) (x), not to mention the non-linear parameters giving the 
location of the knots. 

An important property of the class of splines s(x) of degree m 
with fixed knots is its plasticity: By this I mean that its shape 
is a local matter; this is due to the fact that a spline of least 
support, a so-called B-spline, has precisely m+2 consecutive knots, 
and that all splines are unique linear combinations of consecutive 
B-splines to which we add an arbitrary polynomial of degree m-1. 

Spline functions thus appear as a natural generalization of poly-
nomials. As such they have considerably enriched the Theory of Ap-
proximations. A fundamental result of this theory is the Weierstrass 
polynomial approximation theorem. However, a polynomial of very high 
degree can not possibly be useful from the numerical point of view. 
Now spline functions of degree 2, 3, 4, or 5, allow us to obtain 
acceptable approximations to complicated functions, provided that 
their knots are judiciously chosen. Even the Bernstein polynomials 
may be replaced by the Bernstein splines having similar variation 
diminishing properties as well as improved approximation properties. 
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X FOREWORD 

The simplest spline functions are those having as knots a biinfinite 
sequence of points in arithmetic progression. These are the so-
called Cardinal Spline Functions. All results on Cardinal Spline 
Interpolation have so far been obtained by the Eulerian methods 
of generating functions and difference equations. 

It is most desirable that these problems are now studied by Professor 
Walter Schempp by the use of the powerful methods of complex contour 
integral representations and Integral Transforms. This more so-
phisticated approach promises farreaching developments. 

Mathematics Research Center 
University of Wisconsin - Madison 

December 1980 I.J. Schoenberg 



Preface 

The complex integral representation of cardinal splines by means 
of linear integral transform methods is a very effective tool for 
dealing with these functions. In particular, their asymptotic be-
haviour as the degree tends to infinity can be analyzed conveniently 
and handled adequately by integral transform methods. 

This is not a treatise on the theory of cardinal spline functions. 
It is a set of lecture notes aimed at acquainting the student with 
the complex contour integral representation approach to cardinal 
spline functions, to wit, the author's personal approach to the 
subject [38], [39]. The basic idea is to use a suitable inverse 
integral transform instead of the direct transform itself and then 
to have recourse to the methods of complex analysis. Special empha-
sis is placed on the cardinal exponential splines, which are re-
presented by an application of the inverse bilateral Laplace trans-
form, and on the cardinal logarithmic splines, the complex contour 
integral representation of which is obtained by the inverse uni-
lateral Mellin transform. It is well known that the convergence 
properties of these two kinds of splines are totally different. 
Nevertheless, the method of complex contour integral representa-
tion yields a unified treatment of both cases and gives powerful 
insight into what actually happens. In particular, the Newman-
Schoenberg phenomenon loses some of its mystery. 

Besides presenting an outline of inverse integral transform tech-
nique, we study several closely related topics. These include 
1) various complex integral representations of the basis spline 
functions, 2) a useful complex contour integral representation 
of the Euler-Frobenius polynomials and its consequences, and 
3) the classical Meray-Runge phenomenon (as preparation for New-
man-Schoenberg) . 

xi 



xii PREFACE 

It is our hope that these notes will be useful to a broad 
audience, interested in present developments of approximation 
theory. 

Mathematicians specialized in the field of spline approximation 
are sometimes unfamiliar with the methods of integral transform 
analysis. For this reason we give full details of the necessary 
tools from this important branch of applied mathematics, with 
the intention of presenting the material in a self-contained 
manner. Furthermore, we feel that our approach to cardinal spline 
functions provides a very instructive illustration of the appli-
cations of inverse integral transform techniques combined with 
complex variables methods to recent problems arising in approxi-
mation theory. 

Each section ends with a few references and comments. Basically 
we have chosen only those references which we feel are most use-
ful from our point of view. Nonetheless, we refer the reader to 
Max Weber's aphorism: "Das Wichtigste steht natlirlich in den An-
merkungen." 

Mathematical Research Institute 
Oberwolfach-Walke, Black Forest 

August 1980 w .s. 
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