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Preface 

0.1. This volume constitutes a reworking of the main parts of Chapters VI and 
VII in Hartshorne's Residues and Duality [7], in greater generality, and by a local, 
rather than global, approach. 

"Greater generality" signifies that we work throughout with arbitrary (quasi-
coherent, torsion) Cousin complexes on (noetherian) formal schemes, not just with 
residual complexes on ordinary schemes. And what emerges at the end is a dual-
ity pseudofunctor (alias 2-functor) on the category of composites of compactifiable 
maps between those formal schemes which admit dualizing complexes. 1 

"Local approach" signifies that the compatibilities between certain pseudo-
functors associated to smooth maps on the one hand and to closed immersions 
on the other (base-change and residue isomorphisms ... ), compatibilities underly-
ing the basic process of pasting together these two pseudofunctors, are treated 
by means of explicitly-defined-through formulas involving generalized fractions-
maps between local cohomology modules over commutative rings, and in particular, 
residue maps. This way of dealing with compatibilities seems to us to have advan-
tages over the classical one. In regard to relative complexity, one might for instance 
compare Chapter 6 of [8], where the compatibilities we need are taken care of, with 
[2, Chap. 2, §7], where the compatibilities needed in the global approach of [7, 
Chap. VI, §2] are discussed. (To pursue the global approach here, one would have 
to redo everything for formal schemes, with the added complication introduced by 
the necessary presence of the derived torsion functor.) 2 Moreover, the connection 
between local and global behaviors is made transparent, the latter being defined 
entirely in terms of the former. 

Indeed, one motivation behind this work has been to gain a better understand-
ing of the close relation between local properties of residues and global properties 
of the dualizing pseudofunctor. 

0.2. Classical Grothendieck Duality theory [7], [10], [6], [2] concerns itself 
with a contravariant pseudofunctor (- )! on the category (say) of finite-type maps of 
noetherian separated schemes X, taking values in derived categories D;ic(X) whose 
objects are the Ox-complexes M• with quasi-coherent homology modules Hn(M•) 
which vanish for n « 0. To each such scheme map f : X ---+ Y, (- )! assigns a 
functor J' : D;ic(Y) ---+ D;ic(X), and to each composition X .!.... Y .!!.-. Z a func-
torial isomorphism C}, 9 : J'g! ~ (gf)!. Using Nagata's compactifications and 
the formal arguments of [4, p. 318, Prop. 3.3.4], one finds that this pseudofunctor is 
characterized up to isomorphism by the following data a) and b), which exist and 
satisfy c): 

1Nagata showed that every separated finite-type map of (noetherian) schemes is compacti-
fiable, that is, factors as an open immersion followed by a proper map, see [9], [3]; this is not 
known to be so for formal schemes (where "proper" becomes "pseudo-proper," see below). In [7], 
"pseudofunctor" = "theory of variance." The definition of the duality pseudofunctor will be self-
contained with respect to this volume; but the proof given here of its duality properties needs the 
existence of a right adjoint for the direct image functor on derived torsion categories, see [1, p. 59]. 

2 A novel and very efficient way of handling compatibilities for finite tor-dimension maps of 
schemes over a regular base has recently been developed by Yekutieli and Zhang [12]. 

vii 
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(a) An isomorphism between the restriction of (_) 1 to the subcategory of open 
immersions (or more generally, etale maps) and the pseudofunctor associ-
ating the inverse image functor f* to f : X -+ Y. 

(b) (Proper duality) A bifunctorial isomorphism, for proper f : X -+ Y, 

(c) 

Hom(Rf*F, G) ~ Hom(F, /G) (FE D;ic(X), G E D;ic(Y)), 
compatible, in the natural sense, with the pseudofunctorial structures-
respectively covariant and contravariant-on Rf* and /. Thus / is right-
adjoint to R,h, and there is a functorial trace map Rf* / -+ 1, "transitive" 
vis-a-vis X~ Y!!..... Z. 
Given a cartesian square 

X' v X ----+ 

gl lt 
Y' ----+ y 

u 

with u (hence v) an open immersion and f (hence g) proper, the fol-
lowing natural diagram of functorial maps, with unlabeled arrows arising 
from (_) 1, commutes: 

I lfl (a) I (fv)· ----+ v· . ----+ v* r 
II 1~ 

(ug)! I I 
----+ g·u· ----+ g!u* 

(a) 

where the base-change map (3 is defined to be the adjoint-via (b)-of the 
natural composition 

R *f! ~ *R+ f! trace * g*v ----* u J* ~ u , 

and is in fact an isomorphism for any flat u. 

The richness of the theory lies to a large extent in concrete representations 
of the basic components. For example, the restriction of (- )1 to the category 
of finite maps is isomorphic to the pseudofunctor which assigns to f the functor 
f*RHom(f*Ox,- ), where J is the (flat) ringed space map (X, Ox) -+ (Y, f*Ox) 
induced by f. Or, when f : X -+ Y is Cohen-Macaulay (i.e., flat, with Cohen-
Macaulay fibers), of relative dimension d, then /Oy has a single non-vanishing 
homology sheaf Wf, the relative dualizing sheaf, which is flat over Y; and there is a 
functorial isomorphism 

/C• ~ f*C• 0ox wt[d] (C• E D;ic(Y)). 

which can be made pseudofunctorial over the category of Cohen-Macaulay maps. 
Under further mild restrictions, the relative dualizing sheaf, determined a priori 
only up to isomorphism, has a canonical representative, namely the sheaf of regular 
d-forms, coinciding over the smooth locus of f with the sheaf D1 of holomorphic 
d-forms (see [5]); and explication of the functorial isomorphism C}, 9 when gf and f 
are both finite and g is smooth is intimately tied to the local theory of residues. 
Thus differential forms, their traces and, more generally, their residues, play a vital 
role in the development of the concrete aspects of duality. 
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0.3. The papers in this volume continue efforts, begun in [1], to generalize 
all of Grothendieck duality theory to formal schemes (always understood to be 
noetherian). Why formal schemes, aside from their just being there? For one thing, 
the category F of formal schemes contains the category of ordinary schemes, that is, 
formal schemes whose structure sheaf of topological rings has the discrete topology. 
Also, F contains the category opposite to that of local homomorphisms of complete 
noetherian local rings. Thus the category of formal schemes offers, potentially, a 
framework for treating local and global duality as aspects of a single theory. 

For example, suppose f: X --+ Y is a proper map of noetherian schemes, and 
that x E X andy:= f(x) E Yare closed points. Set R := Ox,x, S := Oy,y; and 
let fx: Spec(R) ----> Spec(S) be the map induced by f. One can imagine that many 
properties of the global map f could be approached through simpler properties of 
local maps like fx· But in the passage from f to fx, properness-which is clearly 
important in duality theory because of (b) above-is lost. 

Consider, however, X andY completed along closed subsets V C X and W C Y 
such that x E V, y E W, and f(V) C W, so that f induces a formal-scheme map 
l X----> Y. Further, let RandS be the completions of RandS at their respective 
maximal ideals, and let fx: Spf(R) ----> Spf(S) be the resulting formal-scheme map. 
Then there is a natural commutative diagram 

Spf(R) ------+ X 

~:1 11 
Spf(S) ------+ Y 

with both the maps f and fx pseudo-proper. ("Pseudo-proper" means that one 
of-hence each of-the ordinary-scheme maps obtained by factoring out ideals of 
definition in the source and target is proper.) 

This primitive example suggests that the relation between local and global du-
ality properties might well become more apparent in the context of formal schemes. 
In practice, it does! (This holds in the present volume, and will, it is planned, be 
supported in depth in a paper, in preparation, on the Residue Theorem for formal 
schemes, consolidating a number of results in the literature on the relation between 
local residues and canonical global realizations of duality for formal schemes.) 

0.4. In [1], items (b) and (c) in 0.1 are extended, with certain restrictions, 
to where f and g are pseudo-proper formal-scheme maps. It turns out that on a 
formal scheme (X, Ox) we can deal with coherent sheaves; but quasi-coherence does 
not have enough manageable properties unless we restrict to torsion sheaves-those 
modules over the sheaf of topological rings Ox each of whose sections over any open 
U C X is annihilated by some open ideal of OxiU. (On ordinary schemes, where (0) 
is an open ideal, all modules are torsion sheaves.) So, for instance, with D:Ct (X) 
denoting the derived category of homologically bounded-below Ox-complexes with 
quasi-coherent torsion homology, and f pseudo-proper, Theorems 6.1 and 7.4 of [1] 
provide a right adjoint f' for RJ. : D:Ct (X) --+ D:Ct (1!), satisfying items (b) and (c) 
(with "pseudo-" in front of "proper"). The variant for coherent sheaves is covered 
by ibid, p. 89, Corollary 8.3.3 and Theorem 8.4. 

The most notable obstruction to dealing with more general separated pseudo-
finite-type maps is that, as mentioned before, we know of no theorem to the effect 
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that such a map is compactijiable.3 Nevertheless, we can still work with those 
pseudo-finite separated formal-scheme maps which can be built up from pseudo-
proper maps and open immersions, i.e., work within the subcategory F0 ofF having 
the same objects, but only those maps which are composites of compactifiable ones. 
The category F0 includes all separated finite-type maps of ordinary noetherian 
schemes, since, by the above-mentioned theorem of Nagata, they are compactifiable. 
And indeed, the main theorem in [7] can be extended to F0 , as follows. (Here, and 
below, we want only to convey a preliminary idea of what is done in this volume, 
not precise statements. The introductions to the individual papers further explain 
the terminology, methods, and results.) 

A basic problem, suggested by (0.2), is how to paste together the above pseud-
ofunctor (- )' for pseudo-proper maps and the inverse image pseudofunctor (- )* 
on the category of open immersions to form a D.t,t-valued pseudofunctor on all 
of F0 . One would like to have an abstract pasting procedure in the spirit of 3.3.4 
in [4, p. 318], a Proposition which, as indicated before, applies to ordinary schemes, 
but which cannot be applied to formal schemes because we don't know that the 
composition of two compactifiable maps is still compactifiable. 

Nayak's paper "Pasting pseudofunctors" in this volume provides such an ab-
stract procedure, whose applicability to the preceding problem for F0 is shown to re-
sult from certain formal properties of a base-change isomorphism established in [1]. 
(See Theorems 7.13 and 7.14 in Nayak's paper.) The resulting F0-pseudofunctor is 
still denoted by (-)'. 

0.5. Sastry's paper "Duality for Cousin complexes" gives, in many situations 
(see below), a concrete, canonical realization of the F0-pseudofunctor (- )'. 

The approach taken overlaps-and was inspired by-that in [7, Chap. 7], but 
it is both more concrete and more general. 

It begins with the canonical pseudofunctor (- )~ to whose construction the 
joint paper "Pseudofunctorial behavior of Cousin complexes on formal schemes" of 
Lipman, Nayak and Sastry is devoted. Roughly speaking, (- )~ is defined over a 
suitable category lFc of formal schemes X with codimension functions b., assigning 
to each object (X, b.) the category CozdX) of quasi-coherent torsion b.-Cousin 
Ox-complexes. 

Briefly, having in mind that (- )~ is meant to be a concrete approximation 
to (-)', one first describes the functor f~ for f a closed immersion or a smooth 
map, by "Cousinifying" the concrete examples given above toward the end of §0.2. 
Then, noting that every 1Fc-map factors locally as (smooth) o (closed immersion), 
one defines (- )~ for such factorizable maps by composing the functors associated 
to the factors. This construction turns out to be independent of the factorization 
used, so finally it is possible to define (- )~ globally by gluing the local definitions. 
Carrying this all out involves careful attention to a great many details, a good por-
tion of which have already been dealt with by Huang in [8], where he constructed, 
in essence, the restriction of (- )~ to Cousin complexes with vanishing differentials. 

In [7, Chap. 6, §3], there is constructed a canonical pseudofunctor (- )~ on noe-
therian schemes, with values in categories of residual complexes (i.e., those Cousin 

3Nor do we know a counterexample. But there is an example of a closed subscheme Z of an 
open subscheme of the completion of IC4 along a line, whose inclusion map does not have an obvious 
compactification, i.e., Z is not an open subscheme of a closed subscheme, see [1, Correction]. 
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complexes which are "pointwise dualizing"). 4 See also [2, §3.2]. Our pseudofunc-
tor (- )~ is more general, because while each f~ does take residual complexes to 
residual complexes, it operates on a larger class of Cousin complexes, and over for-
mal schemes. It should be said, however, that the basic elements of the strategy for 
constructing (- )~, as outlined in the preceding paragraph, can all be found in [7]. 

Let us return to Sastry's paper. The proof of the Duality Theorem in [7, 
Chapter 7] begins with a trace map f*f'1 K-+ K of graded modules, defined when 
f: X -+ Y is a finite-type map of noetherian schemes and K is a residual Oy-
complex. What is called there the Residue Theorem states that when the map f 
is proper, "trace" is a map of complexes. Using local residues, Sastry defines, for 
every lFcmap f: (X, ~1)-+ (l!, ~)and ~-Cousin Oy-complex :F, a functorial trace 

Trt(:F): f*f~:F-+:F; 

and proves: for pseudo-proper f, Trt(:F) is a map of complexes (Trace Theorem). 
Via basic properties of the above F0-pseudofunctor (- )', the Trace Theorem 

enables the construction of a canonical pseudofunctorial derived-category map 

(:FE Coz6(l!)). 

Applying the usual Cousin functor E makes this an isomorphism f~:F ~ E(f':F). 
Moreover, I'J itself is an isomorphism whenever f is flat or :F is an injective complex. 
One finds then, with Q the canonical functor from the category of complexes to the 
derived category, that if one restricts to flat maps and Cohen-Macaulay complexes 
(the derived-category complexes isomorphic to Q( C) for some Cousin complex C), 
or to Gorenstein complexes (the derived-category complexes isomorphic to Q( C) 
for some injective Cousin complex C), then, Qf~E is a pseudofunctor satisfying 
the conditions (a), (b) and (c) in §0.2. 

Using /'}, Sastry also proves a canonical Duality Theorem for pseudo-proper 
maps f: (X,~')-+ (l!,~) and ~-Cousin Oy-complexes :F: the pair (f~:F, Trt(:F)) 
represents the functor Homy(f*C, :F) of ~'-Cousin Ox-complexes C. 

In summary, f~ is a canonical concrete approximation to the duality functor J'. 
0.6. Finally, the canonicity of I'J and uniqueness properties of residual com-

plexes enable one to draw closer to the holy grail of defining canonically a duality 
pseudofunctor (-)' for all pseudo-finite- type maps f : X -+ l!, at least in the pres-
ence of bounded residual complexes (or equivalently, dualizing complexes), and 
under suitable coherence hypotheses. The idea, taken from [7], is to define J' as 
being dualization on l! with respect to a fixed residual complex R (i.e., application 
of the functor 'Hom~ (-, R)), followed by Lf*, followed by dualization on X with 
respect to the residual complex f~R. More details appear in the last section of 
Sastry's paper. 

* * * 
We are indebted to Purdue University, the Mathematisches Forschungsinstitut 

Oberwolfach, and the Banff International Research Station for affording us oppor-
tunities for collaboration at close range, without which this work could hardly have 
been carried out. 

4This ~ is not to be confused with the ~ used throughout to denote a codimension function. 
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