Brian Conrad kindly pointed out to us that the proof of Proposition 9.8 in the article in question is incomplete. We provide here the missing arguments together with a few other corrections and use the opportunity to indicate some new consequences of our results, and also mention some applications of the results in [S1]. In what follows, the supplementary references, including the original paper itself, are numbered as [S1], [S2], etc., while citations such as [1] refer to those in [S1]. Lemmas, propositions, etc., numbered such as 2.1, 8.4, &c., correspond to those in [S1]. A revised version of [S1] incorporating the corrections in this note is available as arXiv:0808.2169 [math.AG].

Base Field

Usually, at the beginning of each section of [S1], the assumptions on the base field \(k \) are specified. In addition, the following modifications are in order.

- In Statements 2.1, 2.4, 2.5 and 2.6, one should mention explicitly that \(X \) and \(Y \) are defined over \(k \).
- In Remark 2.7, one has to assume that there is a proper linear section of codimension \(s + 1 \) of \(X \) defined over \(k \).

If \(k \) is algebraically closed, the Galois group \(g \) is trivial, and these conditions are fulfilled.

Further, the proof of part (i) of Prop. 8.7 uses Corollary 1.4 and it should be modified as follows:

- Take an extension \(k' / k \) in order to get a section \(Y \) defined over \(k' \). This implies that the eigenvalues of the Frobenius of \(k' \) in \(H^{2u-1}(X, \mathbb{Q}_\ell(n)) \) are pure, and the same holds for the eigenvalues of the Frobenius of \(k \), since they are roots of the preceding.
Betti Numbers of Curves

The proof of Lemma 8.4 as given in [S1] is only valid on a finite field. This Lemma and its proof should be stated as follows.

8.4. Lemma. Let K be an algebraically closed field, and X an irreducible projective curve in \mathbb{P}^N_K, with arithmetic genus $p_a(X)$. Let \tilde{X} be a nonsingular projective curve birationally equivalent to X, with geometric genus $g(\tilde{X})$. Then we have the following.

(i) If d denotes the degree of X, then

$$2g(\tilde{X}) \leq b_1(X) \leq 2p_a(X) \leq (d-1)(d-2).$$

(ii) If $K = \bar{k}$, where k is a finite field, and if X is defined over k, then

$$b_1^*(X) = 2g(\tilde{X}).$$

During the proof of the Lemma, we shall make use of the following standard construction, when X is a curve. This leads to an inequality between Hilbert polynomials.

8.5. Remark (Comparison of Hilbert polynomials). Let K be an algebraically closed field and X a closed subvariety in \mathbb{P}^N_K disjoint from the whole space, and r an integer such that $\dim X + 1 \leq r \leq N$. Let $\mathcal{C}_r(X)$ be the subvariety of $G_{N-r,N}$ of linear varieties of codimension r meeting X. From the properties of the incidence correspondence Σ defined by

$$\Sigma = \{(x, E) \in \mathbb{P}^N \times G_{N-r,N} : x \in E\},$$

it is easy to see that $\mathcal{C}_r(X) = \pi_2(\pi_1^{-1}(X))$ is irreducible and that the codimension of $\mathcal{C}_r(X)$ in $G_{N-r,N}$ is equal to $r - \dim X$. Hence, the set of linear subvarieties of codimension r in \mathbb{P}^N_K disjoint from X is a nonempty open subset $D_r(X)$ of $G_{N-r,N}$.

If E belongs to $D_{n+2}(X)$, where $n = \dim X$, the projection π with center E gives rise to a diagram

\[\begin{array}{ccc}
X & \xrightarrow{i} & \mathbb{P}^N_K - E \\
\pi\downarrow & & \downarrow \pi \\
X' & \xrightarrow{i'} & \mathbb{P}^{n+1}_K \\
\end{array}\]

such that X' is an irreducible hypersurface with $\deg X' = \deg X$, and where the restriction π_X is a finite birational morphism: denoting by $S(X)$ the homogeneous coordinate ring of X, we have an inclusion $S(X') \subset S(X)$, and $S(X)$ is a finitely generated module over $S(X')$. Hence, if $P_X(T) \in \mathbb{Q}[T]$ is the Hilbert polynomial of X [16, p. 52], we have

$$P_{X'}(t) \leq P_X(t) \quad \text{if} \ t \in \mathbb{N} \ \text{and} \ t \to \infty.$$
Proof of Lemma 8.4. Let U be a regular open subscheme of X. Then, there is a commutative diagram

$$
\begin{array}{ccc}
\tilde{U} & \longrightarrow & \tilde{X} \\
\downarrow & & \downarrow \\
U & \longrightarrow & X
\end{array}
$$

where \tilde{X} is a nonsingular curve, where π is a proper morphism which is a birational isomorphism, and an isomorphism when restricted to \tilde{U}, and

$$
\text{Sing } X \subset S = X \setminus U, \quad \tilde{S} = \tilde{X} \setminus \tilde{U}.
$$

The excision long exact sequence in compact cohomology [30, Rem. 1.30, p. 94] gives:

$$
0 \longrightarrow H^0_c(X) \longrightarrow H^0_c(S) \longrightarrow H^1_c(U) \longrightarrow H^1_c(S) \longrightarrow 0
$$

and there is a similar exact sequence if we replace X, U, S by $\tilde{X}, \tilde{U}, \tilde{S}$. This implies

$$
b_1(U) = b_1(X) - 1 + |S|, \quad b_1(\tilde{U}) = b_1(\tilde{X}) - 1 + |\tilde{S}|,
$$

and since U and \tilde{U} are isomorphic, we obtain

$$
b_1(X) = b_1(\tilde{X}) + d(X) = 2g(\tilde{X}) + d(X), \quad \text{where } d(X) = |\tilde{S}| - |S|,
$$

since, as is well-known, $b_1(\tilde{X}) = 2g(\tilde{X})$. Let

$$
\delta(X) = p_a(X) - g(\tilde{X}).
$$

Then $0 \leq d(X) \leq \delta(X)$ [59, Prop. 1, p. 68]. Hence

$$
b_1(X) = 2g(\tilde{X}) + d(X) \leq 2g(\tilde{X}) + 2\delta(X) = 2p_a(X).
$$

This proves the first and second inequalities of (i). The Hilbert polynomial of X is

$$
P_X(T) = dT + 1 - p_a(X).
$$

Apply now the construction of Remark 8.5 to X, and obtain a morphism $X \longrightarrow X'$, where X' is a plane curve of degree d. From the inequality $P_{X'}(t) \leq P_X(t)$ for t large, we get $p_a(X) \leq p_a(X')$. Now, by Example 4.3(ii),

$$
p_a(X') = (d - 1)(d - 2)/2,
$$

since X' is a plane curve of degree d, and so

$$
p_a(X) \leq (d - 1)(d - 2)/2,
$$

and this proves the third inequality of (i). Now, under the hypotheses of (ii), we have by [4, Thm. 2.1]:

$$
P_1(X, T) = P_1(\tilde{X}, T) \prod_{j=1}^{d(X)} (1 - \omega_jT),
$$

where the numbers ω_j are roots of unity, and this implies the inequality in (ii). □
THE PENULTIMATE COHOMOLOGY GROUP

Let k be a perfect field. Assume, as in Sec. 9 of [S1], that all projective varieties over k considered in this section have a k-rational nonsingular point. The proof given in [S1] of Prop. 9.8 could be completed as follows.

9.8. Proposition. Let X be a normal projective variety of dimension $n \geq 2$ defined over k which is regular in codimension 2. Then there is a g-equivariant isomorphism

$$j_X : V_\ell(\text{Alb}_w X) \xrightarrow{\sim} H^{2n-1}(\bar{X}, \mathbb{Q}_\ell(n)).$$

If $(R_{n,p})$ holds, the same conclusion is true if one only assumes that X is regular in codimension 1.

Proof. Step 1. Assume that X is a subvariety in \mathbb{P}_k^N. Since X is regular in codimension 2, we deduce from Proposition 1.3 and Corollary 1.4 that $U_{n-2}(X)$ contains a nonempty Zariski open set U_0 in the Grassmannian $G_{N-n+2,N}$. On the other hand, any open set defined over k is defined over a field k'/k. Let $U_1 \subset U_0$ be an open set defined over k. If $E \subset U_1$, then $Y = X \cap E$ is a typical surface on X over k, i.e., a nonsingular proper linear section of dimension 2 in X. For such a typical surface Y, the closed immersion $\iota : Y \to X$ induces a homomorphism $\iota_* : \text{Alb}_w Y \to \text{Alb}_w X$. By Proposition 9.4(i), the set of linear varieties $E \subset U_1$ such that ι_* is a purely inseparable isogeny contains as well as none a nonempty open subset $U \subset G_{N-n+2,N}$. On the other hand, any open set defined over k is defined over a field k'/k. Let $U_1 \subset U_0$ be an open set defined over k. If $E \subset U_1$, then $Y = X \cap E$ is a typical surface on X over k, i.e., a nonsingular proper linear section of dimension 2 in X.

Step 2. Assume that $U(k)$ is nonempty. If $E \subset U(k)$, we get a g-equivariant nondegenerate pairing $H^1(\bar{Y}, \mathbb{Q}_\ell) \times H^3(\bar{Y}, \mathbb{Q}_\ell(2)) \to \mathbb{Q}_\ell$, from which we deduce a g-equivariant isomorphism

$$\psi : \text{Hom}(H^1(\bar{Y}, \mathbb{Q}_\ell), \mathbb{Q}_\ell) \to H^3(\bar{Y}, \mathbb{Q}_\ell(2)).$$

Since (X, Y) is a semi-regular pair with Y nonsingular, from Corollary 2.1 we know that the Gysin map

$$\iota_* : H^3(\bar{Y}, \mathbb{Q}_\ell(2-n)) \to H^{2n-1}(\bar{X}, \mathbb{Q}_\ell)$$

is an isomorphism. Now a g-equivariant isomorphism of vector spaces over \mathbb{Q}_ℓ:

$$j_X : V_\ell(\text{Alb}_w X) \xrightarrow{\sim} H^{2n-1}(\bar{X}, \mathbb{Q}_\ell(n))$$

is defined as the isomorphism making the following diagram commutative:

$$\begin{array}{ccc}
\text{Hom}(V_\ell(\text{Pic}_w Y)(-1), \mathbb{Q}_\ell) & \xrightarrow{\xi} & V_\ell(\text{Alb}_w Y) \\
\downarrow \iota_{\text{by}} & & \downarrow V_\ell(\text{Alb}_w X) \\
\text{Hom}(H^1(\bar{Y}, \mathbb{Q}_\ell), \mathbb{Q}_\ell) & \xrightarrow{\psi} & H^3(\bar{Y}, \mathbb{Q}_\ell)(2) \\
\downarrow j_{\Pi} & & \downarrow \iota_* \circ j_X \\
\text{Hom}(H^1(\bar{X}, \mathbb{Q}_\ell), \mathbb{Q}_\ell) & \xrightarrow{j_{\Pi}} & H^{2n-1}(\bar{X}, \mathbb{Q}_\ell(n)).
\end{array}$$
Here ϖ is defined by the Weil pairing, and $^{t}h_Y$ is the transpose of the map h_Y defined in Proposition 9.6. Hence, the conclusion holds if $U(k) \neq \emptyset$.

Step 3. Assume that k is an infinite field. One checks successively that if U is an open subset in an affine line, an affine space, or a Grassmannian, then $U(k) \neq \emptyset$ and the conclusion follows from Step 2.

Step 4. Assume that k is a finite field. Then the following elementary result holds (as a consequence of Proposition 12.1, for instance).

Claim. Let U be a nonempty Zariski open set in $G_{r,N}$, defined over k, and $k_s = \mathbb{F}_q^s$, the extension of degree s of $k = \mathbb{F}_q$. Then there is an integer $s_0(U)$ such that $U(k_s) \neq \emptyset$ for every $s \geq s_0(U)$.

Now take for U the open set in $G_{N-n+2,N}$ introduced in Step 1. Choose any $s \geq s_0(U)$, and let $g_s = \text{Gal}(k/k_s)$. Since $U(k_s) \neq \emptyset$, upon replacing k by k_s, we deduce from Step 2 a g_s-equivariant isomorphism of \mathbb{Q}_r-vector spaces:

$$j_{X,s} : \nu_{\ell}(\text{Alb}_w X) \sim H^{2n-1}(\tilde{X}, \mathbb{Q}_\ell(n)).$$

This implies in particular that if $m = 2\dim \text{Alb}_w X$, then

$$\dim H^{2n-1}(\tilde{X}, \mathbb{Q}_\ell(n)) = \dim \nu_{\ell}(\text{Alb}_w X) = m.$$

In each of these spaces, there is an action of $g = g_1$. By choosing bases, we identify both of them with \mathbb{Q}_r^n. Denote by $g_1 \in \text{GL}_m(\mathbb{Q}_\ell)$ the matrix of the endomorphism $\nu_{\ell}(\varphi)$, where $\varphi \in g$ is the geometric Frobenius operator in $H^{2n-1}(\tilde{X}, \mathbb{Q}_\ell(n))$. The existence of the \mathbb{g}_s-equivariant isomorphism $j_{X,s}$ implies that g_1^n and g_2^n are conjugate. In order to finish the proof when k is finite, we must show that g_1 and g_2 are conjugate. This follows from the Conjugation Lemma below, since g_1 is semi-simple by [31, p. 203].

Step 5. Assume now that $(\mathbb{R}_{m,p})$ holds and that X is regular in codimension 1. Take \tilde{X} to be a nonsingular projective variety birationally equivalent to X over k. Then $\text{Alb}_w \tilde{X} = \text{Alb}_w X$ since the Albanese-Weil variety is a birational invariant, and

$$H^{2n-1}_x(\tilde{X} \otimes \bar{k}, \mathbb{Q}_\ell(n)) = H^{2n-1}(\tilde{X} \otimes \bar{k}, \mathbb{Q}_\ell(n)),$$

by Proposition 8.1(ii). Now it is well known that $H^{2n-1}(\tilde{X} \otimes \bar{k}, \mathbb{Q}_\ell)$ is pure, and the same holds for X, by Prop. 8.7(i). Hence,

$$H^{2n-1}(\tilde{X} \otimes \bar{k}, \mathbb{Q}_\ell(n)) = H^{2n-1}(X \otimes \bar{k}, \mathbb{Q}_\ell(n)).$$

Since the conclusion is true for a nonsingular variety, we obtain a g-equivariant map

$$j_{\tilde{X}} : \nu_{\ell}(\text{Alb}_w \tilde{X}) \sim H^{2n-1}(\tilde{X} \otimes \bar{k}, \mathbb{Q}_\ell(n)),$$

and this gives the required g-equivariant isomorphism. \qed
Conjugation Lemma. Let K be a field of characteristic zero, and let g_1 and g_2 be two matrices in $\text{GL}_n(K)$, with g_1 semi-simple. If g_2^s is conjugate to g_1^s for infinitely many prime numbers s, then g_2 is conjugate to g_1.

Proof. Let $g_2 = su$ be the multiplicative Jordan decomposition of g_2 into its semi-simple and unipotent part. Take a and b prime with g_2^a conjugate to g_1^a. Then s^au^a is conjugate to g_1^a, and hence, $u^a = I$, by the uniqueness of the Jordan decomposition. Similarly, we find $u^b = I$. Hence $u = I$ with the help of Bézout’s equation, and g_2 is semisimple.

Take now two diagonal matrices d_1 and d_2 in $\text{GL}_n(\bar{K})$ such that g_i is conjugate to d_i in $\text{GL}_n(\bar{K})$. Two conjugate diagonal matrices are conjugate by an element of the group W of permutation matrices: if d_1^s and d_2^s are conjugate, then $d_2^s = (w_s d_1 w_s^{-1})^s$ with $w_s \in W$. Since W is finite, one of the sets

$$T(w) = \{ s \in \mathbb{N} : d_2^s = (w d_1 w^{-1})^s \}$$

contains infinitely many prime numbers. Take two prime numbers a and b in that set, then

$$d_2^a = h_1^a, \quad d_2^b = h_1^b, \quad h_1 = w d_1 w^{-1},$$

from which we deduce $d_2 = h_1$ by Bézout’s equation. This implies that d_1 and d_2 are conjugate in $\text{GL}_n(\bar{K})$, and the same holds for g_1 and g_2. But two elements of $\text{GL}_n(K)$ which are conjugate in $\text{GL}_n(\bar{K})$ are conjugate in $\text{GL}_n(K)$.

□

ADDENDA

One can improve some results in the paper, assuming that $(R_{n,p})$ holds. This may provide indications on the range of validity of the statements. For instance, the following proposition shows that the conclusion of Cor. 9.10 of [S1] is true without assuming that X is regular in codimension 2.

In what follows k is a perfect field of characteristic $p \geq 0$. Recall that a projective variety, regular in codimension one, which is a local complete intersection, is normal.

A1. Proposition. Assume that $(R_{n,p})$ holds. Let X be a projective variety of dimension $n \geq 2$ defined over k.

(i) If X is normal, there is a g-equivariant injective linear map

$$H^1(\bar{X}, \mathbb{Q}_\ell) \rightarrow \text{Hom}(H^{2n-1}(\bar{X}, \mathbb{Q}_\ell(n)), \mathbb{Q}_\ell).$$

(ii) If X is regular in codimension one and is a local complete intersection, this linear map is bijective.

Proof. The proof of (i) follows the lines of the proof of [S1, Cor. 9.10], taking in account the last statement in Prop. 9.8 of the present note. In order to see that (ii) holds, remark that

$$\dim H^1(\bar{X}, \mathbb{Q}_\ell) = \dim H^{2n-1}(\bar{X}, \mathbb{Q}_\ell(n))$$

by Poincaré duality [S1, Rem. 2.7].

□
A2. Proposition. Assume that $(R_{n,p})$ holds. Let X be a projective variety of dimension $n \geq 2$ defined over k, regular in codimension one, which is a local complete intersection. Then the canonical map

$$\nu: \text{Alb}_w X \longrightarrow \text{Alb}_s X$$

is an isomorphism.

Proof. From Prop. A1(ii) and the proof of [S1, Cor. 9.10], we deduce that the homomorphism

$$V(t\nu): V(Pic_s X) \longrightarrow V(Pic_w X)$$

is bijective, hence, ν is an isogeny by Tate's Theorem [31, Appendix I]. Since the kernel of ν is connected by Prop. 9.1(ii), it is trivial. \square

Now Prop. A2 leads to an improvement of Prop. 10.10:

A3. Corollary. Assume that $(R_{n,p})$ holds. Let X be a projective variety of dimension n, defined over the finite field $k = F_q$, regular in codimension one, which is a local complete intersection. If $g = \dim \text{Alb}_w X$, then

$$q^{-g}P_1^w(X, q^n T) = P_{2n-1}(X, T) .$$

\square

Applications and complements

It may be interesting to note that some of the results of [S1] have found application in such diverse fields as group theory by T. Bandman & al. [S2], [S3], the study of Boolean functions by F. Rodier [S7], and Waring’s problem in function fields by Y.-R. Liu and T. Wooley [S6]. None of these applications are based on the results whose proof needed modifications or corrections, as outlined here. Improvements of some of the estimates in [S1] have also been obtained by A. Cafure and G. Matera [S4], [S5]. Finally, since Section 1 of [S1] includes a version of Bertini Theorem, it is worthwhile to notice that deep results on Bertini Theorems over finite fields have been recently obtained by B. Poonen [S7].

Supplementary References

S.R.G.: DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY, POWAI, MUMBAI 400076, INDIA

E-mail address: srg@math.iitb.ac.in

G.L.: INSTITUT DE MATHÉMATIQUES DE LUMINY, CNRS, LUMINY CASE 907, 13288 MARSEILLE CEDEX 9, FRANCE

E-mail address: lachaud@univmed.fr