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REGULARITY OF GROWTH AND THE CLASS S

D. DRASIN

Abstract. Given 1/2 ≤ µ ≤ ρ ≤ ∞, there is an entire function f(z) in the
Speiser class S of order ρ, lower order µ. f may have as few as three singular

values.

1. Introduction

An entire (or meromorphic) function f(z) belongs to the class S (for Speiser) if
its singularities project onto the finite set A = {a1, . . . , aq}. Thus if a /∈ A, then
whenever f(z0) = a, there are neighborhoods N1 � z0 and N2 � a such that f has
a local inverse f−1 : N2 → N1, with f−1(a) = z0. The class S includes most of
the familiar analytic/meromorphic functions, and has some remarkable properties,
which place S between rational functions and general meromorphic functions. For
example, if f ∈ S, then the Fatou set of its iterates contains no wandering domain
([4] for entire functions and [1] for meromorphic functions); in addition, if f ∈ S,
the inequality which forms the Nevanlinna second fundamental theorem becomes
an asymptotic equality [7].

Our result here shows that this principle has some limitation. Recall that the
order ρ (lower order µ) of an entire function is

ρ(µ) = lim sup
r→∞

(lim inf
r→∞

)
log log M(r, f)

log r
= lim sup

r→∞
(lim inf

r→∞
)

log T (r)
log r

.

Theorem 1. There exist entire functions in S of irregular growth: given 1/2 ≤
µ < ρ ≤ ∞, there is a function f ∈ S of order ρ and lower order µ.

This question was raised by Adam Epstein. That necessarily µ ≥ 1/2 follows
from [2].

Sergiy Merenkov [6] has shown that there are entire functions in S whose max-
imum modulus grows arbitrarily rapidly. Even when ρ = µ = ∞, our function
will have restricted growth, since ‖h′′‖∞ ≤ 1/(3π); however, we are able to specify
the behavior of the characteristic T (r, f) (as well as the maximum modulus) rather
precisely.

Standard notation (here we assume the variable is z, but the notation will also
be used with other variables, the context making clear the appropriate choice):
B(r) = {|z| ≤ r}; S(r) = {|z| = r}; B = B(1); S = S(1).
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Rickman and Jussi Väisälä. The author thanks both Mathematics Departments for their hospi-
tality and atmosphere.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

90



REGULARITY OF GROWTH AND THE CLASS S 91

2. A strip mapping

The construction depends on an explicit mapping (Proposition 1)

ϕ : Σ → T,

where Σ is the strip {(x, y); h(x) < y < h(x)+2π} and T the standard strip, which
we take as {(u, v); |v|<π/2}. The function h is smooth, h′≥0, and h(x)≡0 (x≤1).

With µ and ρ as in the statement of the theorem, we take h so that if

M(x) =
1
2

∫ x

0

(1 + h′(s)2)1/2 ds,(1)

then

µ = lim inf
x→∞

M(x)
x

≤ lim sup
x→∞

M(x)
x

= ρ.(2)

In turn, h determines a strip Σ bounded by arcs Γ, Γ′: Γ = {(x, h(x))}, Γ′ =
{(x, h(x) + 2π)}, x ∈ R.

In §6, h will be constructed in stages, over intervals Jn = [xn, xn+1]n≥0, where
x0 ≥ 1 and the lengths of the {Jn} may be taken as large as needed. The exposition
is a bit simpler when ρ < ∞, but it is more direct to discuss the most general case.
Thus choose a sequence ρ∗n ↑ ρ, ρ∗n < ∞ for all n. We then require that

inf
Jn

h′(t) =
√

2µ − 1 + (1/n), sup
Jn

h′(t) =
√

2ρ∗n − 1,(3)

and note that (3) is compatible with the intervals Jn being large, and ηn in (4)
small. We suppose à priori that ‖h′′‖∞ ≤ 1/(3π), and then introduce a positive
sequence {ηn} so that

(4)
h′(x)|h′′(x)| < ηn, |h′′(x)| < ηn (x ∈ Jn),

|h′′(x)| < ηnh′(x) whenever x ∈ Jn and h′(x) > 1.

Many estimates contain expressions in which o(1) appears. The estimate

A = o(1)B (η)

is shorthand for the statement that the error terms can be controlled for x ∈ Jn by
an expression which depends only on the {ηn} in (4).

The strip Σ admits a natural foliation. For each x construct the perpendicular
segment L = L(x) to Γ connecting boundary points (x, h(x)) and (L(x), h(L(x))+
2π) ∈ Γ′ through Σ, thus implicitly defining L(x), and let �(x) be the length of
L(x). It is clear that L is unique: were u0 and t0 suitable possibilities for L(x0),
u0 
= x0, t0 
= x0 with t0 < u0, then

0 <
h(u0) − h(t0)

u0 − t0
= − 1

h′(x0)
,

a contradiction since h is nondecreasing.

Lemma 1. L is a smooth function of x with

0 ≤ x − L(x) ≤ 4π,

and

L′(x) = 1 + o(1) (η).



92 D. DRASIN

Remark. Recall that the qualification (η) here and below means that the error
terms depend only on the data (4).

Proof. We bound x − L(x). Consider the triangle with vertices

A = (x, h(x)), B = (x, h(x) + 2π), C = (L(x), h(L(x)) + 2π),

and let D be the point in the segment AB with AB ⊥ CD (since h′ > 0 we have
that �A < �C < �B).

First suppose that h′(x) ≤ 2. Then AC has slope < −1/2, and so (the con-
tinuation of) this segment meets the horizontal line {�z = h(x) + 2π} at a point
(p, h(x) + 2π), where x − p ≤ 4π. Thus, in this case x − L(x) = |CD| < 4π.

Otherwise, h′(x) ≥ 2, and since ‖h′′‖∞ ≤ 1/(3π), we have that h′(t) ≥ 1/2
for x − t < 4π. This means that the horizontal line segment joining (x, h(x)) to
(x − 4π, h(x)) passes through Γ′, and so forces x − L(x) ≤ 4π.

Next, choose x0, t0 with t0 = L(x0). Consider for x near x0 the function

F (x, t) = h′(x) (h(t) − h(x) + 2π) − (x − t).

If t0 = L(x0), it follows that F (x0, t0) = 0, and clearly

∂F

∂t
= h′(x)h′(t) + 1 ≥ 1.

Thus for x near x0, the equation F (x, t) = 0 has a unique solution t = t(x) which
is continuous. The implicit function shows that t(x) is smooth:

dt

dx
= L′(x) = −Fx

Ft
=

1 + h′(x)2 + h′′(x)(h(x)− h(t) − 2π)
1 + h′(x)h′(t)

,

and L′(x) = 1 + o(1), with the error terms as described. �

Corollary 1. If �(x) is the length of L(x), then

�(x) = (1 + o(1))
2π√

1 + h′(x)2
(η).(5)

Proof. Let ∆ be the triangle from Lemma 1, so that ∠(CAB) = α = tan−1 h′(x).
Moreover, the slope of CB is (h(x)−h(L(x)))/(x−L(x)) = h′(ξ) with x−ξ = O(1),
and so if β = ∠(CBA), then β = π/2 − tan−1 h′(ξ):

sin β =
1√

1 + h′(ξ)2
= (1 + o(1))

1√
1 + h′(x)2

.
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Now � = |AC|, and the (nearly right)-angle ∠(ACB) opposite the vertical side of
∆ is π − (α + β); thus the law of sines gives

� =
2π√

1 + h′(ξ)2
·
√

1 + h′(x)2
√

1 + h′(ξ)2

1 + h′(x)h′(ξ)

= (1 + o(1))
2π√

1 + h′(x)2

as claimed. �

In addition to L, we use L1(x), defined so

L(L1(x)) = x;(6)

thus the point (L1(x), h(L1(x)) + 2π) = (x, h(x) + 2π) lies directly above (x, h(x))
on Γ′ ⊂ ∂Σ. The existence of L1 follows from the discussion of L.

Lemma 2. The function L1 satisfies

L1(x) − x = 2π(1 + o(1))
h′(x)

1 + h′(x)2
(η).

Proof. Consider the triangle with vertices A : (x, h(x)), B : (L1(x), h(L1(x))),
C : (x, h(x) + 2π) ≡ (L(L1(x)), h(L(L1(x)) + 2π)), so that now

∠ACB = tan−1 h′(L1(x)).

Since L1(x) − x < 4π, the corollary yields

L1(x) − x = �(L1(x)) sinβ = (1 + o(1))
2π√

1 + h′(L1(x))2
· h′(L1(x))√

1 + h′(L1(x))2
,

and the conclusion follows from (4). �

We next show

Proposition 1. The mapping

ϕ : L(x) → {�w = M(x), |�w| < π/2},

with ϕ(x, h(x)) = (M(x),−π/2) and |dw|/|dz| constant on L(x), is quasiconformal
with dilatation

µϕ(z) = φz̄/φz = o(1) (z → ∞, z ∈ Σ) (η).

Remark. Our definition of ϕ forces |dw| = |dz| when z ∈ Γ, and so (1) and (2) yield
that lim sup eM(x) = eρx, lim inf eM(x) = eµx.

Proof. Consider ψ = ϕ−1 and take w0 = u0 + iv0 ∈ T. Then z0 = (x0, y0) =
ψ(w0) ∈ L(x) where x satisfies the vector equation

z0 − (x, h(x)) =
v0 + π/2

π
L(x) (|v0| < π/2).

If z′ = ψ(w0 + iτ) ∈ L(x), then z′ − z0 = (τ/π)L(x) and so

∂z

∂v
=

L(x)
π

.
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Next, with w0 and τ as above, we have that if ψ(w0 + τ ) ∈ L(x′), then

ψ(w0 + τ ) − ψ(w0) =
v0 + π/2

π
(L(x′) − L(x)),

so (1) and Lemma 1 give that

∂z

∂u
=

2 + o(1)
1 + h′(x)2

(1, h′(x)),

and of course (1, h′(x)) is perpendicular to γ at (x, h(x)). We thus deduce, using
(5), that |ψu|2 = (4/(1 + h′(x)2)) = (1 + o(1))|ψv|2 :

|ψu − iψv| = o(1)|ψu| (η),

which yields the proposition. �

A minor modification will be made to ϕ. Let ε(x) (to be specified in (17)) be a
positive smooth decreasing function such that ε(x) = ε0 = ‖ε‖∞ < π/4(x ≤ 0) and

ε(x) → 0, ε′(x) → 0 (x → +∞).(7)

On recalling (3) we suppose in addition for x ∈ Jn that

ε(xn)
√

2ρ∗n − 1 < 1 (n ≥ 0); ε(xn)
√

2ρ∗n − 1 → 0 (n → ∞).(8)

Now consider the (modified) strip

Σ∗ = {(x, y); h(x) + ε(x) ≤ v ≤ h(x) + 2π}.
For sufficiently small ε0 the mapping p−1 : Σ → Σ∗:

p−1(x, y) =
(

x,
2π − ε

2π
y + ε(1 +

h(x)
2π

)
)

is a qc homeomorphism with dilatation

|µp−1(z)| = O(ε(x)(1 + h′(x))) (z ∈ Σ).(9)

This will be exploited in §5.

3. The winding

The strip Σ∗ corresponds to a spiraling region in the Z = exp z-plane. Thus
exp Σ∗ is a connected set ΣZ whose intersection with each circle S(R) (R > 0) is
an arc of angular measure 2π − ε(log R). We first study the composite map

Φ ≡ exp ◦ϕ ◦ p ◦ log : ΣZ → {�W = U ≥ 0},(10)

which maps ∂ΣZ onto the imaginary W = U + iV axis, normalized by Φ(0) = 0.
The explicit form of ϕ shows that the Φ-image of S(R) ∩ ΣZ is an asymptotic

semi-circle contained in {U ≥ 0} with endpoints at the points

(0, eM(L1(log R))), (0,−eM(log R)).

Let ∂−ΣZ , ∂+ΣZ be the arcs of ∂ΣZ \ {0}, chosen such that for each R > 0,
S(R) ∩ ∂+ΣZ has the larger argument (measured through ΣZ , this is consistent
with the earlier notation ∂±T ). Let τ−, τ+ be arc-length on ∂−T, ∂+T , measured
from 0, and recall that Γ is mapped to ∂−T under ϕ. Thus (1), (10) and the fact
that each line {x = const.} is invariant under p show that

(11)
d(−V )
d log R

= eM(x) 1
2
(1 + h′(x)2)1/2 (x = log R).
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When doing this computation on ∂+ΣZ , note that the point on ∂+ΣZ ∩ S(R)
corresponds on ∂+T to (L1(x), h(L1(x)) + 2π), x = log R. The computation just
made, now with the estimates of L′ from Lemma 1 and L1(x) − x from Lemma 2
now yield that (x = log R),

dV

d log R
=

d

dx
(eM(L1(x))) = eM(L1(x)) 1

2
(1 + h′(L1(x)2))1/2(1 + o(1))(12)

= (1 + o(1))
d(log−V )

d log R
e(1/2)

∫ M(L1(x))
M(x) (1+h′(t)2)1/2 dt (z ∈ ∂+ΣZ) (η).

Now

H(Z) = expΦ(Z)

maps ΣZ onto an unramified cover of {|W | > 1} with the only singularity of
the inverse function being a single logarithmic branch point over W = ∞. Our
normalization has H(0) = 1.

We compute n(R, i), the number of solutions to the equation H(Z) = i with
Z ∈ ΣZ (these points lie on the boundary of ΣZ , but the counting function is well
defined since, for example, the reflection principle may be applied on ∂ΣZ). Thus
if n−(R, i) and n+(R, i) are the number of such points in B(R) whose Φ-image is
congruent to 0 (mod 2πi), then (11) and (12) show in turn

n−(R, i) =
1
2π

eM(log R),(13)

and, more significantly,

n+(r, i) = eM(L1(log R))

= (1 + o(1)) exp

[
(1/2)

∫ L1(log R)

log R

(1 + h′(t)2)1/2 dt

]
n−(r, i),

(14)

reflecting the more rapid covering of S from ∂+ΣZ , due to the asymmetry of Σ, an
effect frequently exploited (for example, see [5]). Lemma 2, (4) and the form of (1)
show that the imbalance of coverings in (14) is controlled by

exp((1/2)
∫ L1(log R)

log R

(1+h′(s)2)1/2 ds) ∼ exp((1+o(1))πh′(x)(1+h′(x)2)−1/2) (η).

In addition, if |a| = 1, we check that n(R, a) = n+(R, i)+n−(R, i)+O(1), the O(1)
uniform in a. Following the standard Nevanlinna theory, define N(R, a) as

(d/d log r)N(r, a) = n(r, a),

and (at least if a 
= 1 = H(0)) N(0, a) = 0.
A comparison of this with our controlling property (1) together with the remark

following the statement of Proposition 1 at once give the next

Lemma 3. Let the characteristic of H formally be defined as

T (r, H) =
1
2π

∫ 2π

0

N(r, eiφ) dφ

(when H is meromorphic, this is H. Cartan’s formula). Then H has order ρ and
lower order µ.
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In the next section we extend H to be quasiregular in the z plane with singular-
ities over three values, and satisfy the functional equation

H(z) = f(λ−1ζ),(15)

where f is entire and λ is a K-quasiconformal homeomorphism of the plane. In
this situation, we will find that Lemma 3 transfers at once to f .

4. Extending H

We have already noted that the spiraling of SZ in the Z-plane is reflected in H
covering S faster on ∂+SZ , but now exploit (3) to arrange that this holds on the
infinitesimal level.

Lemma 4. For n ≥ 1 we may choose ηn > 0 in (4), but sufficiently small to ensure
that

dn+(t)
dt

>
dn−(t)

dt
(t > 1).

Proof. According to the computations leading to (12), we have

dn+(t)
dt

= (1 + o(1))eM(L1(t))−M(t) dn−(t)
dt

(η),

and on recalling (3), Lemma 2, we have

M(L1(t)) − M(t) = π(1 + o(1))h′(t)(1 + h′(t)2)−1/2 (η).

However, when t ∈ Jn, (3) asserts that h′(t) has absolute positive upper and lower
bounds, while all expressions o(1) are controlled by ηn, which until this moment
has not been assigned. We now do this to guarantee that the lemma holds. �

For k ≥ 1 we mark as Z−
k , Z+

k the points on ∂ΣZ which correspond to W = ±i

under H as |Z| increases. This is done with Z±
k ∈ ∂±ΣZ and H(Z±

1 ) = ±i. In
addition, set Z0 = Z+

0 = Z−
0 = 0.

This induces a partition of the Z-plane into concentric annuli Ak = {Rk ≤ |Z| ≤
Rk+1} so that for k ≥ 1, the H-image of Ak∩∂−ΣZ covers S+ := S(1)∩{�W ≥ 0}
or S− := S ∩ {�W < 0} once. Thus, it follows from Lemma 4 that each interval
I+
k of Ak ∩ ∂−ΣZ may be matched to an interval I+

k of ∂+ΣZ , having endpoints
Z+

k∗ , Z
+
(k+1)∗ ⊂

⋃
p Z+

k with the properties:

(1) the {I+
k } partition ∂+ΣZ ,

(2) the H-image of each I+
k covers S+ ∪ S− q = q(k) times, and if Ik ∩

{|z| = log x} 
= ∅ for some x ∈ Jn, then 1 < q(k) ≤ Q(n) < ∞ (this
requires both upper and lower bounds from (3) for h′(t) for t ∈ Jn),

(3) H(Z−
k ) = (−1)ki,

(4) if Π1 is the projection onto the |Z|-coordinate within ΣZ , then

Π1(I−k ) ∩ Π1(I+
k ) 
= ∅,

(5) H(Z+
k+1) = −H(Z+

k ) at the endpoints of each I−k and H maps I−k to a
simple cover of S+ or S−.
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Thus ∂I−k = {Z−
k , Z−

k+1}, while only a subsequence of the {Z+
k } are in

⋃
k ∂I+

k .

Note from (13) and the overriding condition (4) that (as usual, x = eX = e�Z),
the image of

∂−Σ ∩
[
x, x + (1 + o(1))

2
n(x)(1 + h′(x)2)1/2

]
(16)

covers S(1) once.

5. Enter S

To extend H to Σ′
Z and have irregular growth will force additional singularies of

H over at least two additional points, which, to have H correspond to a function
in S, we take as ±p, where 0 < p < 1 is fixed (say p = 1/2).

As a model, first consider a finite family of coverings of B = B(1) in the W -plane
in the range 2 ≤ j ≤ J(ρ∗) < ∞ (recall (3)), where we write ρ∗ in place of the
more explicit ρ∗n. This is based on Bj , the normalized covering of unit disk B given
by W → W j , which has one branch point (order j − 1) over W = 0. We view ∂Bj

as being composed of 2j arcs, j alternating over each of S+ := {�W ≥ 0} and
S− := {�W < 0} on a circuit of ∂Bj .

Although these {Bj} would be the simplest class to use, they do not produce
irregularity of growth. They are replaced by three related classes of quasiconformal
images of the Bj , which are fused to extend H to Σ′

Z .
The first group is B+

j , B−
j (j ≥ 2), and we describe B−

j ; the only change for B+
j

lies in the corresponding singular points being over W = +p. For each j consider
first the quasiconformal correspondence

Bj → B−
j (0),

which is the identity on the boundary and has the branch point W = 0 shifted to
W = −p. The dilatation of these maps can be taken to be bounded independent
of j (we have W → Φ(W ) with Φ qc on S(1), Φ(W ) = W for W ∈ S, Φ(0) = −p).
Let I be the (vertical) segment connecting W = ±i, and choose two arcs of ∂Bj

over S+ which, on a circuit of ∂Bj , are separated by a single arc S− (there are
j ways to do this). Then B−

j is B+
j (0) with these two arcs replaced by arcs over

I, all other boundary arcs unchanged, so that the map B+
j (0) → Bj covers each

point in B ∩ {�W < 0} j times, and each point in B ∩ {�W > 0} j − 2 times.
The boundary correspondence Bj → B−

j remains the identity on all but these two
arcs over I, while each of the two correspondences S+ → I rigidly compresses the
arc-length element by the ratio 1 : π. Thus B−

j is a simply-connected domain, a
quadralateral, whose boundary is the union of the two arcs over I, one component
projecting on S+, with the remaining boundary component covering S+ a total of
j − 2 times and S− j times. Note that on a circuit of ∂B−

j , the arc I is traversed
twice, each time with the same orientation. In this way we have described a qc
map Bj → B−

j , and it is straightforward to see that we may arrange dilatation
independent of j.

The {B+
j }, as noted above, are constructed in a parallel manner, except that

two arcs over S− will be replaced by arcs over I, and the branch point now lies
over W = p. The dilatation of these maps is also uniformly bounded for 2 ≤ j,
now with I covered twice, each with orientation opposite to that from the {B−

j }.
Finally, we add one (univalent) cover B∗ which covers B+ := B ∩ {�W > 0}.
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Now recall the arcs I±k introduced in §4, and note that relative to Σ′
Z ,

∂−ΣZ has the larger argument. Using these I±k , we divide Σ′
Z into one ‘trian-

gle’ Q0 and quadralaterals Qk, k ≥ 1. Thus ∂Q0 will have as two sides the arcs
[Z0, Z

±
1 ] ⊂ ∂±ΣZ as well as the segment [Z−

1 , Z+
1 ] through Σ′

Z . When k ≥ 1, ∂Qk

consists of arcs I−k , I+
k and the segments through Σ′

Z joining these endpoints. In
view of (16), it is advantageous to take ε(x) in (7) with

ε(x) =
2

n(x)(1 + h′(x)2)1/2

= (1 + o(1))
4π

(1 + h′(x)2)1/2
e−(1/2)

∫ x
0 (1+h′(u)2)1/2 du.

(17)

The strip Σ′
Z =

⋃
k≥0 Qk will be sent to B = {|W | < 1} with boundary values

compatible with H from §3, now to be made precise. Let σ be the arc length on
I ∪ S and s be the arc length in the Z-plane. First, let ψ0 : Q0 → S ∩ {W < 0}
with dσ/ds constant on each segment [Z0, Z

±
1 ] and the segment [Z+

1 , Z−
1 ] ⊂ Σ′

Z ,
which corresponds under ψ0 to I.

For the general case we have

Lemma 5. For k ≥ 1 we may define Ψk : Qk → Bj = Bj(k), with 2 ≤ j(k) ≤
J(ρ∗) < ∞, so that the arc-length correspondence is constant on each boundary
segment, and

‖µΨk‖∞ < µk = µ(ρ∗) < 1.

Proof. Let us suppose that I+
k ∩ S(log x) 
= ∅ for some x ∈ Jn. We have arranged

that the image of I−k under H cover S+ or S− once, and that of I+
k cover S+ ∪S−

q(k) times where 1 ≤ q(k) ≤ Q(n) < ∞. Take j(k) = 1+q(k), and factor Ψ = Ψn as
Ψ : Qk → � → Bj (here � is a square) again so that the arc-length correspondence
is constant on each boundary arc. The dilatation of the map � → Bj is readily
controlled by ρ∗: The two boundary segments of Bj corresponding to I are sent
to opposite sides of �, while the remaining sides of � correspond to covering S±

once and (2q(k) − 3) times (this asymmetry due to the more rapid covering from
∂+ΣZ = ∂−Σ−

Z ). The boundary of Qk consists of two line-segments through Σ′
Z

and (due to (3)) two near-radial segments on ∂Σ′
Z , and (17) is made so that their

side-lengths are comparable in a manner independent of k (so long as they are made
with S(log x)∩Qk 
= ∅ with x ∈ Jn). Although these quadralaterals degenerate as
h′ → ∞, in the range h′ < h(ρ∗) the mapping sending these arcs to the sides of �
may be taken with dilatation uniformly bounded. �

The function H will be extended to H∗ in C as

H∗(Z) =

{
H(Z) (Z ∈ ΣZ),
Ψk(Z) (Z ∈ Qk ⊂ Σ′

Z),
(18)

and H∗ is continuous in the plane.
We now make precise the data in (3) so that H∗ is transformed to the solution

f from (15).
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6. Beltrami equation

The next lemma follows from normal families.

Lemma A. Corresponding to each η > 0, K < ∞ are M < ∞, δ > 0 so that if
ψ is a homeomorphism of the plane fixing z = 0, 1 which is K-quasiconformal on
{M−1 < |z| < M} with∫

S(r)

|µψ(reiθ)| dθ < δ (M−1 < r < M),(19)

where µψ(z) = (ψz(z) + ψz̄(z))/(ψz(z) − ψz̄(z)), then

(1 ≤ )
maxθ |ψ(reiθ)|
minθ |ψ(reθ)| < 1 + η (1/2 < r < 2).

This lemma determines the intervals Jn = [xn, xn+1] through which occur the
stages of the construction implicit in (3) and (4). Choose the sequence {ηn} in
accord with Lemma 4. Now consider a fixed n ≥ 0, and since h′(t) < ρ∗n when
Qk ∩ S(log x) 
= ∅ for x ∈ Jn, we have from Lemma 5 that ‖µΨk

‖ < κn < 1, or Ψk

is Kn := (1 + κn)/(1 − κn)-quasiconformal. Lemma A produces sequences {Mn}
and {δn} which are now used.

To get a lower bound for each xn, note from (16) and the second expression in
(17): Given any ε0, we may choose x so large that independent of any data of h(x),
we have ε(x) < ε0 if x > x0(ε0). We thus take xn so that when x > xn − log Mn

we have

ε(x) <
δn

2Kn
.

This ensures that if x > xn − log Mn and S(log x) ∩ (Qk) 
= ∅,∫
S(ex)∩Σ′

Z

|µH∗(reiθ)| dθ < ε0 · Kn < (1/2)δn.

On the other hand, we see from the formula (10), Proposition 1, and (9) that∫
S(r)∩ΣZ

|µH∗(reiθ)| dθ

is controlled by µp and µϕ, and consequently, when log r ∈ Jn, by (3) and ε(x).
Thus when x ∈ Jn, h′(x) is bounded by (3) and µϕ is controlled by η = ηn, and so
we may increase xn if necessary to ensure that∫

S(r)

|µH(reiθ)| dθ < (1/2)δn (log r > xn − log Mn).

This together with Lemma A implies that the homeomorphic normalized solution
λ(z) to the Beltrami equation λz̄ = µH∗(z)λz(z) is Hölder continuous with exponent
τ (in fact this exponent may be taken as close to one as desired; we need only that
it may be considered independent of n or the choice of ρ in Theorem 1). Thus

log |ζ(Z)| = (1 + o(1)) log |Z| (|Z| → ∞),

so that the entire function f in (18) has the same order and lower order as H∗.
Since all solutions to |f(ζ)| = 1 are related to those of H∗(ζ)| = 1 by λ, Lemma 3
shows that f has the desired growth. We have constructed H so all singularies are
over ±p,∞, and thus (15) gives us that f ∈ S3.
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