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CYCLE DOUBLING, MERGING, AND RENORMALIZATION

IN THE TANGENT FAMILY

TAO CHEN, YUNPING JIANG, AND LINDA KEEN

Abstract. In this paper we study the transition to chaos for the restriction
to the real and imaginary axes of the tangent family {Tt(z) = it tan z}0<t≤π.
Because tangent maps have no critical points but have an essential singularity
at infinity and two symmetric asymptotic values, there are new phenomena: as
t increases we find single instances of “period quadrupling”, “period splitting”,
and standard “period doubling”; there follows a general pattern of “period
merging” where two attracting cycles of period 2n “merge” into one attracting
cycle of period 2n+1, and “cycle doubling” where an attracting cycle of period
2n+1 “becomes” two attracting cycles of the same period.

We use renormalization to prove the existence of these bifurcation param-
eters. The uniqueness of the cycle doubling and cycle merging parameters is
quite subtle and requires a new approach. To prove the cycle doubling and

merging parameters are, indeed, unique, we apply the concept of “holomorphic
motions” to our context.

In addition, we prove that there is an “infinitely renormalizable” tangent
map Tt∞ . It has no attracting or parabolic cycles. Instead, it has a strange
attractor contained in the real and imaginary axes which is forward invariant
and minimal under T 2

t∞ . The intersection of this strange attractor with the real
line consists of two binary Cantor sets and the intersection with the imaginary
line is totally disconnected, perfect, and unbounded.

1. Introduction

In the 1970s, Feigenbaum [8, 9], and Arneodo, Coullet, and Tresser [1, 2], dis-
covered an interesting phenomenon in physics called period doubling that showed
how a sequence of dynamical systems with stable dynamics can converge to one
with chaotic dynamics (see, e.g., [12]). They began with the quadratic family
Qt(x) = −(1 + t)x2 + t parameterized by t ∈ [0, 1]. For all t, Qt maps the interval
[−1, 1] into itself, fixing −1. While for very small values of t, every point inside
the interval (−1, 1) is attracted by a fixed point inside the interval, eventually one
encounters a strictly increasing sequence {tn}∞n=1 such that for t ∈ (tn−1, tn), Qt

has a repelling cycle Ck,t of period 2k for k = 1, . . . , n− 1 and an attracting cycle
Cn,t of period 2n. That is, as t passes through each tn, the period of the attracting
cycle is doubled.

Since the tn’s form a bounded increasing sequence, they have a limit t∞. The
limit map Qt∞ is a quadratic polynomial with repelling cycles Ck,t∞ of period 2k
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for all positive integers k. It has no attracting or parabolic cycle, but the orbit
of the critical point 0, attracts all points that do not land on one of the repelling
cycles. This attractor is homeomorphic to the standard 1/3 Cantor set and Qt∞

acts on it as an adding machine; thus, it is minimal in the sense that the orbit of
every point is dense.

Following that early work, period doubling was found to occur in many branches
of mathematics, physics, chemistry, and biology, etc. In this paper, we exhibit
an analogous phenomenon, which we call cycle doubling, and a new phenomenon,
which we call cycle merging, that occurs for the tangent family

{Tt(z) = it tan z}0<t≤π.

Before we get to what that means, we need to fill in some background about the
tangent family.

Each Tt is a meromorphic map of the complex plane with poles at {kπ+π/2}k∈Z.
Unlike the quadratic maps, it has no critical points. It does have an essential
singularity at infinity with a symmetric pair of asymptotic values, {−t, t} that are
limits of Tt along paths tending to infinity in the directions of the positive and
negative imaginary axes, respectively. In this sense, the asymptotic values can be
thought of as “virtual images” of infinity. As a general principle, the dynamics of
a system generated by iterating a map are controlled by the orbits of the points
where the map is not a regular covering: for quadratic maps, this set is the orbit
of the critical value, and for the tangent map, it is the orbits of the two symmetric
asymptotic values.

For real values of t, Tt maps the real line � to the imaginary line � and maps
� to � so that ft = T 2

t is a self map of both � and �. In the same sense that the
asymptotic values are virtual images of infinity under Tt, they are virtual images
of the poles of Tt under ft. We study the dynamics of Tt and ft restricted to these
axes and show that as t moves from left to right in (0, π), we see first a “period
quadrupling”, next a “period splitting”, and then a “period doubling” like that for
quadratic maps. Unlike quadratic maps, however, this period doubling occurs only
for a single value of t. Afterwards, as t increases, a general pattern occurs either
of “cycle merging”, in which two attracting cycles of period n merge to form a
cycle of period 2n, or “cycle doubling”, where instead of seeing one new cycle of
period 2n form from two cycles of period n, we see two new attracting cycles of
period n form from the single cycle of period n. The result is a pair of interleaved
strictly increasing sequences where these phenomena happen, {αn = tdoublen }, {βn =
tmerge
n }, that have a common limit t∞ (see Figures 1 and 11).
We prove that, like the limit in the quadratic case, Tt∞ has no attracting or

parabolic cycle. Instead, it has an attractor C contained in the real and imaginary
lines and it attracts almost all points on these lines. In the real line, it consists of
two binary Cantor sets and is forward invariant and minimal under ft∞ . On the
imaginary line, it is a forward invariant, unbounded, totally disconnected, perfect
subset.

Our proofs involve modifying, for the tangent family, standard techniques for
real and complex dynamical systems. The proof that cycle doubling occurs at αn

uses fairly standard results about bifurcation near parabolic periodic points. Cycle
merging, however, is inherently a phenomenon for meromorphic maps with symmet-
ric asymptotic values. It depends on adapting the “renormalization” process for
polynomials to the tangent family. For the quadratic family, at each tn a new map,
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Figure 1. This is a computer generated picture illustrating the
bifurcation diagram for {Tt(z) = it tan z}0<t≤π.

its “nth-renormalization”, is defined asQ2n

tn restricted to a subinterval of [−1, 1] that
contains the critical point and on which the iterate is a unimodal map. (See, e.g.,
[12, 18]). In the tangent family, for each βn, we define the “nth-renormalization”
to be the iterate f2n

t restricted to a pair of intervals each containing a pole, and
each bounded by certain pre-poles. The renormalized map is “tangent-like”, that
is, continuous and monotonic except at the poles. We prove that the map Tt∞ is
infinitely renormalizable and the orbits of the asymptotic values form an attractor
C. (See [20] for the definition of an attractor.)

The renormalization process gives a complete solution to the existence of cycle
doubling and cycle merging parameters in the tangent family. The uniqueness of
the cycle doubling and cycle merging parameters is quite subtle and requires a new
approach. To prove the cycle doubling and merging parameters are, indeed, unique,
we adapt ideas used in [16] to study entropy of folding maps. In particular, we apply
the concepts of “holomorphic motions” and “transversality” to our context.

We note that just as renormalization for quadratics can be extended to the
complex parameter plane of the quadratic and other polynomial families (see, e.g.,
[5, 6, 12, 17]), renormalization exists in the complex t plane of the tangent family
where there is cycle doubling and merging. In fact, renormalization also exists
in dynamically natural slices (see [7]) of more general families of meromorphic
functions. We see cycle doubling and merging in those slices where there are two
asymptotic values that behave symmetrically. For example, we see these phenomena
in the family λ tan3 z, whose functions have two symmetric asymptotic values and
one superattractive fixed point. We leave these generalizations for another paper.

The paper is organized as follows. In §2, we describe some basic facts about
the tangent family it tan z with t ∈ (0, π]. In §3, we show that as t increases an
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attracting fixed point “quadruples” into a period 4 attracting cycle. Then in §4, we
show that the period 4 cycle “splits” to become two period 2 attracting cycles. In
§5, we show how the two period 2 attracting cycles “period double” to become two
period 4 attracting cycles. In the same section, we define the first renormalization;
it is the paradigm for the higher order renormalizations needed to show the general
pattern. In §6, we give the first example of the “cycle merging” phenomenon: two
period 4 attracting cycles merge to become a single period 8 attracting cycle. In
§7, we give the first example of the “cycle doubling” phenomenon: the single period
8 cycle doubles to become two period 8 attracting cycles. In §8, we show the next
example of “cycle merging”: the two period 8 cycles merge into one period 16
attracting cycle. We will see that this second merging is somewhat different from
the first merging. In §9, we state and prove our first main result (Theorem 1) which
says the sequences of cycle doubling and cycle merging phenomena exist and are
part of a general pattern for the tangent family. The proof is by induction and the
main tool in the induction step is renormalization. In §10 we introduce holomorphic
motions and use them to prove transversality at the cycle merging parameters βn

(Theorem 3). Because our family is restricted to the real and imaginary axes, and
depends on real parameters, we obtain positive transversality. This is what we
need for the uniqueness of the βn, which in turn, gives us the uniqueness of the
αn. In §11, we show there exists an infinitely renormalizable map Tt∞ and prove
the second main result (Theorem 4) which describes the Cantor-like structure of
its strange attractor. The appendix contains the proof of a standard lemma on
parabolic bifurcation.

2. Facts about tangent maps

2.1. Basic facts. Let R be the real line, let C be the complex plane, and let

Ĉ = C ∪ {∞} be the Riemann sphere. The tangent map is defined as

tan(z) =
1

i

eiz − e−iz

eiz + e−iz
.

Let

(1) Tt(z) = it tan(z) = t
eiz − e−iz

eiz + e−iz
.

The family we consider in this paper is the subfamily of the tangent family

(2) T = {Tt(z) = it tan z : C → Ĉ}0<t≤π.

We use � = {iy | y ∈ R} to denote the imaginary line in the complex plane. Let
�+ = {iy | y > 0} and �− = {iy | y < 0} be the positive and negative rays in �,
respectively. From the definition we have

Tt(iy) = t
e−y − ey

e−y + ey
.

Thus,

(3) lim
y→∞

Tt(iy) = −t and lim
y→−∞

Tt(iy) = t.

Since Tt is continuous on �, we see that the restriction of Tt to � is a map onto
(−t, t) and it is a strictly decreasing function of y, where the ordering on � is given
by the rule: iy > ix if y > x.
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The family T has the following properties:

(a) Each Tt in T has no critical points.
(b) The values {−t, t} are both omitted by all maps Tt in T ; they are the

asymptotic values of Tt.
(c) All maps Tt in T have poles at the same set of points, zk = kπ+π/2, k ∈ Z.

They are all periodic with period π; that is,

Tt(z + π) = Tt(z) ∀ z ∈ C.

(d) Every map Tt in T is an odd function; that is, Tt(−z) = −Tt(z) and so Tt

has a fixed point at 0. The multiplier at 0 is

(4) λ0 = (Tt)
′(0) = it.

(e) For every Tt, the preimages of 0 are the points kπ, k ∈ Z, on the real line.
In each fundamental interval (kπ−π/2, kπ+π/2), Tt is a continuous strictly
increasing function onto the imaginary line �.

If we compose Tt in T with itself, we obtain an odd periodic map of period π
from R to itself,

(5) ft(x) = T 2
t (x) = −t tanh(t tanx) = −t

[et tan x − e−t tan x

et tan x + e−t tan x

]
,

whose derivative is an even periodic function

(6) f ′
t(x) = −t2 sech2(t tanx) sec2 x = − 4t2 sec2 x

(et tan x + e−t tan x)2
.

Let Δx = x− (kπ + π/2) < 0 (or = x− (kπ − π/2) > 0). Since

lim
Δx→0

− tanx = lim
Δx→0

cosΔx

sinΔx
= lim

Δx→0

1

Δx
and

lim
Δx→0

− sec2 x = lim
Δx→0

1

sin2 Δx
= lim

Δx→0

1

(Δx)2
,

(7) f ′
t(x) = −4t2

e−
2t

|Δx|

(Δx)2
+ o(|Δx|).

The map ft is an odd function with countably many discontinuities at the points
kπ + π/2 for k ∈ Z. It is a strictly decreasing smooth map from each fundamental
interval (kπ − π/2, kπ + π/2) onto (−t, t) (see Figure 2). The points kπ + π/2
constitute the set of poles of Tt; by abuse of notation, we will call them the poles
of ft. Similarly, since the points xk such that fm

t (xk) = kπ + π/2, m = 0, 1, 2, . . . ,
are called pre-poles of Tt of order 2m+ 1, we will call them pre-poles of ft.

In what follows, and throughout the rest of the paper, we use the notation y± for
the upper and lower limits, limx→y± x and the notation ft(y

±) for the upper and
lower limits, limx→y± ft(x). With this notation, the function ft can be extended to
the closed interval [kπ − π/2, kπ + π/2] continuously with image [−t, t] by setting

ft
(
(kπ − π

2
)+

)
= t

and

ft
(
(kπ +

π

2
)−

)
= −t.
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Figure 2. Graph of ft

Again, by abuse of notation we use ft for this extension as well. From (7), for every

n ≥ 1, the nth-derivatives satisfy f
(n)
t ((kπ+ π/2)−) = 0 and fn

t ((kπ− π/2)+) = 0.
Thus the points kπ ± π/2 are flat critical points of ft.

The Schwarzian derivative of ft is, by definition,

S(ft) =
f ′′′
t

f ′
t

− 3

2

(f ′′
t

f ′
t

)2

.

Since ft is the composition of −t tanhx and t tanx and since S(t tan) = 2 and
S(−t tanh) = −2, we have

S(ft) = S(−t tanh) ◦ tan ·(t sec2)2 + S(t tan) = 2(−t2 sec4 +1).

Thus S(ft) < 0 when t > 1.

2.2. Some basic dynamics for tangent maps. A set of points C={z1, · · · , zn}
is called a period n cycle if Tn

t (zi) = zi, and T k
t (zi) = z(i+k) (mod n) �= zi for all

1 ≤ k ≤ n− 1. Let λC = (Tn
t )

′(z1) be the multiplier of C. We say C is attracting,
parabolic, or repelling if |λC | < 1, λC = e2pπi/q or |λC | > 1, respectively. As in
the theory of dynamics of rational maps (see, e.g., [19]), it was proved in [13–15]
that the immediate basin of every attracting or parabolic cycle contains at least
one asymptotic value. By the symmetry of the tangent maps, if a given Tt has an
attracting cycle or parabolic cycle C, then −C = {−z1, · · · ,−zn} is also attracting
or parabolic with the same multiplier. This means that either C and −C each
attracts one asymptotic value or C = −C and it attracts both asymptotic values.
It follows that Tt can have no other attracting or parabolic cycles.

We will need the following basic lemmas.

Lemma 2.1. For all t > 1, the period of any attracting or parabolic cycle of Tt is
even.

Proof. For real x the map Tt(x) = it tan(x) maps the real line to the imaginary
line; it is continuous and strictly monotonically increasing on each fundamental
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interval. The map Tt(iy) = it tan(iy) = −t tanh(y) maps the imaginary line onto
the real interval (−t, t); it is continuous and strictly monotonically decreasing. If
Tt has an attracting or parabolic periodic cycle, then one of the asymptotic values
±t ∈ R must be attracted to it. The orbit of the asymptotic value must alternate
between the real and imaginary axes so the points in this attracting periodic cycle
must lie in the union of the real and imaginary lines. It follows that the period of
any attracting or parabolic periodic cycle other than 0 must be even. �

Lemma 2.2. Suppose t > 1 and suppose Tt has a period p attracting cycle. Then
the intersection of each component of the immediate basin of this attracting cycle
with the real line or the imaginary line must be an interval.

Proof. By the lemma above, all points in the cycle are in the real and imaginary
axes. Let D be a component of the immediate basin of the cycle that intersects the
real axis. Let x ∈ D (the closure of D) be the point of the cycle. Then T p

t (x) = x
is in or on the boundary of D. It was shown in [4] that such a D must be simply
connected. We claim that D is symmetric with respect to complex conjugation,
that is, D̄ = D. This together with D ∩ R �= ∅ will prove the lemma.

Now let us prove the claim. For any z ∈ D, T pn
t (z) → x as n → ∞. By

the symmetry of T 2
t , T

2
t (z) = T 2

t (z̄). This implies that T pn
t (z̄) → x̄ = x so that

z̄ ∈ D. �

As an immediate corollary we have the following.

Corollary 2.1. Suppose t > 1 and suppose Tt has an attracting cycle. Then any
boundary point of a component of the immediate basin of this attracting cycle on
the real or imaginary axis is either a repelling periodic point or a pre-pole of Tt.

If the function Tλ = iλ tan z, λ ∈ C \ {0} has an attracting cycle it is called
hyperbolic. It was proved in [7, 14] that the hyperbolic components of the λ-plane
are universal covering spaces of the punctured disk. This immediately implies the
following.

Proposition 2.1. The intersection of any hyperbolic component with the real line
λ = t is an interval I. Moreover, the multiplier of the attracting cycle for t ∈ I is
a monotonic function with absolute value between 0 and 1.

3. Period quadrupling: One period 1 to one period 4

In this section, we describe the period quadrupling phenomenon in T that occurs
as t increases through the point 1 (see Figures 1 and 11). That is, we see that the
attracting fixed point of Tt for t < 1 becomes parabolic at t = 1 and then repelling
for t > 1. As t increases past 1, a new period 4 attracting cycle is born.

The following lemma is easy to prove.

Lemma 3.1. For every 0 < t < 1, 0 is an attracting fixed point of Tt; there are no
other attracting cycles.

Proof. Since Tt(0) = 0 and |λ0| = |T ′
t(0)| = |it sec2(0)| = t < 1, 0 is an attracting

fixed point. The asymptotic values of Tt are −t and t. One of them, say t, is
attracted to 0; that is, Tn

t (t) → 0 as n → ∞. Since Tt is an odd function, Tn
t (−t) =

−Tn
t (t) → 0 as n → ∞ so that both t and −t are attracted to 0 under iterations of

Tt. Therefore C = {0} is the only attracting cycle for Tt, and its period is 1. �



278 TAO CHEN, YUNPING JIANG, AND LINDA KEEN

Lemma 3.2. For t = 1, 0 is a parabolic fixed point and there are no other attracting
or parabolic cycles.

Proof. Because T1(0) = 0 and λ0 = T ′
1(0) = i sec2(0) = i, 0 is a parabolic fixed

point. The asymptotic values of T1 are 1 and −1. As in the proof of Lemma 3.1,
both −1 and 1 are attracted to 0 under iterations of T1 so 0 is the only parabolic
cycle for T1 and there are no attractive cycles. �

As t increases through 1, we see a period quadrupling phenomenon in Tt: as the
single period 1 cycle becomes repelling, a new period 4 cycle is born.

Lemma 3.3. As t increases through 1, 0 becomes a repelling fixed point of Tt

and a period 4 attracting cycle forms near 0. This attracting cycle persists for all
t ∈ (1, π/2).

Proof. Since t > 1 and |λ0| = |T ′
t (0)| = t, 0 is a repelling fixed point of Tt. Now

we consider the function f2
t = T 4

t . It is an odd strictly increasing function on
(−π/2, π/2) with maximal value f2

t ((π/2)
−) = t tanh(t tan t) and minimal value

f2
t ((−π/2)+) = −t tanh(t tan t). Since t ∈ (0, π/2), f2

t ((π/2)
−) ∈ (0, π/2). Since 0

is a repelling fixed point, by elementary calculus we see that f2
t has a fixed point

p2,t ∈ (0, π/2). By symmetry, it has also a fixed point p4,t = −p2,t ∈ (−π/2, 0).
Since S(f2

t ) < 0, we see that both these fixed points have to be attracting and that
they are the only attracting fixed points in (0, π/2) and in (−π/2, 0), respectively.

The point p2,t attracts t and the point p4,t attracts −t. Since both asymptotic
values are attracted by these fixed points of f2

t , there are none available to be
attracted to any other cycle so there are no other attracting or parabolic cycles.

Let x = T 2
t (p2,t) ∈ (−π/2, 0). Since T 4

t (p2,t) = p2,t, T
4
t (x) = T 4

t (T
2
t (p2,t)) =

T 2
t (T

4
t (p2,t)) = T 2

t (p2,t) = x. Thus x is a fixed point of f2
t in (−π/2, 0). This

implies that x = p4,t. Hence the set {p2,t, p4,t} is an attracting period 2 cycle
of ft that attracts both asymptotic values, ±t. Let p3,t = Tt(p2,t) ∈ �+ and let
p1,t = Tt(p4,t) ∈ �−. Thus we see that

C4,t = {p1,t, p2,t, p3,t, p4,t}
is a period 4 cycle of Tt which attracts both asymptotic values ±t. Therefore Tt(x)
has no other attracting or parabolic cycles. �

We denote the multiplier of the cycle C4,t by

λ4,t = (T 4
t )

′(p1,t).

4. Period splitting: One period 4 to two period 2

As t increases past π/2 we see a period splitting phenomenon in T ; that is, the
attracting period 4 cycle becomes 2 attracting period two cycles (see Figures 1 and
11).

Suppose t = π/2; then the extended function fπ/2(x) satisfies

fπ
2
(π/2−) = −π

2
and fπ

2
(−π/2+) =

π

2

so that as x approaches π/2 from below or −π/2 from above, {−π/2, π/2} is a
period 2 cycle of fπ/2(x). On the other hand

fπ
2
(π/2+) =

π

2
and fπ

2
(−π/2−) = −π

2
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so that, as x approaches π/2 from above or −π/2 from below, −π/2 and π/2 are
both fixed points of fπ/2(x).

We call the pair {−π/2, π/2} (or the points −π/2 and π/2) a virtual cycle
of period 2 (or virtual fixed points) for fπ/2; we call the parameter π/2 a vir-
tual cycle parameter. Since the limit of the multiplier from either side satisfies
(f2

π/2)
′(±π/2±) = 0, we also call π/2 a virtual center.

The names virtual cycle and virtual center are justified because, like the super
attracting cycles at the centers of the hyperbolic components of the Mandelbrot
set for quadratic polynomials, where the critical value belongs to the cycle and
the multiplier is zero, the asymptotic value belongs to the virtual cycle and the
limit multiplier is zero. The virtual cycle, however, is not really a cycle because
the asymptotic value is only the “image” of infinity under Tt in a limiting sense;
it is a virtual image. In the same sense, the asymptotic value is the virtual image
of the pole under ft. See [3, 7, 14] for a more detailed discussion of virtual centers
and virtual cycle parameters; in particular, it is proved in [14] that for the tangent
family, every virtual cycle parameter is a virtual center and vice versa.

We now want to see what properties of ft are also properties of Tt as t approaches
the virtual center π/2 from either direction.

When t < π/2, Tt(t) ∈ �+ and Tt(−t) ∈ �−. Thus we have

lim
t→(π

2 )−
Tt(t) = i∞ and lim

t→(π
2 )−

Tt(−t) = −i∞.

Hence the set
C4,(π/2)− = {−π/2,−i∞, π/2, i∞}

is the limiting cycle of C4,t as t → (π/2)−. It is a period 4 cycle whose (limit)
mulitplier λ4,(π/2)− = limt→(π/2)− λ4,t is easily seen to be 0. Continuing with our
notation above, we call the limiting cycle C4,(π/2)− a virtual cycle, this time with
period 4, and the points in the set virtual periodic points.

When t > π/2, Tt(t) ∈ �− and Tt(−t) ∈ �+. Thus we have

lim
t→(π

2 )+
Tt(t) = −i∞ and lim

t→( π
2 )

+
Tt(−t) = i∞.

The two sets

C2,(π
2 )+ = {π

2
,−i∞} and C ′

2,(π
2 )+ = {−π

2
, i∞}

are virtual period 2 cycles whose respective (limit) multipliers are 0.
These virtual cycles become actual period 2 cycles for t > π/2. More precisely,

there are two fixed points of ft, p2,t ∈ (π/2, t) and p′2,t = −p2,t ∈ (−t,−π/2) (see
Figure 3).

Let p1,t = Tt(p2,t) ∈ �− and p′1,t = Tt(p
′
2,t) ∈ �+. Then we have two period 2

cycles for Tt,

C2,t = {p1,t, p2,t} and C ′
2,t = {p′1,t, p′2,t} = −C2,t.

Using the prime notation for both the derivative and the symmetric periodic
point, the multipliers of C2,t and C ′

2,t are

λ2,t = (T 2
t )

′(p1,t) and λ′
2,t = (T 2

t )
′(p′1,t).

By Propsition 2.1, for t greater than, but close to π/2, λ2,t = λ′
2,t ∈ (−1, 0) and is

monotonic in some interval to the right of π/2, (π/2, α1). Since limt→π/2+ λ2,t = 0,
λ2,α1

= −1 and C2,α1
and C ′

2,α1
are both parabolic cycles. Now C2,(π/2)+ and
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Figure 3. For t > π/2, ft has two fixed points p2,t and p′2,t.

C ′
2,(π/2)+ are the limiting cycles of C2,t and C ′

2,t, respectively. Moreover, since the

multiplier function λ4,t of the cycle C4,t for t < π/2 has limit 0 at π/2−, it can
be extended continuously for t > π/2 by setting λ4,t = λ2,tλ

′
2,t. It thus becomes a

continuous function taking values from 1 at t = 1 to 0 at t = π/2 and then back to
1 at α1 (see also [13–15]).

This proves the following.

Lemma 4.1. There exists α1 ∈ (π/2, π) such that when t ∈ (π/2, α1), 0 is a
repelling fixed point of Tt and Tt has two period 2 attracting cycles, C2,t and C ′

2,t =
−C2,t. At α1, C2,α1

and C ′
2,α1

are period 2 parabolic cycles both of whose multipliers
are −1. For all t ∈ (π/2, α1], the cycle C2,t attracts the asymptotic value t and the
cycle C ′

2,t attracts the asymptotic value −t; Tt has no other attracting or parabolic
cycles.

5. Period doubling and renormalization

In this section, we will see that as t increases through α1, Tt undergoes a standard
period doubling phenomenon. Because the multipliers of the parabolic cycles of
Tα1

(parabolic fixed points of fα1
) are −1 and the map ft has negative Schwarzian

derivative, both period 2 attracting cycles become period 2 repelling cycles and, at
the same time, two new period 4 attracting cycles with positive multiplier are born.
Thus, “the period is doubled” and as t increases, it moves into a new hyperbolic
component, where, by Proposition 2.1, the multipliers of the new doubled cycles
decrease monotonically to 0. The next lemma describes what happens at the right
endpoint β1 of this interval where the multipliers become zero. In particular, the
discussion shows that α1 is the only point in the interval (π/2, β1) where there are
parabolic fixed points of ft. This is the first step of a renormalization process.

Lemma 5.1. There exists β1 ∈ (α1, π) such that for t ∈ (α1, β1), 0 remains a
repelling fixed point of Tt, the period 2 cycles C2,t and C ′

2,t persist, but they are now
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repelling and Tt has two new period 4 attracting cycles:

C4,t = {p4,1,t, p4,2,t, p4,3,t, p4,4,t}
with p4,4,t < p4,2,t ∈ (π/2, π), p4,3,t > p4,1,t ∈ �−; and

C ′
4,t = −C4,t = {p′4,1,t, p′4,2,t, p′4,3,t, p′4,4,t}

with p′4,2,t < p′4,4,t ∈ (−π,−π/2), p′4,3,t < p′4,1,t ∈ �+ (see Figure 4). The map Tt

has no other attracting or parabolic periodic cycles. The multipliers λ4,t and λ′
4,t of

these new period 4 cycles are equal, real, positive and decrease monotonically from
1 to 0 as t increases from α1 to β1.

3'

1'

4'2'

3

1

4 2

Figure 4. Two period 4 attracting cycles C4,t (red) and C ′
4,t (green).

Proof. For t ∈ (π/2, π], let at ∈ (0, π/2) and bt ∈ (π/2, π) be pre-poles such that
ft(at) = −π/2 and ft(bt) = π/2. Then −at ∈ (−π/2, 0) and −bt ∈ (−π,−π/2) are
also pre-poles with ft(−at) = π/2 and ft(−bt) = −π/2. Moreover, by symmetry
and periodicity, at + bt = π. Let It = [−bt,−at] ∪ [at, bt] and consider f2

t |It . It is
strictly increasing and continuous on the following set of intervals (see Figure 5):

f2
t : [−bt,−π/2] → [−t, t tanh(t tan t)];

f2
t : [−π/2,−at] → [−t tanh(t tan t), t];

f2
t : [at, π/2] → [−t, t tanh(t tan t)];

and
f2
t : [π/2, bt] → [−t tanh(t tan t), t].

When t = α1, p2,α1
and p′2,α1

= −p2,α1
are parabolic fixed points of ft and

both have multiplier −1. Since the Schwarzian derivative of ft is negative, we see
that for t > α1, but close to it, both of these fixed points are repelling and near
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Figure 5. For t = 2.84 > α1, ft has repelling fixed points p2,t
and p′2,t = −p2,t and f2

t has attracting fixed points {p4,4,t, p4,2,t}
and {−p2,4,t,−p4,4,t}. ft is blue and f2

t is mustard yellow.

each an attracting period 2 cycle appears. The new cycles are {p4,2,t, p4,4,t} and
{p′4,2,t, p′4,4,t} and they are arranged as follows:

−π < p′4,2,t < p′2,t < p′4,4,t < −π/2 < 0 < π/2 < p4,4,t < p2,t < p4,2,t < π.

Now p4,3,t = Tt(p4,2,t) lies above p4,1,t = Tt(p4,4,t) in �− and

(8) C4,t = {p4,1,t, p4,2,t, p4,3,t, p4,4,t}
is a period 4 attracting cycle of Tt. Similarly p′4,3,t = Tt(p

′
4,2,t) lies below p′4,1,t =

Tt(p
′
4,4,t) in �+ and

(9) C ′
4,t = {p′4,1,t, p′4,2,t, p′4,3,t, p′4,4,t}

is another period 4 attracting cycle of Tt.
We now want to show that as t increases, it reaches a parameter β1 where the

cycles C4,t and C ′
4,t become virtual cycles of period 4; that is, as t tends to β1

from below, the asymptotic values tend to pre-poles of Tt, the limit cycles contain
poles and the multipliers of the cycles have limit 0. To find β1, we consider the
continuous function

c2(ft) = −t tanh(t tan t) = f2
t ((π/2)

+),
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defined on in the interval (π/2, π]. Note that c2(ft) is the image of the asymptotic
value t under ft. In §4 we saw that as a limit, the asymptotic value is the virtual
image of the pole π/2 under ft; that is, ft(π/2

+) = t. Thus, for example, we can
think of c2(ft) = f3

t (b
−
1,t) as the “virtual image of a pre-pole” of ft. We claim

that if t ∈ (π/2, α1), then c2(ft) > π/2. To see this is so, note that for t in this
interval, the fixed point p2,t of ft (and f2

t ) is attracting and greater than π/2. Thus,
0 < (f2

t )
′(x) < 1 for π/2 < x < p2,t so that by the mean value theorem

p2,t − c2(ft) = f2
t (p2,t)− f2

t (π/2) < p2,t − π/2

and therefore c2(ft) > π/2.
Notice that c2(fπ) = 0. Thus, by the intermediate value theorem, there must

be a number β1 in (α1, π) satisfying c2(fβ1
) = π/2; that is, at t = β1, the image of

the asymptotic value is a pole and is therefore a point in a virtual cycle. A priori,
there may be more than one solution, but by the transversality of Theorem 3, c2 is
strictly monotonic at β1 so the solution is locally unique.

Both π/2 and −π/2 are fixed points of f2
β1

and the limit of the multiplier at each
of these fixed points is 0. Thus

C4,β1
= {β1, p4,3,β1

, π/2,−i∞}
and

C ′
4,β1

= {−β1, p
′
4,3,β1

,−π/2, i∞}
are virtual cycles of period 4. By symmetry the multipliers of the cycles C4,t and
C ′

4,t are equal. By Proposition 2.1 they decrease monotonically from 1 to 0 as t
increases from α1 to β1. In this interval, each of the cycles C4,t and C ′

4,t attracts
one asymptotic value so Tt has no other attracting or parabolic periodic cycles.
This proves the lemma. �

This lemma gives us the existence of β1. The uniqueness of β1 in the interval
(α1, α2) follows from Corollary 10.2.

5.1. The first renormalization. We can now define the first renormalization
of the function ft and to do so we introduce two auxiliary functions. We set
c1(ft) = ft((π/2)

+) = t, the positive asymptotic value and as above, we set c2(ft) =
ft(t) = f2

t ((π/2)
+), the image of the asymptotic value under ft. It is also the virtual

image of the pole of f2
t and thus the positive asymptotic value of f2

t .
Let I1,t = [−b1,t,−a1,t] ∪ [a1,t, b1,t] = I−1,t ∪ I+1,t denote the pair of intervals in

Lemma 5.1. We introduce the index 1 for future reference.

Definition 5.1. We say that ft (or Tt) is renormalizable if the map f2
t has a unqiue

pre-image of each of the poles of ft, ±π/2, in each of the intervals composing I1,t.
If this is true, we call the map

Rt = f2
t |I1,t = T 4

t |I1,t
the first renormalization of ft (or Tt). The poles of Rt are ±a1,t,±b1,t and the
asymptotic values ±t of ft are their virtual images; the limits Rt(π/2

±) are the
asymptotic values of Rt.

By Lemma 5.1, since c1(ft) = t > π/2 and t > β1 implies c2(ft) < π/2, Rt is
defined for t in some interval to the right of β1. (See Figure 6.) As t approaches π,
Rt(π/2

−) = Rt(π/2
+) = 0 so we see that Rt is defined for all t ∈ (β1, π).

This is the first step of a renormalization process for tangent maps that will be
defined in §11. The endpoints of the intervals of I1,t are pre-poles of ft and hence
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Figure 6. The first renormalization: t = 2.99 > β1 ≈ 2.94. (a1 =
a1,t, b1 = b1,t), ft is mustard yellow and f2

t is blue.

poles of Rt; each is divided into two by a pole of ft. As we saw above, Rt = f2
t

maps each subinterval of I1,t continuously onto either [c2(ft), c1(ft)] or its negative.
Since c1(ft) = t > π/2 and c2(ft) < π/2, these image intervals each contain a pole
of Rt, (±b2,t). Otherwise said, in It, f

2
t is monotonically strictly increasing with

discontinuities at ±π/2 and, just as the renormalized quadratic map is unimodal
where it is defined, Rt is “tangent-like” on I1,t (see Figure 6). To make the analogy
complete, we should make an affine conjugation so that Rt is defined on [π,−π]
again, but to do this would make the notation even more complicated than it is.

The following remark is important for the discussion in the next three sections
of the period merging phenomenon.

Remark 5.1. In the family of quadratic polynomials, there is a notion of a full family
for a family of renormalizations (see [12]). Roughly speaking, this means that each
renormalization is defined for an interval of parameters and these intervals nest
as further renormalizations are made. This is also so for renormalizations of the
tangent family, but because we don’t make the affine conjugation, the parameter
intervals all have the same right endpoint.

6. The first cycle merging

In the quadratic family, as the polynomials pass through the center of a hyper-
bolic component where the critical point belongs to the attracting cycle and the
multiplier is zero, the attracting cycle persists. By contrast, in the tangent family
Tt, as the parameter t passes through the parameter β1 described in Lemma 5.1
where the limit multiplier is zero and the limit function has two virtual cycles of
period 4, we will see that the two period 4 attracting cycles merge into one period
8 attracting cycle. This is the first of a sequence of “cycle merging phenomena”
that occur for this family.
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6.1. Virtual cycles and virtual centers. In §4 we saw that at t = π/2 the
asymptotic values could be thought of as part of a virtual cycle. Here we give the
general definition of virtual cycles and virtual cycle parameters of arbitrary periods.

In this paper we always take N to be of the form 2n but the definitions make
sense for any N .

Definition 6.1. If, for some N ≥ 2 and k ∈ Z, TN−2
t (t) = kπ + π/2, then t is

called a virtual cycle parameter. If we want to emphasize the value of N , we call
it a virtual cycle parameter of period N . For such a t, we call the orbits of the
asymptotic values virtual cycles.

Suppose t is a virtual cycle parameter of period N . Set p2,t = t and for i =
2, · · · , N − 2, let pi+1,t = T i

t (p2,t). To define p1,t so that Tt(p1,t) = p2,t, we must
take limits. Since

lim
y→±∞

Tt(iy) = ∓t

we take p1,t = −i∞. Next since

lim
x→±(kπ+π/2)

Tt(x) = Tt(kπ + π/2)± = ∓i∞,

if we set pN,t = (kπ+π/2)+, then pN+1,t = −i∞ = p1,t, and we have a virtual cycle
of period N containing the asymptotic value t. The other asymptotic value lies in
a symmetric virtual cycle of period N and we denote this pair of virtual cycles by

CN,t = {p1,t = −i∞, p2,t = t, · · · , pN−1,t, pN,t = (kπ + π/2)+}
and

C ′
N,t = {p′1,t = i∞, p′2,t = −t, · · · , p′N−1,t = −pN−1,t, · · · , p′N,t = (−kπ−π/2)−}.
If, however, we set pN,t = (kπ + π/2)−, we get pN+1,t = i∞ = −p1,t. Now, as

a limit pN+2,t = −t, and setting pN+1+i,t = T i
t (pN+1,t) for i = 2, . . . , N − 1, we

obtain a single virtual cycle of period 2N that contains the orbits of both asymptotic
values. We denote this by

C2N,t = {p1,t = −i∞, p2,t = t, · · · , pN−2,t, pN,t = (kπ + π/2)−, p′N+1,t = i∞,

p′N+2,t = −t, · · · , p2N−1,t, p2N,t = (−kπ − π/2)+}.

Remark 6.1. The multiplier of CN,t is given by the formula

λN,t(CN,t) = (TN
t )′(pi,t) = (it)N

N∏
k=1

sec2(pk,t) = 0.

Note that for z ∈ C, sec(z) �= 0.
If we set

T ′
t(±i∞) = lim

y→±∞
(it) sec2(iy) = 0,

we can define the multiplier of the virtual cycle as a limit, λN,t(CN,t) = 0. Similarly,
as limits, we have

λN,t(C2N,t) = λN,t(CN,t)λN,t(C
′
N,t) = 0.

Remark 6.2. Virtual cycle parameters and virtual centers were first introduced
in [13–15]; it was proved there that for the family Tt, every hyperbolic compo-
nent has a virtual center and every virtual cycle parameter is the virtual center
of two distinct hyperbolic components tangent at the virtual center. This justifies
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calling the virtual cycle parameter a virtual center. See [3, 7, 14] for more general
discussions of virtual cycle parameters and virtual centers.

6.2. The first cycle merging. Now we apply the discussion above to the period
4 cycles in (8) and (9). For t ∈ (α1, β1), as t approaches β1, the cycles C4,t and
C ′

4,t approach cycles C4,β1
and C ′

4,β1
as follows:

lim
t→β−

1

Tt(p4,4,t) = −i∞ and lim
t→β−

1

Tt(p4,3,t) = (π/2)+

and

lim
t→β−

1

Tt(p
′
4,4,t) = +i∞ and lim

t→β−
1

Tt(p
′
4,3,t) = (−π/2)−.

Thus in the limit we have two symmetric virtual cycles of period 4,

C4,β1
= {−i∞, p4,2,β1

, p4,3,β1
,
π

2
}

and

C ′
4,β1

= {i∞, p′4,2,β1
, p′4,3,β1

,−π

2
},

whose multipliers are 0.
By Corollary 10.2 and Theorem 3, there is a unique solution β1 of c2(ft) = π/2

in (α1, π) and c′2(ft)|β1
�= 0. Thus

lim
t→β+

1

Tt(p4,4,t) = +i∞ and lim
t→β+

1

Tt(p4,3,t) = (π/2)−

and

lim
t→β+

1

Tt(p
′
4,4,t) = −i∞ and lim

t→β+
1

Tt(p
′
4,3,t) = (−π/2)+.

We see that the continuations of the period 4 virtual cycles C4,1,β−
1

and C4,2,β−
1

exist as we approach β1 from below and we denote them by C4,1,β−
1

and C4,2,β−
1
.

Since c′2(ft)|β1
�= 0, when we take the limit as t approaches β1 from above, the same

set of points are part of a single period 8 cycle whose multiplier tends to 0,

C8,β+
1
= {p8,1,β+

1
= −i∞, p8,2,β+

1
= p4,2,β−

1
= β1,

p8,3,β+
1
= p4,3,β−

1
, p8,4,β+

1
= (π/2)−, p8,5,β+

1
= i∞,

p8,6,β+
1
= −β1, p8,7,β+

1
= p′

4,3,β−
1

, p8,8,β+
1
= (−π/2)+}.

(See Figure 7.)
The cycle C8,β+

1
persists as t increases beyond β1. Thus by Proposition 2.1 we

have the following.

Lemma 6.1. There exists α2 in (β1, π) such that for t ∈ (β1, α2), 0 is a repelling
fixed point and C2,1,t and C2,2,t are repelling period 2 cycles of Tt. In addition, Tt

has one attracting period 8 cycle:

C8,t = {p8,1,t, p8,2,t, p8,3,t, p8,4,t, p8,5,t, p8,6,t, p8,7,t, p8,8,t},
where

−π < p8,6,t < −π/2 < p8,8,t < 0 < p8,4,t < π/2 < p8,2,t < π

and

−i∞ < p8,1,t < p8,3,t < 0 < p8,7,t < p8,5,t < i∞.

The map Tt has no other attracting or parabolic cycles.
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Figure 7. Period merging at β1 from two period 4 cycles to one
period 8 cycle.

It follows from Remark 6.1, that the multipliers of the cycles C4,t and C ′
4,t tend

to 0 as t tends to β1 from either side. The multiplier of C8,t is the product of the
formulas for the derivatives at the points in C4,t and C ′

4,t so it has a limit of 0 at
β1. This implies that C8,t is an attracting cycle attracting both asymptotic values
and Tt can have no other attracting or parabolic cycles. Beyond β1 the multiplier
is monotone strictly increasing so this attracting property persists until t reaches
some α2 where λ8,α2

= 1. This lemma gives us the existence of α2. The uniqueness
of α2 follows from Corollary 10.3.

7. The first cycle doubling

In this section we will prove that the single period 8 parabolic cycle for t = α2

“doubles” into two period 8 attracting cycles as t increases past α2. This phenome-
non is somewhat different from the period doubling we observed for t = α1 because
the multiplier of the parabolic cycle in that case was −1 and in this case it is +1.
It therefore needs to be described differently and hence we give it a different name,
the cycle doubling phenomenon. We will see that for t ∈ (β1, t∞), where t∞ < π is
to be defined, there is no more period doubling, but there is a sequence of “cycle
doublings” that starts with α2.

The following lemma says that when t > β1, the multiplier of any parabolic cycle
is +1 and therefore, Tt does not undergo a standard period doubling.

Lemma 7.1. If t > 1 the multiplier of any period 4n attracting or parabolic cycle
of Tt is positive.

Proof. Since Tt maps the real line to the imaginary line and vice versa, and since
the two asymptotic values are real, it follows that any attracting or parabolic cycle
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is contained in the union of the real and imaginary axes. Suppose the cycle is
p1, p2, · · · , p4n. Without loss of generality, we may assume p1 is real. Then p2k−1

is real and p2k is pure imaginary for all k = 1, · · · , 2n. Now the multiplier of the
cycle is

(T 4n
t )′(p1) = (it)4n

2n∏
k=1

sec2(p2k−1) sech
2(ip2k) > 0.

�
The next lemma is important for our proof of Part d) in Theorem 1.

Lemma 7.2. Suppose t > 1 and suppose Tt has an attracting or parabolic cycle.
Then there exists an rt > 0 such that the intervals (−i∞,−rti) and (rti, i∞) are in
the intersection of the immediate basin of this cycle with �− and �+, respectively.

Proof. Since t > 1, 0 is a repelling fixed point. If Tt has an attracting or parabolic
cycle, then either it is a symmetric cycle and both its asymptotic values ±t lie the
immediate basin of the cycle or there are two symmetric cycles and one asymptotic
value is in the immediate basin of each. Assume for the sake of the argument there
are two symmetric cycles; the argument in the other case will be clear. Since t is
in the immediate basin, by Lemma 2.2, there is an s > 0 such that the interval
(s, t) is in the immediate basin of the cycle and the periodic point of the cycle is
either inside the interval or is the point s. Now the preimage of [s, t) under Tt is
(−i∞,−rti] ⊂ �− for some rt > 0 and it contains a point of the cycle. The same
argument says that the interval (−t,−s] and its preimage (rti, i∞) ⊂ �+ under Tt

are both in the immediate basin of the symmetric cycle. Therefore, all four of these
intervals belong to the intersection of the immediate basin of the cycle with R−,
�−, R+, and �+. �

We also need the following general result from complex dynamics about parabolic
cycles. The proof uses standard techniques so we defer it to the appendix.

Lemma 7.3. Suppose f(z) = z + anz
n + o(zn) is an analytic function defined on

some neighborhood of 0 ∈ C.

(1) Suppose λ lies inside a small disk, inside and tangent to the unit circle at
the point 1. Then gλ(z) = λf(z) has one attracting fixed point 0 and (n−1)
repelling fixed points counted with multiplicity in a small neighborhood of 0.

(2) Suppose λ lies inside a small disk, outside and tangent to the unit circle at
the point 1. Then gλ(z) = λf(z) has one repelling fixed point 0 and (n− 1)
attracting fixed points counted with multiplicity in a small neighborhood of 0.

The next lemma provides the first instance of cycle doubling.

Lemma 7.4. There exists β2 in (α2, π), such that for t ∈ (α2, β2), 0 remains a
repelling fixed point of Tt and C2,t, C

′
2,t remain period 2 repelling cycles of Tt, the

merged period 8 parabolic cycle C8,t at α2 becomes a repelling cycle and a new pair
of period 8 attracting cycles are born.

Proof. We consider the period 8 parabolic cycle C8,α2
. As the limit of cycles for t

in the interval (β1, α2), it attracts both asymptotic values ±α2. Since its multiplier
is 1, we cannot prove the lemma by the standard period doubling argument that
we used in §4. Instead, we will show that there are exactly two attracting petals at
each point in the cycle C8,α2

. Then we can apply Lemma 7.3 and Corollary 10.3
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to complete the proof. This is equivalent to showing that each point in the cycle is
the common boundary point of two distinct components in its immediate basin of
attraction. By Lemma 7.2, it will suffice to show there are a pair of intervals that
belong to distinct components of the immediate basin meeting at each point in the
cycle. Recall that because the immediate basin must contain the forward orbit of
at least one asymptotic value and that these orbits lie in the real and imaginary
axes, there are at most two distinct components at each point.

For readability, we drop the index 8 in the notation for the periodic points of
the cycle. Then, following our convention (see Figure 7), p1,α2

denotes the lowest
point on �− and p5,α2

the highest point on �+ in the cycle C8,α2
. Since Tα2

(�−) =
(0, α2), we have Tα2

((−i∞, p1,α2
)) = (p2,α2

, α2). The interval (p2,α2
, α2) is therefore

contained in the intersection of an attracting petal lying to the right of p2,α2
with

�+. Pulling this petal back to p1,α2
by Tt, we have a petal containing (−i∞, p1,α2

).
By symmetry we obtain an attracting petal at p5,α2

containing (p5,α2
, i∞) and one

whose intersection with �− is an interval to the left of p6,α2
containing (−α2, p6,α2

).
Since ft is a monotonic strictly decreasing piecewise continuous function on the

real line, f2
t is a monotonic strictly increasing piecewise continuous function. There-

fore if we apply ft to an interval in its region of continuity an even number of times,
the image has the same orientation as the original. This implies that when we apply
f2
t = T 4

t to the petal lying to the right of p2,α2
, we get an attracting petal at p6,α2

which contains an interval to its right in �−. Since p6,α2
is a parabolic periodic

point, it is not in the Fatou set, so the intervals on each side of it are in distinct
petals. Since there are at most two attracting petals at each point of C8,α2

there
are exactly two. We can thus use the local coordinate at each point,

T 8
t (z) = z + a3z

3 + o(z3), a3 �= 0,

and apply Lemma 7.3 and Corollary 10.3 to deduce that when t > α2, the cycle C8,t

is repelling and there are two distinct period 8 attracting cycles C8,t,1 and C8,t,2

near this period 8 repelling cycle. By Proposition 2.1, these attracting cycles persist
through some interval (α2, β2) in which, as t increases, their multipliers decrease
from 1 to 0; at β2 the multiplier is 0. As t approaches β2 from below the point
p1,t increases and limits at i∞ and the point p5,t = −p1,t decreases and limits at
−i∞. �

We will discuss β2 further in the next section.

8. The second period merging and renormalization

The second period merging phenomenon is somewhat different from the first one
so we show how it works in this section. In the previous section, we saw that as t
increases through α2, two new period 8 attracting cycles form. These persist until t
reaches a value β2 where they become virtual cycles. It follows from the discussion
of renormalization and Theorem 3 that cycle merging occurs at β2.

Let us recall some of the notation we used for the first renormalization. We
started with the full family of tangent maps,

{ft : [−π, π] → [−t, t]}πt=π/2

and obtained the full family of tangent-like maps

{Rt = f2
t : I1,t → [−t, t tanh(t tan t)] ∪ [−t tanh(t tan t), t]}πt=β1
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where
I1,t = [−b1,t,−π/2] ∪ [−π/2,−a1,t] ∪ [a1,t, π/2] ∪ [π/2, b1,t]

and ±a1,t,±b1,t are pre-poles of ft of order 2 closest to ±π/2. Then we introduced
the notation

c1(ft) = ft((π/2)
+) = t and c2(ft) = −f2

t ((π/2)
+) = −t tanh(t tan t) > 0.

Note that c1(ft) is the asymptotic value of ft and c1(Rt) = Rt(π/2
+) = c2(ft) is

the asymptotic value of Rt.

8.1. The second renormalization. For each t ∈ (β1, π), c2(ft) < π/2. This
implies there is a unique solution b2,t of Rt(z) = π/2 in [π/2, b1,t] and another
solution −a2,t in [−π/2,−a1,t]. Using the symmetry about 0 we find solutions
−b2,t and a2,t of Rt(z) = −π/2. By periodicity we see that a2,t+ b2,t = π. We now
apply Definition 5.1 to obtain the renormalization R2

t of Rt.
The points ±a2,t,±b2,t are poles of R2

t = f4
t and are points of discontinuity;

they divide the intervals of I1,t into subintervals where R2
t is continuous. We

consider those that have the pole ±π/2 as an endpoint and, taking advantage of
the symmetry, we label them as follows:

I2,t = [−b2,t,−π/2] ∪ [−π/2,−a2,t] ∪ [a2,t, π/2] ∪ [π/2, b2,t].

Below, for the sake of readability we suppress the dependence on t and relabel
the subintervals of I1,t and I2,t as

I1,t = I11− ∪ I12− ∪ I12+ ∪ I11+,

I2,t = I21− ∪ I22− ∪ I22+ ∪ I21+.

We now set c2(Rt) = R2
t (π/2

+) = |f4
t (π/2

+)|. It denotes the positive asymptotic
value of R2

t . Because R2
t is monotonic strictly increasing, c2(Rt) > c1(Rt). With

this notation, the second renormalization R2
t (see Figure 8) is:

R2
t = f4

t : I22− → [c1(Rt), c2(Rt)],

R2
t = f4

t : I21− → [−c2(Rt),−c1(Rt)],

R2
t = f4

t : I21+ → [c1(Rt), c2(Rt)],

and
R2

t = f4
t : I22+ → [−c1(Rt),−c2(Rt)].

Arguing as we did in the proof of Lemma 5.1, we see that for all t to the right of
β1, c1(Rt) < π/2. Also, c1(Rt) is continuous and decreases monotonically to 0 so by
the intermediate value theorem there is a parameter β2 in the interval (α2, π) such
that c1(R(ft)) = a1,β2

, where a1,t is an endpoint of one of the intervals on which
R(ft) is defined. At this β2, we have c2(R(fβ2

)) = |π/2|; that is, the asymptotic
value of Rβ2

is a pole. Again, as we saw in the proof of Lemma 5.1, for t ∈ (β1, β2)
we have c2(Rt) < π/2. Moreover, by Theorem 3, for t in some interval to the right
of β2, c2(Rt) > π/2.

Now we examine the behavior of the periodic cycles (considered as cycles of Tt)
to see how this merging occurs. As t approaches β2, the asymptotic values become
pre-poles and β2 is a virtual cycle parameter. When t approaches β2 from below,
the period 8 attracting cycles become symmetric virtual cycles of the same period
(see Figure 9),

C8,β−
2
=

{
i∞, −β2, Tβ2

(−β2), · · · , T 5
β2
(−β2), π/2

}
,
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Figure 8. Second renormalization for t = 3.085. ft is mustard
yellow, Rt is blue, and R2

t is green.

and

C ′
8,β−

2
=

{
− i∞, β2, Tβ2

(β2), · · · , T 5
β2
(β2), −π/2

}
,

C8,β−
2
=

{
i∞, −β2, Tβ2

(−β2), · · · , T 5
β2
(−β2), π/2.

}
.

Thus we see that β2 is a parameter that satisfies Lemma 7.4.
It follows from Corollary 10.2 that taking limits as t approaches β2 from above,

we have

lim
t→β+

2

T 7
t (−t) = −i∞ and lim

t→β+
2

T 7
t (t) = i∞.

Thus, as a limit from above, T 8(β2) = −β2. This implies that at t = β+
2 , the two

period 8 virtual cycles C8,β−
2
and C ′

8,β−
2

merge into one symmetric period 16 virtual

cycle (see Figure 10),

C16,β+
2
=

{
i∞, −β2, Tβ2

(−β2), · · · , T 5
β2
(−β2), π/2, −i∞,

β2, Tβ2
(β2), · · · , T 5

β2
(β2), −π/2

}
.

Taking the limit from the right, the multiplier of the cycle C16,β+
2
is 0.

Applying Proposition 2.1, we see that as t increases beyond β2 there is an interval
(β2, α3) in which the cycle C16,β+

2
is an attracting cycle C16,twhose multiplier varies

from 0 to 1. Thus β2 is uniquely defined in the interval (α1, α2).
This discussion constitutes a proof of the following lemma asserting the existence

of α3. The uniqueness of α3 follows from Corollary 10.3.

Lemma 8.1. There exists an α3 in (β2, π) such that for t ∈ (β2, α3), 0 is a repelling
fixed point and the pair of virtual cycles C8,β−

2
and C ′

8,β−
2

of Tβ2
have merged into

one attracting cycle

C16,t = {p16,1,t, p16,2,t, · · · , p16,9,t, p16,10,t, · · · , p16,16,t}.
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Figure 9. Two period 8 virtual cycles
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Figure 10. One period 16 attracting cycle

(See Figure 10.) Following our convention, p16,1,t is the lowest point of the cycle
in �−, p16,2,t is the largest in R+, p16,9,t is the highest in �+, and p16,10,t is the
smallest in R

−. The map Tt has no other attracting or parabolic cycles.

As we saw for Rt, as t approaches π, R2
t (π/2

−) = R2
t (π/2

+) = 0 so we see that
Rt is defined for all t ∈ (β1, π).
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9. General pattern of cycle doubling and merging

Now that we have seen the period quadrupling, period splitting, and period dou-
bling phenomena for low periods and analyzed the first examples of cycle doubling
and cycle merging, we are ready to state and prove our first main result, Theo-
rem 1, which gives the general pattern of cycle doubling and cycle merging. To
make the statement comprehensive, we include the period doubling case, Part a)
which occurs for n = 1 and was proved in Lemma 5.1.

Theorem 1. There are two sequences interleaved of parameters {αn}∞n=1 and
{βn}∞n=1 for the tangent family

α1 < β1 < α2 < β2 < α3 < · · ·

< βn < αn < · · · < π,

and they correspond to the following bifurcation phenomena:

a) (Period doubling): At t = α1, Tt has 2 parabolic cycles of period 2. For
t ∈ (α1, β1), the analytic continuation of the cycles are repelling and Tt has
two new symmetric attracting cycles of period 4; it has no other attracting
or parabolic cycles.

b) (Virtual periodic cycles): For n ≥ 1, the parameters βn are virtual cycle
parameters.
(i) As t → β−

n , the two symmetric period 2n+1 attracting cycles limit onto
virtual cycles of the same period:

C2n+1,β−
n
=

{
− i∞, βn, Tβn

(βn), · · · , T 2n+1−2
βn

(βn), (−1)n+1π

2

}

and

C ′
2n+1,β−

n
=

{
i∞, −βn, Tβn

(−βn), · · · , T 2n+1−2
βn

(−βn), (−1)n
π

2

}
.

(ii) As t → β+
n , a single symmetric attracting cycle of period 2n+2 limits

onto a virtual cycle of the same period:

C2n+2,β+
n
=

{
− i∞, βn, Tβn

(βn), · · · , T 2n+1−1
βn

(βn), (−1)n+1π

2
, i∞,

−βn, Tβn
(−βn), · · · , T 2n+1−3

βn
(−βn), (−1)n

π

2

}
.

c) (Cycle merging): For t ∈ (βn, αn+1), there is a single attracting cycle
of period 2n+2. It is the analytic continuation of the virtual cycle C2n+2,β+

n

and is given by

C2n+2,t =
{
p1,t, p2,t · · · p2n+2,t

}
,

where p1,t is the lowest point of the cycle on �−, p2,t is the rightmost on R+,
p2n+1+1,t is the highest on �+, and p2n+1+2,t is the leftmost R−. This cycle
is the only attracting periodic cycle of Tt and its multiplier goes from 0 to 1
as t moves from the lower to the upper endpoint of the interval (βn, αn+1).

d) (Parabolic periodic cycles): As t approaches αn+1 from below, the limit
of the attracting period 2n+2 cycle C2n+2,t is a parabolic cycle C2n+2,αn+1

of the same period; its multiplier is 1 and Tt has no other attracting or
parabolic periodic cycle.
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e) (Cycle doubling): As t moves into the interval (αn+1, βn+1), the par-
abolic period 2n+2 cycle C2n+2,αn+1

bifurcates into two attracting periodic
cycles of the same period: that is, its analytic extension becomes repelling
but two new attracting cycles of the same period, C2n+2,t and C ′

2n+2,t ap-

pear. The multipliers of these new cycles are equal and go from 1 to 0 as
t increases through the interval. Tt has no other attracting or parabolic
periodic cycle for t ∈ (αn+1, βn+1).

f) (Renormalization): For all t ∈ (βn, π), the renormalizations Rn
t = f2n

are defined on a symmetric quadruple of intervals In,t ⊂ In−1,t bounded by
pre-poles of order n− 1 and the poles ±π/2, respectively. The renormalized
functions are “tangent-like” in that in each interval they are continuous
and strictly increasing with horizontal asymptotes.1

α1

π
2

β1

α2

2 cycles per 2 2 cycles per 1

1 per 4

2 cycles per 1

2 per 2

1

Figure 11. This is a computer generated picture illustrating The-
orem 1. The coloring is determined by the period of the cycle at-
tracting the asymptotic value t. Thus regions with one cycle of
period N have the same color as regions with two cycles of period
N . The color coding is: period 1–yellow; period 2–aqua; period
3–red; period 4–khaki; . . . , period 8–bright pink; . . . . The range
is {|�t| < 3.15, 0 < �t < 3.15}.

1By abuse of notation, we also call Rn
t a renormalization of Tt.
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Proof of Theorem 1. The proof of the existence of the αn and βn is by induction
on n. The uniqueness is proved in Corollaries 10.2 and 10.3.

In §4–§8 we saw that Parts b)-f) hold for n = 1, 2. We prove now that if the
theorem holds for some n, then it holds for n + 1. We show this first for Parts d)
and e).

We assume the theorem holds for t ≤ βn and consider t in the interval (βn, αn+1).
By the induction hypothesis, the virtual cycle at t = β+

n has period 2n+2, is symmet-
ric, and so attracts both asymptotic values, and has multiplier 0. By Lemma 7.1,
Corollary 10.2, and Proposition 2.1, its analytic continuation is an attracting cycle
of the same period whose multiplier is a positive strictly increasing function of t
for t > βn. Hence, for some αn+1 > βn, the multiplier of the cycle has reached 1;
thus Tαn+1

has a single symmetric parabolic cycle C2n+2,αn+1
of period 2n+2 whose

multiplier is 1. The uniqueness of αn+1 follows from Corollary 10.3. This shows
Part d) holds for n+ 1.

4

3'

1

9'

13

5'

7'

15

11'

3

11

15'

7

5

13'

9

1'

12' 16 8' 6' 14 10' 24'1216'8614'102'

Figure 12. Two period 16 attracting cycles

To show that Part e) holds for n+1 we start with the parabolic cycle C2n+2,αn+1
.

As the limit of a symmetric cycle for t in the interval (βn, αn+1), it attracts both
asymptotic values ±αn+1. Since its multiplier is +1, we need to use the argument
of §7. Thus, in order to prove that as t increases through αn+1, the cycle becomes
repelling and a new pair of period 2n+2 attracting cycles appear, we need to show
that there are exactly two attracting petals at each point in the parabolic cycle
C2n+2,αn+1

; then we can apply Lemma 7.3. This follows directly from the argument
in the proof of Lemma 7.4, with 2 replaced by n so that α3 becomes αn+1, C8,α3

becomes C2n+2,αn+1
and so on (see Figure 12).

Now we use the renormalization process to prove that Parts b), c), and f) hold
for n + 1. That is, we assume that for all t ∈ (βn, π) the nth renormalization Rn

of ft is defined and that βn is a virtual cycle parameter on the left boundary of an
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interval in which ft has a single attracting period cycle of period 2n+2 attracting
both asymptotic values.

Recall that in §6 where n = 1, the asymptotic value β1 was the virtual image of
−i∞ under Tβ1

whereas in §8 where n = 2, the asymptotic value β2 was the virtual
image of +i∞ under Tβ2

. This is because in the intervals where the function ft and
its renormalization are both defined one is positive and one is negative. Below, we
see that the same thing holds as we repeat the renormalization process; βn+1 is the
virtual image of (−1)n+1i∞ under Tβn+1

.
We used the renormalized function Rt and R2

t and the auxilliary functions
c1(ft) = ft(π/2

+), c2(ft) = f2
t (π/2

+) and c1(Rt) = Rt(π/2
+), c2(Rt) = R2

t (π/2
+)

to find the points β1 and β2. There are analogous functions for Rn
t which we define

below. The functions are defined as limits and the signs vary depending on the
direction of the limit and the parity of n so we will make some conventions about
sign in the definitions below.

Define cm(ft) = |fm(π/2+)|, m = 1, 2, . . .; then ±cm(ft) are the points in the
orbit of the asymptotic value t of ft. Inductively define

cm(Rt) = |Rm
t (π/2+)| = |f2nm

t (π/2+)| = c2nm(ft).

Set R0
t = ft and a0,t = b0,t = π/2; then Rn(Tt) is defined inductively on a set

of intervals In,t = I−n1 ∪ I−n2 ∪ I+n2 ∪ I+n1, each bounded by the pre-pole ±an−1,t or
±bn−1,t of Rn−1(Tt) closest to ±π/2, and each containing a pre-pole ±an,t or ±bn,t
of Rn(Tt), as follows:

Rn
t = Rt ◦ Rn−1

t = f2n

t : I−(n)1 → [(−1)n−1c1(Rn−1
t ), (−1)n−1c2(Rn−1

t )],

Rn
t = Rt ◦ Rn−1

t = f2n

t : I−(n)2 → [(−1)nc2(Rn−1
t ), (−1)nc1(Rn−1

t )],

Rn
t = Rt ◦ Rn−1

t = f2n

t : I+(n)2 → [(−1)n−1c1(Rn−1
t ), (−1)n−1c2(Rn−1

t )],

Rn
t = Rt ◦ Rn−1

t = f2n

t : I+(n)1 → [(−1)nc2(Rn−1
t ), (−1)nc1(Rn−1

t )].

Note that c1(Rn
t ) is the asymptotic value of Rn

t and the functions ±cm(Rn
t )

define its orbits. When n is odd c1(Rn
t ) < c2(Rn

t ) whereas when n is even the
inequalities are reversed. The point βn is defined by solving c1(Rn

t ) = an,t for t;

that is, the asymptotic value of Rn−1
t is a pole of Rn−1

t and βn is a virtual cycle
parameter.

If there is more than one solution, we take the largest such that c2(Rt) is con-
tinuous as our βn. For t > βn, we have c1(Rn

t ) < π/2 for n odd and c2(Rn
t ) > π/2

for n even.
To show that Rn+1

t is defined, we need to show we can solve c1(Rn+1
t ) = an+1,t

for t. This follows, as it did in the proof of Lemma 5.1, from the above inequalities
and the fact that the branch of cm(Rt) defined for t > βn has as an asymptotic
value (from the left) at its discontinuity dn, either an+1,dn

< π/2 or bn+1,dn
> π/2

as n is even or odd; the existence of the solution follows then from the intermediate
value theorem. This proves part f) of the theorem.

Since βn+1 is a virtual center parameter and ft (or Tt) has symmetric attracting
cycles for t ∈ (αn+1, βn+1), taking the limit from below, these cycles approach
virtual cycles of period 2n+2 (or 2n+1),

C2n+2,β−
n+1

=
{
− i∞, βn+1, Tβn+1

(βn+1), · · · , T 2n+2−2
βn+1

(βn+1), (−1)n+2π

2

}
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and

C ′
2n+2,β−

n+1

=
{
i∞, −βn+1, Tβn+1

(−βn+1), · · · , T 2n+1−2
βn+1

(−βn+1,), (−1)n+1π

2

}
.

Next, taking the limit from above, we have limt→β+
n
T 2n+2−1
t (t) = i∞ and

lim−t→β+
n
T 2n+2−1
t (t) = −i∞. This implies, as it did when n was 1, that at βn+1,

the symmetric virtual cycles C2n+2,β−
n+1

and C ′
2n+2,β−

n+1

merge into a single cycle

with double the period,

C2n+3,β+
n+1

=
{
i∞, −βn+1, Tβn+1

(−βn+1), · · · , T 2n+2−3
βn+1

(−βn+1), (−1)n+2π

2
,

−i∞, βn+1, Tβn+1
(βn+1), · · · , T 2n+2−3

βn+1
(βn+1), (−1)n+1π

2

}
.

Thus Part b) for holds for n+ 1.
Since C2n+3,β+

n+1
is a virtual cycle, its multiplier is 0. As t increases through

βn+1, it becomes an attracting cycle of period 2n+3 (and so an attracting cycle
of period 2n+1 of ft) that attracts both asymptotic values. By Lemma 7.1 and
Proposition 2.1 the multiplier of this cycle is a positive strictly increasing function
of t and there is a point t = αn+2 where the multiplier reaches 1. Thus Tαn+2

has a
period 2n+3 parabolic cycle. This shows Part c) holds for n+ 1 and completes the
proof of the theorem. �

10. Transversality

Theorem 1 gives us the existence of the cycle doubling parameters αn and cycle
merging parameters βn. The uniqueness of the βn in the interval (αn, αn+1) is more
delicate and requires a different approach: it requires the concept of transversality.
Once we prove this uniqueness, we will use it to obtain the uniqueness of the αn in
the interval (βn−1, βn). In a recent preprint, [16], Levin, van Strien, and Shen study
the monotonicity of the entropy function for families of continuous folding maps by
using holomorphic motions. Here, we adapt their techniques to prove transversality
for the family we have been studying in this paper, the functions

ft(x) = −t tanh(t tan(x)), t ∈ (0, π),

of the real axis to itself and their renormalizations. Although the maps have dis-
continuities at the poles and pre-poles of the tangent, as we have shown in §2,
the functions have well defined right and left limits at these points. Keeping care-
ful track of the signs in these limits we will prove that at all the cycle merging
parameters βn defined above, transversality holds.

Roughly speaking, this means that the function defining the asymptotic value
of the nth renormalization, c2(Rn

t ) = c2n(t), is invertible in a neighborhood of the
virtual cycle parameter βn. By choosing the one-sided limits appropriately, we will
show that the derivative is actually positive at these parameters. To state this
precisely, we need some notation which we define here, and use throughout the rest
of this section.

We fix t0 as a virtual cycle parameter of order m and set c0 = ±π/2 where the
sign is chosen so that fm−1

t0 (t0) = c0 and, taking the appropriate directional limit,

fm
t0 (c0) = c0. Set ci+1 = f i

t0(t0) for i = 0, 1, . . . ,m− 2. Define

P = {c0, c1, . . . , cm−1}
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so that P is a subset of the Riemann sphere (and is actually contained in the
real axis). For notational simplicity, set g = ft0 so that g(ci) = ci+1 for i =
0, 1, . . . ,m− 2 and g(cm−1) = cm = c0. For later use we define the constant

a = min{|ci − cj | | 0 ≤ i �= j ≤ m− 1}.
Set

(10) Φ(t) = fm−1
t (t)− c0.

Then transversality holds at t0 if the derivative Φ′(t0) �= 0.

10.1. Holomorphic motions, lifts of holomorphic motions, and the trans-
fer operator. Since our proof of transversality, like that in [16], uses holomorphic
motions, lifts of these motions, and the transfer operator, we recall their definitions
in our context. For a comprehensive study of holomorphic motions, we refer the
reader to [10].

Definition 10.1. Suppose P is a subset of the Riemann sphere Ĉ and Δr = {z ∈
C | |z| < r} is the disk of radius r > 0 centered at 0. We set Δ = Δ1. A map

h(s, z) : Δr × P → Ĉ is called a holomorphic motion of P over Δr if

(1) h(0, z) = z for all z ∈ P ;

(2) for any fixed s ∈ Δr, the map hs(·) : P → Ĉ is injective;

(3) for any fixed z ∈ P , the map hz(·) : Δr → Ĉ is holomrophic.

Let E = {kπ + π/2 | k ∈ Z} denote the set of poles of the tangent map Tw(z) =
iw tan z. They are poles of the real map

ft(x) = it tan(it tanx) = −t tanh(t tanx), t, x ∈ R,

in the sense that although the map is discontinuous at such a point, the left and
right limits are well defined.

Note that every real map ft(x) has a meromorphic extension as

F (w, z) = Fw(z) = T 2
w(z) = iw tan(iw tan z).

We will use this notation for this extension below. The following lemma follows
directly from the definition of Fw and the facts that the complex map Fw(z) has
asymptotic values at {±w} and is not defined at the pre-poles of Tw(z). Let

Sw,0 = C \ (E ∪ T−1
w (E)) and Sw,1 = C \ {−w,w}

be two Riemann surfaces determined by the poles and pre-poles of Tw(z).

Lemma 10.1. The map

Fw(z) : Sw.0 → Sw,1

is a holomorphic covering map of infinite degree.

Definition 10.2. Suppose h(s, z) : Δr × P → Ĉ is a holomorphic motion such
that h(s, c0) = c0 for all s ∈ Δr and let c1(s) = h(s, c1). We say that another

holomorphic motion ĥ(s, z) : Δr×P → Ĉ is a lift of h if ĥ(s, c0) = c0 for all s ∈ Δr,
and if

(11) h(s, ci+1) = Fc1(s)(ĥ(s, ci))
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for all i = 1, . . . ,m− 1 and all s ∈ Δr; that is, the following diagram commutes:

Δr × P
̂h ��

Id×g

��

C

Fc1(s)

��
Δr × P

h �� C,

where g(z) = T 2
t0(z).

Definition 10.3. Suppose ĥ is a lift of the holomorphic motion h. If we differentiate
the equation

h(s, g(ci)) = Fc1(s)(ĥ(s, ci))

at s = 0 for each i = 1, . . . ,m, we get an m×m-matrix A such that

(12)
(∂ĥ(s, ci)

∂s

∣∣∣
s=0

)
= A

(∂h(s, ci)
∂s

∣∣∣
s=0

)
.

The entries in the matrix A depend only on the partial derivatives of F (w, z) at
s = 0 evaluated at the points of P .

Computing, we have A = (ai,j)

ai,1 =
−∂F

∂w (c1, ci)
∂F
∂z (c1, ci)

, i = 1, . . . ,m− 1,(13)

ai,i+1 =
1

∂F
∂z (c1, ci)

, i = 1, . . . ,m− 1,(14)

ai,j = 0 otherwise.(15)

We call A the transfer operator associated with g.

The following lifting theorem is the key to proving transversality for the tangent
family.

Theorem 2. Set W = C \ E and suppose h0(s, z) : Δ× P → Ĉ is a holomorphic
motion such that h0(s, c0) = c0 for all s ∈ Δ. Then we can find a real number
r > 0, and a sequence of holomorphic motions

{hk(s, z) : Δr × P → Ĉ}∞k=0,

such that for all k = 0, 1, . . ., hk+1(s, z) is a lift of hk(s, z) satisfying

(i) c1,k(s) = hk(s, c1) ∈ W and
(ii) sups∈Δr,z∈P,k=0,1,... |hk(s, z)| < ∞.

Proof. We first prove that for each k ≥ 0, the holomorphic motion hk(s, z) can
be lifted. To define its lift, first set hk+1(s, c0) = c0. Next, by injectivity, for
any ci ∈ P , 0 < i ≤ m − 1, hk(s, g(ci)) = hk(s, ci+1) ∈ Sc1,k(s),1. Since Fc1(s) :
Sc1,k(s),0 → Sc1,k(s),1 is a holomorphic covering and since Δ is simply connected,
the map hk(s, g(ci)) : Δ × P → Sc1,k(s),0 can be lifted to a holomorphic covering
map hk+1(s, ci) : Δ× P → Sc1,k+1(s),1 such that

hk(s, g(ci)) = Fc1,k(s)(hk+1(s, ci)) = F (c1,k(s), hk+1(s, ci)).

We need to check injectivity for hk+1. It is clear that if 0 < i �= j < m − 1, then
hk+1(s, ci) �= hk+1(s, cj) because hk(s, ci+1)) �= hk(s, cj+1). We only need to check
that hk+1(s, cm−1) �= hk+1(s, cj) for j �= m−1. Note that because hk(s, g(cm−1)) =
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c0 ∈ E, hk+1(s, cm−1) is a pre-pole of Fc1,k(s)(z) and this pre-pole depends holo-
morphically on s ∈ Δ. Since hk(s, g(cj)) /∈ E for any j �= m − 1, the corre-
sponding hk+1(s, cj) cannot be a pre-pole and so is different from hk+1(s, cm−1).

Thus hk+1(s, z) : Δ × P → Ĉ defines a holomorphic motion which is a lift of

hk(s, z) : Δ × P → Ĉ. Since hk(s, ci) ∈ Sc1,k(s),0 ⊂ W for all i = 1, 2, · · · ,m − 1,
we have (i).

Now we prove (ii) by contradiction. Suppose that for every r < 1,

sup
s∈Δr ,z∈P,k=0,1,···

|hk(s, z)| = ∞.

Since P contains only finitely many points, this assumption implies that for some
fixed x ∈ P there is a sequence {kn} of integers and a sequence of complex numbers
sn ∈ Δ such that hkn

(sn, x) → ∞ as n → ∞. Since W is a hyperbolic Riemann
surface and since the holomorphic functions hk(s, z) take values in W for all s ∈ Δ
and all k ≥ 1, it follows that {hk(s, x)} is a normal family for s ∈ Δ; thus the
sequence hkn

(s, x) has a subsequence, which we again denote by hkn
, that converges

to a holomorphic function h(s) or to the constant ∞. Since hkn
(0, x) = x for all

n, hkn
(s, x) must converge to a holomorphic function h(s) in Δ; therefore, for n

sufficiently large, hkn
(s, x) is bounded on compact subset of Δ, contradicting our

assumption. Therefore, for every 0 < r < 1, there is an M(r) > 0, such that for all
s ∈ Δr and all z ∈ P , (ii) holds; that is,

|hk(s, z)| ≤ M ∀ s ∈ Δr ∀ z ∈ P.

�

10.2. The spectral radius of the transfer operator.

Lemma 10.2. The spectral radius of A is less than or equal to 1.

Proof. Let v0 = (v0,1, . . . , v0,m = v0,0 = 0) be a vector in Rm such that |v0,i| ≤ a/3.
Define a holomorphic motion of P over Δ by h0(s, ci) = ci + sv0,i. Note we have
h0(s, c0) = c0. The condition on |vi| ensures injectivity. By Theorem 2, given r < 1,
we can find a sequence of holomorphic motions hk of P over Δr and a constant M
such that sups∈Δr,z∈P,k=0,1,... |hk(s, z)| < M .

Since by definition, v0,i =
∂h0(s,ci)

∂s |s=0, inductively applying the transfer opera-

tor A, we obtain a sequence of vectors vk+1 = Avk = Akv0. By the boundedness
in Part (ii) of Theorem 2 and Cauchy’s theorem, there is a constant M > 0 such
that

|vk,i| ≤ M ∀ k > 0,

and hence
‖Akvk‖ ≤ M ∀ k > 0.

This implies that ‖Ak‖ ≤ (3M)/a so that the spectral radius

ρ = lim
k→∞

k

√
‖Ak‖ ≤ 1. �

10.3. Non-transversality and the spectral radius of A. We saw above that
the spectral radius, or largest eigenvalue of A has a maximum value of 1. Here we
show that achieving this maximum is equivalent to non-transverality at t0, that is,
Φ′(t0) = 0 where Φ(t) is the function defined in (10) extended as a function on C.

Lemma 10.3. Φ′(t0) = 0 if and only if 1 is an eigenvalue of A.
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Proof. Proof of the “if” statement: Suppose 1 is an eigenvalue of A. This
means that there is a non-zero vector v = (vi) ∈ Rm with maxi |vi| = a/3 such that
Av = v. Define a holomorphic motion of P over Δ by h(s, ci) = ci + svi. Suppose

ĥ(s, ci) is a lift of h. Since Av = v, we have

ĥ(s, ci) = h(s, ci) + O(|s|2) = ci + svi +O(|s|2).
From equation (11), for i = 1, . . . ,m− 2, we obtain

Fc1(s)(ĥ(s, ci)) = h(s, ci+1) + O(|s|2),
or equivalently,

Fc1(s)(ci + svi) = ci+1 + svi+1 +O(|s|2).
For i = m− 1 we have

Fc1(s)(h(s, cm−1)) = h(s, c0) + O(|s|2),
or equivalently,

Fc1(s)(cm−1 + svm−1) = c0 +O(|s|2).
Using equations (13)–(15), we see that vm = v0 = 0 and if i = 1, 2, · · · ,m− 1, then
vi = 0 implies that vi+1 = 0. Thus, since v �= 0, vi �= 0 for i = 1, 2, · · · ,m − 1.
Moreover, from the above we conclude that

Φ(c1(s)) = Fm−1
c1(s)

(c1(s))− c0 = O(|s|2),

and therefore that Φ′(c1(0))c
′
1(0) = Φ′(c1(0))v1 = 0. Since c1(0) = t0, this says

Φ′(t0) = 0 as claimed.
Proof of the “only if” statement: This is relatively easier. Since we assume

Φ′(t0) = Φ′(c1) = 0, we have a v1 �= 0 with |v1| ≤ a/3, such that Φ(c1 + sv1) =
O(|s|2). Let c1(s) = c1 + sv1, let vm = v0 = 0, and for i = 2, · · · ,m− 1 define

vi =
dFc1(s)(ci(s))

ds

∣∣
s=0

.

This is a non-zero vector v = (vi) ∈ Rm−1 such that Av = v. Therefore 1 is an
eigenvalue of A as claimed. �

10.4. Asymptotic invariance of lifts of holomorphic motions.

Definition 10.4. A holomorphic motion h of P over Δr is called asymptotically

invariant of order l if there is a lift ĥ such that

ĥ(s, z)− h(s, z) = O(|s|l+1) ∀ s ∈ Δr, z ∈ P.

The following lemma is standard calculus. We write out the proof to establish
the notation for the proof of Lemma 10.5.

Lemma 10.4. Suppose F (w, z) : C2 → C is holomorphic and σ(s), τ (s) : Δr → C2

are two holomorphic maps such that σ(0) = τ (0) = (a, b). Suppose further that for
some l > 0,

σ(s)− τ (s) = O(|s|l).
Then, writing σ(s) = (σ1(s), σ2(s)) and τ (s) = (τ1(s), τ2(s)), we have

F (σ(s))−F (τ (s)) =
∂F

∂w
(a, b)(σ1(s)− τ1(s)) +

∂F

∂z
(a, b)(σ2(s)− τ2(s)) +O(|s|l+1).
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Proof. The Taylor series for F (w, z) is

F (w, z)− F ((a, b)) =
∂F

∂w
(a, b)(w − a) +

∂F

∂z
(a, b)(z − b) +

∂2F

2∂w2
(a, b)(w − a)2

+
∂2F

∂w∂z
(a, b)(w − a)(z − b) +

∂2F

2∂z2
(a, b)(z − b)2 + higher order terms.

Substituting first σ(s) = (σ1(s), σ2(s)) and then τ (s) = (τ1(s), τ2(s)) for (w, z) in
the Taylor series and subtracting, we obtain

F (σ(s))− F (τ (s)) =
∂F

∂w
(a, b)(σ1(s)− τ1(s)) +

∂F

∂z
(a, b)(σ2(s)− τ2(s))

+
∂2F

2∂w2
(a, b)(σ1(s) + τ1(s)− 2a)(σ1(s)− τ1(s))

+
∂2F

∂w∂z
(a, b)[(σ1(s)− a)(σ2(s)− τ2(s)) + (τ1(s)− b)(σ1(s)− τ1(s))]

+
∂2F

2∂z2
(a, b)(σ2(s) + τ2(s)− 2b)(σ2(s)− τ2(s)) + higher order terms

=
∂F

∂w
(a, b)(σ1(s)− τ1(s)) +

∂F

∂z
(a, b)(σ2(s)− τ2(s)) + O(|s|l+1).

�

The next lemma implies that the asymptotic order of a holomorphic motion is
preserved under lifting; that is, if h is a holomorphic motion of an asymptotically

invariant of order l, so is its lift ĥ. Below, we will apply it to the sequence of lifts
{hk} of the holomorphic motion h0: it will show that if hk+1 is a lift of hk with
h1 − h0 = O(|s|l+1), then hk+1 − hk = O(|s|l+1).

Lemma 10.5. Suppose that for some l > 0, h0 and h1 are holomorphic motions
of Δr × P over C satisfying

h0(s, ci)− h1(s, ci) = O(|s|l).

If ĥ0, ĥ1 are respective lifts of the motions, then

ĥ0(s, ci)− ĥ1(s, ci) = O(|s|l).

Proof. We use superscripts to denote the functions c1(s) for each of the motions:
c01(s) = h0(s, c1) and c11(s) = h1(s, c1). By hypothesis, c01(s)−c11(s) = O(|s|l). Since
ĥ0 and ĥ1 are lifts of h0 and h1, we have

h0(s, ci+1) = Fc01(s)
(ĥ0(s, ci)) and h1(s, ci+1) = Fc11(s)

(ĥ1(s, ci)).

Subtracting and applying Lemma 10.4 with F (w, z) = Fw(z), we get

h0(s, ci+1)− h1(s, ci+1) = Fc01(s)
(ĥ0(s, ci))− Fc11(s)

(ĥ1(s, ci))

=
∂F

∂w

∣∣
s=0

(c01(s)− c11(s)) +
∂F

∂z

∣∣
s=0

(ĥ0(s, ci)− ĥ1(s, ci)) + O(|s|l+1).

Therefore ĥ0(s, ci)− ĥ1(s, ci) = O(|s|l). �

The following lemma gives the construction of a new holomorphic motion H
from the sequence of lifts, {hk}, of a given motion h0 of asymptotic order l, that is
asymptotically invariant of order l + 1.
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Lemma 10.6. Suppose that for some r > 0 and l ≥ 1, we have an asymptotically
invariant holomorphic motion h of P over Δr of order l. Then we can construct an-
other holomorphic motion H of P over Δr′ for some r′ > 0 which is asymptotically
invariant of order l + 1.

Proof. Take h0(s, z) = h(s, z). By Theorem 2, we can find a sequence of holo-
morphic motions {hk(s, z)}∞k=0 such that hk+1 is a lift of hk satisfying (i) and (ii).
Consider the two means

μk(s, z) =
1

k

k−1∑
i=0

hi(s, z) and νk(s, z) =
1

k

k∑
i=1

hi(s, z).

Both of them are uniformly bounded. Thus they form normal families and we can
find subsequences

μkn
(s, z) =

1

kn

kn−1∑
i=0

hi(s, z) and νkn
(s, z) =

1

kn

kn∑
i=1

hi(s, z)

that both converge to the same holomorphic limit H(s, z) as k goes to infinity. This
limit is defined on Δr × P and is holomorphic in s. Since H(0, z) = z and since P
contains only a finite number of points, we can find 0 < r′ ≤ r such that for any
s ∈ Δr′ , H(s, z) is injective on P . Thus H(s, z) is a holomorphic motion as well.

We need to show that H is asymptotically invariant of order l + 1. This will
follow from:

Claim. For each z ∈ P \ {c0} and any k ≥ 1,

Fμk(s,c1)(νk(s, z)) = μk(s, g(z)) + O(|s|l+2).

To see how this follows, denote the lift of μk by μ̂k, that is,

Fμk(s,c1)(μ̂k(s, z)) = μk(s, g(z)).

By the definitions of μk, νk and Fμk(s,c1), the claim implies that

μ̂k(s, z)− νk(s, z) = O(|s|l+2)

for each k. Using an argument similar to the proof of Theorem 2, and, if necessary,
taking r′ smaller, we can assume {μ̂k(s, z)} is a bounded sequence on Δr′ ×P . Tak-

ing a subsequence if necessary, we obtain a holomorphic limit, μ̂k(s, z) → Ĥ(s, z)

on Δr′ ×P so that Ĥ is a lift of H and for s ∈ Δr′ , z ∈ P . Moreover, the sequence
{μ̂k(s, z) − νk(s, z))} is also a bounded sequence of holomorphic functions on Δr′

so that

Ĥ(s, z)−H(s, z) = O(|s|l+2).

Therefore H(s, z) is asymptotically invariant of order l + 1.

Proof of the claim. Fix z ∈ P \ {c0} and k ≥ 1. By the construction of hi(s, z), we
have

Fhi(s,c1)(hi+1(s, z)) = hi(s, g(z))

for every i ≥ 0. Thus

μk(s, g(z)) =
1

k

k−1∑
i=0

Fhi(s,c1)(hi+1(s, z)).
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By Lemma 10.5, we have hi+1(s, z) − hi(s, z) = O(|s|l+1) for all z ∈ P and i ≥ 0.
Therefore all the functions hi(s, z), μi(s, z), νi(s, z) have the same derivatives up
to order l at s = 0. Applying Lemma 10.4, we have

F (hi(s, c1), hi+1(s, z))− F (μk(s, c1), νk(s, z))

=
∂F

∂w
(c1, z)(hi(c1, z)− μk(s, c1)) +

∂F

∂z
(c1, z)(hi+1(s, c1)− νk(s, z)) +O(|s|l+2).

Summing from i = 0 to k − 1, we obtain

1

k

k−1∑
i=0

F (hi(s, c1), hi+1(s, z)) = Fμk(s,c1)(νk(s, z)) + O(|s|l+2).

Thus we have the equality

Fμk(s,c1)(νk(s, z)) = μk(s, g(z)) + O(|s|l+2)

which proves the claim. �
10.5. Proof of transversality. Finally, we can state our transversality result as a
theorem. Although we state it for real parameters, the proof works for all complex
parameters provided we move along paths where we can define virtual pre-poles.

Theorem 3. The tangent family ft is transversal at any virtual center parameter
t0 such that, taking appropriate directional limits, fm

t0 (t0) = t0.

Remark 10.1. In the proof of Theorem 1 we showed that for each n > 0 there is at
least one parameter βn which is a solution of c1(Rn

t ) = c2(Rn−1
t ) = an,t where an,t

is a pre-pole of order n; that is, such that βn is a virtual cycle parameter. Take
t0 = βn in Theorem 3. Transversality implies c1(Rn

t ) is an invertible function at
t = βn where limits are taken with appropriate signs along the t axis. This means

that cycle merging actually occurs at βn; that is, the limits of T 2n+1−1(t) have
opposite signs as t approaches βn from opposite sides.

Proof. The main point in the proof is to show that 1 is not an eigenvalue of the
transfer operator A for the family Fw. Then Lemma 10.3 implies that Φ′(t0) �= 0.
Restricting to w real implies the tangent family is transversal at t0.

We assume 1 is an eigenvalue of A and obtain a contradiction. First, by defini-
tion, the function Φ(w) = Fm−1

w − c0 satisfies Φ(c1) = 0, and is non-constant and
holomorphic in w in a neighborhood of w = c1. Therefore, for some integer l ≥ 1
we have al �= 0 and

Φ(w) = al(w − c1)
l +O(|w − c1|l+1).

Next, we choose an eigenvector v ∈ R
m with maxi |vi| = a/3 such that Av =

v. As in the proof of the “if” part of Lemma 10.3, we define a non-degenerate
holomorphic motion h0 of P over Δ that is asymptotically invariant of order 1.
By Theorem 2 we obtain a uniformly bounded sequence of lifts, {hk}, which are
holomorphic motions of P over Δr1 for some 0 < r1 < 1. By Lemma 10.5, all
hk(s, ci) are asymptotically invariant of order 1.

Set H0 = h0 and apply Lemma 10.6 with h = H0, to obtain a new holomorphic
motionH1 of P over Δr1 (taking r1 smaller if necessary) such thatH1−H0 = O(s3);
that is, H1 is asymptotically invariant of order 2.

We now set h0 = H1 in Theorem 2 and apply it to obtain a new sequence of
lifts, {hk}; again Lemma 10.5, implies that all of these motions are asymptotically
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invariant of order 2. They are holomorphic motions of P over Δr2 for some 0 <
r2 < r1.

Repeating this process, for each integer N ≥ 1, we can find a non-degenerate
holomorphic motion of P over ΔrN for some 0 < rN < rN−1 < 1 which we denote
by HN , that is, asymptotically invariant of order N . It follows that

Φ((HN (s, c1)) = FN−1
HN (s,c1)

(HN (s, c1))− c0 = O(|s|N+1).

In particular, if N = l + 1, this implies that al = 0 giving us the required contra-
diction. �

10.6. Positive transversality. In this section we improve our transitivity result
for the real tangent family. We show that, taking directional limits appropriately,
not only is the derivative in question non-zero, it is positive.

Continuing with our notation above we have Φ(w) = Fm−1
w (w)−c0. Its derivative

is

Φ′(w) =
∂Fw

∂w
+

∂Fw

∂z

(∂Fw

∂w
+

∂Fw

∂z

(
· · ·

))
.

In particular,

Φ′(t0) =
∂Ft0(cm−1)

∂w
+

∂Ft0(cm−1)

∂z

(∂Ft0(cm−2)

∂w
+

∂Ft0(cm−2)

∂z

(
· · ·

))

=
∂Ft0(cm−1)

∂w
+

∂Ft0(cm−1)

∂z

∂Ft0(cm−2)

∂w
+ · · ·+ ∂Ft0(cm−1)

∂z
· · · ∂Ft0(c1)

∂z

=
∂Ft0(cm−1)

∂w
+

(Fm−1
t0 )′(c1)

(Fm−2
t0 )′(c1)

∂Ft0(cm−2)

∂w
+ (Fm−1

t0 )′(c1).

Set

L(z) =
∂Fw(z)

∂w
|w=t0

and define the polynomial

P (ρ) = 1 +
m−1∑
n=1

ρnL(cn)

(Fn
t0)

′(c1)
.

Then we can write

Φ′(t0) = (Fm−1
t0 )′(c1) · P (1).(16)

The relationship between the zeros of the polynomial P (ρ) and the eigenvalues of
the transfer operator is summarized in the following lemma.

Lemma 10.7. For any ρ ∈ C, det(I − ρA) = 0 if and only if P (ρ) = 0.

Proof. When ρ = 0, det(I) = P (0) = 1. Assume ρ �= 0 and define a local deforma-
tion (gρ, F ρ

w) of (g, Fw) as follows:

(1) for z in a neighborhood of each x ∈ P \ c0, F ρ
w(z) = Fw(z) +

g′(x)
ρ (z − x);

(2) gρ(x) = g(x) for x = c0, and for z in a neighborhood of each x ∈ P \ c0,
gρ(z) = F ρ

c1(z).

If Aρ is the transfer operator associated with the deformation F ρ
w, a simple compu-

tation gives Aρ = ρA.
We define a map Φρ(w) = (F ρ

w)
m−1(w)− c0. Then

det(I − 1 ·Aρ) = 0 if and only if (Φρ)
′(t0) = 0.
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Direct computation shows that

(Φρ)
′(t0) =

P (ρ)

ρm−1
(Φ)′(t0).

Therefore

det(I − ρA) = 0 if and only if P (ρ) = 0.

�

Corollary 10.1 (Positive transversality). With the notation of Theorem 3, for t
real in a neighborhood of t0,

Φ′(t0)

(Fm
t0 )

′(c1)
> 0.

Proof. By equation (16) it suffices to show P (1) > 0. Rewrite the polynomial as
P (ρ) = Πm−1

i=1 (1 − ρ/ρi) where ρi �= 0 are the zeros of P (ρ). By Lemma 10.7,
P (ρi) = det(I − ρiA) = 0, which implies that 1 is an eigenvalue of Aρi and thus
1/ρi is an eigenvalue of A. By Lemma 10.3, all eigenvalues of A satisfy {1/|ρi| ≤
1, 1/ρi �= 1}.

Restricting to the real valued family, the eigenvalues of A are all real or complex
conjugate in pairs so evaluating the polynomial at ρ = 1 in light of the above, we
conclude

P (1) = Πm−1
i=1 (1− 1/ρi) > 0.

�

Positive transversality gives us the uniqueness of the βn.

Corollary 10.2 (Uniqueness). For each n > 1, there is unique parameter t = βn in
the interval (αn, αn+1) of the renormalization sequence for the family ft where cycle
merging of order n occurs. In particular, there is a unique virtual cycle parameter
of order n in the sequence.

Proof. In the proof of Theorem 1 we showed that for each n > 0 there is at least
one parameter βn which is a solution of c1(Rn

t ) = c2(Rn−1
t ) = an,t where an,t is a

pre-pole of order n. More precisely, with c0 equal to either π/2 or −π/2, depending

on n, βn is a solution of γ(t) = f2n−1
t (t) − c0 in the interval (αn, αn+1). Since ft

depends on t holomorphically, there are only finitely many solutions. The curve
γ(t) = f2n−1

t (t) − c0 is a smooth curve defined on (αn, αn+1) and transversality
implies that each root γ(t) is locally either strictly increasing or strictly decreasing.
Positive transversality implies that it has the same direction at each root. Therefore,
it cannot have more than one root because if it did, the directions at adjacent roots
would have to be opposite. �

The uniqueness of the αn now follows directly from uniqueness of the βn.

Corollary 10.3. For each n > 1, there is unique parameter t = αn in the interval
(βn−1, βn) of the renormalization sequence for the family ft where cycle doubling
of order n occurs.

Proof. Let C2n,t be the merged cycle for t just to the right of βn−1. By Proposi-
tion 2.1, as t increases, the multiplier of C2n,t increases to +1 at αn. If the mulitplier
continues to increase as t increases, we have cycle doubling into a new hyperbolic
component and, again by Proposition 2.1, the multipliers of the two new cycles
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decrease the right endpoint of this component must be βn so that αn is unique in
(βn−1, βn).

Otherwise, as t increases beyond αn the multiplier of C2n,t decreases again and
t is in a new hyperbolic component. By Proposition 2.1, at the right endpoint
of this new component, t∗, the multiplier is 0 and is a virtual cycle parameter of
order 2n. Thus t∗ > βn−1 is a second root of the curve γ(t) defined in the proof
of Corollary 10.2 above. This, however, contradicts the uniqueness of βn−1 proved
there so this case cannot occur and αn is unique in (βn−1, βn), as claimed. �

11. The infinitely renormalizable tangent map

and the strange attractor

Since the interleaved sequences {αn}∞n=1 and {βn}∞n=1 are both increasing and
bounded they have a common limit, t∞. Since t∞ is a limit of the βn, and we have
proved that ft is n-renormalizable for t ∈ (βn, π), we can define Rn

t∞ for all n ≥ 1;
we say that ft∞ or Tt∞ is infinitely renormalizable. In addition, since t∞ is a limit
of the αn, and we have shown that Tt has repelling periodic cycles of period 2n+1

that persist for all t > αn, Tt∞ has repelling periodic cycles of period 2n for all n.
In this section we will describe properties of the orbits of the asymptotic values

±t∞ under the map Tt∞ . As we have seen above, they are contained in the real
and imaginary lines. We will give a topological description of the closure of the
union of these two orbits which we denote by C. We will show that C ∩ � is
a perfect, uncountable, totally disconnected and unbounded set while C ∩ � is
perfect, uncountable, totally disconnected and bounded and thus a Cantor set; this
Cantor set consists of two binary Cantor sets. We argue by analyzing the infinite
sequence of renormalizations of Tt∞ .

As a corollary it will follow that almost every point in the real and imaginary
axes is attracted by C and therefore that T∞ has no attracting or parabolic periodic
cycles.

The standard construction of a Cantor set in the real line R involves an infinite
iterative process where at each step subintervals are removed from all the remaining
intervals. The remaining intervals are called bridges and the removed intervals
are called gaps. The Cantor set is called binary if only one gap is removed from
the bridge at each step. We give a more precise definition here which is adapted
from [11].

Definition 11.1. Let I = {In}∞n=0 be a sequence of families of disjoint, non-empty,
compact intervals: the nth level bridges. Let G = {Gn}∞n=0 be a sequence of families
of disjoint, non-empty, open intervals: the nth level gaps. Let CS = {I,G}.

We call CS a binary Cantor system if

(i) for each 0 ≤ n < ∞ and each interval I ∈ In, there is a unique interval G
in Gn and two intervals L and R in In+1 which lie to the left and to the
right of G such that I = L ∪G ∪R (see Figure 13), and

(ii) CS =
⋂∞

n=0 ∪I∈In
I is totally disconnected. We call CS the binary Cantor

set generated by the binary Cantor system CS.

Suppose T = Tt∞ is the tangent map at the limit point t∞. Let

O = Orb(±t∞) = {Tn(±t∞)}∞n=0
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Figure 13. Bridge and gap

be a union of the orbits of both the asymptotic values, ±t∞. Note that by symmetry
−O = O. Let C = O be the closure of the orbits. Recall that f = T 2 maps both
the real and imaginary lines to themselves.

Theorem 4. The map T is an infinitely renormalizable tangent map and the in-
tersection Cr = R∩C consists of two binary Cantor sets; Cr is forward f -invariant
and f : Cr → Cr is minimal. The intersection Ci = � ∩ C is a totally discon-
nected, uncountable, unbounded and perfect subset of the imaginary line �. It is
also forward f -invariant and minimal.

Proof. We first prove the assertions about Cr. The inductive construction in the
proof of Theorem 1 shows that the renormalized functions Rn converge to a limit
R∞. To study the properties of the orbits of the asymptotic values we set R0 = f
and use the functions cm(Rn) = |Rnm(π/2+)| introduced in that construction.
Since t is fixed they are constants. It will be convenient to set cm = cm(f) since
these are the points of O+ ∪ R. We also defined the pre-pole functions an, bn by
the relations Rn−1(an) = ±π/2,Rn−1(bn) = ∓π/2 where the sign depends on the
parity of n. These are the endpoints of the intervals In = I−n ∪ In+ that constitute
the domain of Rn.

Recall that I1 is divided into subintervals that are mapped by R as follows:

R = f2 :

⎧⎪⎪⎨
⎪⎪⎩

I11− = [−b1,−π/2] → [−c1,−c2],
I12− = [−π/2,−a1] → [c2, c1],
I12+ = [a1, π/2] → [−c1,−c2],
I11+ = [π/2, b1] → [c2, c1].

(See Figure 6.)
The endpoints of the intervals in the range belong to O ∩ R. We denote these

intervals by
J0− = [−c1,−c2] and J0+ = [c2, c1].

We set I0± = {J0±} and call it the set of 0th-level bridges.
Applying f we find c3 = f(−c2) > 0 and c4 = f(c3) > 0, so that

c2 < π/2 < c4 < c3 < c1.

Now set

J1− = [−c4,−c2], J1+ = [c2, c4], J11− = [−c1,−c3] and J11+ = [c3, c1].

The maps
f : J11− → J1− and f : J11+ → J1+
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are both continuous and onto. The interval J1− is divided into two intervals J l
1− =

[−c4,−π/2] and Jr
1− = [−π/2,−c2] by the pole −π/2, f is continuous on each of

these subintervals, and

f : J l
1− → J21− = [−c1,−c5] ⊂ J11− and f : Jr

1− → J11+.

(See Figure 6 where these are intervals in the vertical direction and Figure 14 where
the intervals are depicted horizontally.)

Similarly, the pole π/2 divides J1+ into two intervals J l
1+ = [c2, π/2] and Jr

1+ =
[π/2, c4] and f maps each of these subintervals continuously as follows:

f : J l
1+ → J11− and f : Jr

1+ → J21+ = [c5, c1].

(See Figures 6 and 14.)
We now set

G0− = (−c3,−c4) and G0+ = (c4, c3)

so that

J0+ = J11+ ∪G0+ ∪ J1+ and J0− = J11− ∪G0− ∪ J1−.

The intervals G0± = {G0±} form the 0th-level gaps inside the 0th-level bridges I0±.
The complementary intervals inside the 0th-level bridges form the 1st-level bridges
I1± = {J1±, J11±}. (See Figure 14.)

Figure 14. The 1st-level bridges and the 0th-level gaps

We now go to the second renormalization to get the 2nd-level bridges and the
1st-level gaps; we have

R2 = f22 :

⎧⎪⎪⎨
⎪⎪⎩

I21− = [−b2,−π/2] → [c2, c4],
I22− = [−π/2,−a2] → [−c4,−c2],
I22+ = [a2, π/2] → [c2, c2],
I21+ = [π/2, b2] → [−c4,−c2].

(See Figure 8.)
Let

J2− = [−c4,−c8], J2+ = [c8, c4], J21− = [−c1,−c5] and J21+ = [c5, c1],

J22− = [−c6,−c2], J22+ = [c2, c6], J23− = [−c7,−c3] and J23+ = [c3, c7].

Then f is continuous and onto

J21−
f→ J22−

f→ J23+
f→ J2+ and f : J21+

f→ J22+
f→ J23−

f→ J2−.

As above, the pole divides J2− into two subintervals, J l
2− = [−c4,−π/2] and Jr

2− =
[−π/2,−c8] and f is continuous and onto on the subintervals

f : J l
2− → J21− and f : Jr

2− → J31+ = [c9, c1] ⊂ J21+.
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Symmetrically, the pole divides J2+ into two subintervals J l
2+ = [c8, π/2] and Jr

2+ =
[π/2, c4] and f is continuous and onto on the subintervals

f : J l
2− → J31− = [−c1,−c9] ⊂ J21− and f : Jr

2+ → J21+ = [c5, c1].

(See Figure 8 where these are intervals in the vertical direction and Figure 15 where
the intervals are depicted horizontally.)

Define the 1st-level gaps as the set of intervals

G1− = {G1−, G11−} and G1+ = {G1+, G11+}
inside the 1st-level bridges where

G11− = (−c5,−c7), G1− = (−c8,−c6) and G1+ = (c6, c8), G11+ = (c7, c5)

so that

J1− = J2− ∪G1− ∪ J22−, J11− = J21− ∪G11− ∪ J23−

and

J1+ = J2+ ∪G1+ ∪ J22+, J11+ = J21+ ∪G11+ ∪ J23+.

Now define the 2nd-level bridges as the set of intervals

I2− = {J2−, J21−, J22−, J23−} and I2+ = {J2+, J21+, J22+, J23+}.
(See Figure 15.)

Figure 15. The 2nd-level bridges and the 1st-level gaps

Using these steps as models for odd and even n ≥ 3, we use the nth renormal-
ization to define the nth-level bridges and the (n− 1)th-level gaps. Note that the
parity of n determines the orientation of the interval.

We have

Rn = f2n :

⎧⎪⎪⎨
⎪⎪⎩

In1− = [−bn,−π/2] → [(−1)nc2n−1 , (−1)nc2n ],
In2− = [−π/2,−an] → [(−1)n−1c2n , (−1)n−1c2n−1 ],
In2+ = [an, π/2] → [(−1)nc2n−1 , (−1)nc2n ],
In1+ = [π/2, bn] → [(−1)n−1c2n , (−1)n−1c2n−1 ].

(See Figures 6 and 8.)
Let

Jn− be the interval bounded by − c2n+1 and − c2n

and let

Jn+ be the interval bounded by c2n and c2n+1 .
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Which endpoint is the left one depends on the parity of n. For example if n is odd,
−c2n+1 is to the left of −c2n while if n is even it is to the right.

At the nth-level we get 2n+1 subintervals. Let m = 1, . . . , 2n and let

Jnm− be the interval bounded by − cm and − c2n+m

and
Jnm+ be the interval bounded by c2n+m and cm.

Again, which endpoint is the left one depends on the parity of n. Note that Jn2n−,
Jn0−, and Jn− refer to the same interval; Jn2n+, Jn0+, and Jn+ are the same
interval.

Then
2n⋃

m=1

Jnm− ⊂ J1− and
2n⋃

m=1

Jnm+ ⊂ J1+.

If m = 2k + 1, k = 0, . . . , 2n−1 − 1, then

f : Jnm− → Jn(m+1)− and f : Jnm+ → Jn(m+1)+.

Recall that the poles ±π/2 are contained inside the intervals (−c4,−c2) and
(c4, c2), respectively, and if m = 2k, k = 1, . . . 2n−1, Jnm± are subintervals that lie
either to the right or left of the pole. This divides them into two groups:

if Jn(2k)− ⊂ (−π/2,−c2), then f : Jn(2k)− → Jn(2k+1)+ and

if Jn(2k)− ⊂ (−c4,−π/2), then f : Jn(2k)− → Jn(2k+1)−.

The symmetric intervals Jn(2k)+ are also divided into two groups:

if Jn(2k)+ ⊂ (c2, π/2), then f : Jn(2k)+ → Jn(2k+1)− and

if Jn(2k)+ ⊂ (π/2, c4), then f : Jn(2k)+ → Jn(2k+1)+.

The intervals Jn− and Jn+ are divided by the poles they contain; because the
parity of n changes which endpoint is the left one, we label the intervals differently
in each case. If n is odd we denote the respective subintervals as:

J l
n− = [−c2n+1 ,−π/2] and Jr

n− = [−π/2,−c2n ],

J l
n+ = [c2n , π/2] and Jr

n+ = [π/2, c2n+1 ].

On each subinterval f is continuous and maps as follows:

f : J l
n− → J(n+1)1− = [−c1,−c2n+1+1] ⊂ Jn1− and f : Jr

n− → Jn1+,

f : J l
n+ → Jn1− and f : Jr

n+ → J(n+1)1+ = [c2n+1+1, c1] ⊂ Jn1+.

If n is even we denote the respective subintervals as

J l
n− = [−c2n ,−π/2] and Jr

n− = [−π/2,−c2n+1 ],

J l
n+ = [c2n+1 , π/2] and Jr

n+ = [π/2, c2n ].

Then f maps as follows:

f : J l
n− → J(n)1− and f : Jr

n− → J(n+1)1+ = [c2n+1+1, c1] ⊂ Jn1+,

f : J l
n+ → J(n+1)1− = [−c1,−c2n+1+1] ⊂ Jn1− and f : Jr

n+ → Jn1+.

Now we define the gap intervals. Set

G(n−1)− as the interval with endpoints − c2n+1 and − c2n−1+2n and

G(n−1)+ as the interval with endpoints c2n−1+2n and c2n+1 ,
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where again which endpoint is the left one depends on the parity of n. For
k = 1, . . . , 2n−1 − 1, inside the interval J(n−1)k− bounded by −ck and −c2n−1+k,
we define G(n−1)k− as the subinterval bounded by −c2n+k and −c2n+2n−1+k. Sym-
metrically, for any J(n−1)k+ bounded by ck and c2n−1+k, we define G(n−1)k+ as the
subinterval bounded by c2n+k and c2n+2n−1+k. Then

J(n−1)k− = Jnk− ∪G(n−1)k− ∪ Jn(2n−1+k)−

and

J(n−1)k+ = Jnk+ ∪G(n−1)k+ ∪ Jn(2n−1+k)+.

The (n− 1)th-level gaps are the collection of intervals

G(n−1)− = {G(n−1)k−}2
n−1−1

k=0 and G(n−1)+ = {G(n−1)k+}2
n−1−1

k=0 .

The nth-level bridges are the collection of complementary intervals

In− = {Jnk−}2
n−1

k=0 and In+ = {Jnk+}2
n−1

k=0 .

Since t∞ > βn for all n, we can use Rn to define bridges and gaps at all levels.
In the limit we have

I− = {In−}∞n=0 and I+ = {In+}∞n=0

and

G− = {Gn−}∞n=0 and G+ = {Gn+}∞n=0.

These define two Cantor systems

CS− = (I−,G−) and CS+ = (I+,G+).

Let

C− =

∞⋂
n=0

2n−1⋃
k=0

Jnk− and C+ =

∞⋂
n=0

2n−1⋃
k=0

Jnk+.

These are both binary Cantor sets.
From our construction, we see that

Cr = C− ∪ C+ = {fn(±t∞)}∞n=0 = R ∩ C

is forward f -invariant and the map f : Cr → Cr is minimal.
Now C+ ⊂ (0, π) contains π/2 and C− = −C+ ⊂ (−π, 0) contains −π/2. Since

T is odd and one-to-one on (0, π), the image Ci = T (C−) = T (C+) = � ∩ C is a
totally disconnected, perfect, and uncountable, unbounded subset in the imaginary
line �. It is also f -forward invariant and minimal.

This completes the proof of Theorem 4. �

12. Appendix

This appendix contains the proof of Lemma 7.3.

Lemma (Lemma 7.3). Suppose f(z) = z + anz
n + o(zn) is an analytic function

defined on some neighborhood of 0 ∈ C.

(1) Suppose λ lies inside a small disk, inside and tangent to the unit circle at
the point 1. Then gλ(z) = λf(z) has one attracting fixed point 0 and (n−1)
repelling fixed points counted with multiplicity, in a small neighborhood of 0.
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(2) Suppose λ lies inside a small disk, outside and tangent to the unit circle at
the point 1. Then gλ(z) = λf(z) has one repelling fixed point 0 and (n− 1)
attracting fixed points counted with multiplicity, in a small neighborhood
of 0.

Proof. By Rouché’s theorem, λf(z) = z and λ(z+anz
n) = z have the same number

of solutions in a small neighborhood of 0 and by continuity, the corresponding
multipliers are close to each other. So without loss of generality, suppose f(z) =
z + anz

n. Then solutions of gλ(z) = λf(z) = z are 0, with multiplier λ, and all
solutions of anλz

n−1+(λ− 1) = 0, each with multiplier λ+n(1−λ). Consider two
disks

D1 = {z : |z − n| < n− 1} and D2 = {z : |z − n

n− 1
| < 1

n− 1
}.

The map λ �→ n − (n − 1)λ takes the unit disk Δ = {z |z| = 1} to the disk D1

and takes the disk D2 to the unit disk Δ. It follows that if |λ| < 1, 0 is attracting
and all the other fixed points are repelling, all have the same multiplier, and this
multiplier is in the disk D1. Similarly, if λ ∈ D2, 0 is repelling and all the other
fixed points are attracting, all have the same multiplier, and this multiplier is in
the disk D2. By Rouché’s theorem λf(z) = z and λf(z) = gλ(z) + o(zn) have the
same number of solutions as gλ(z) in a small neighborhood of 0. �
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