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OPERATOR K-THEORY FOR GROUPS WHICH ACT

PROPERLY AND ISOMETRICALLY ON HILBERT SPACE

NIGEL HIGSON AND GENNADI KASPAROV

(Communicated by Masamichi Takesaki)

Abstract. Let G be a countable discrete group which acts isometrically and
metrically properly on an infinite-dimensional Euclidean space. We calculate
the K-theory groups of the C∗-algebras C∗max(G) and C∗red(G). Our result is
in accordance with the Baum-Connes conjecture.

1. Introduction

Let G be a countable discrete group and denote by C∗max(G) and C∗red(G) its full
and reduced group C∗-algebras. This note is concerned with the computation of
the K-theory of these C∗-algebras, for groups G which admit the following sort of
action on a Euclidean space:

1.1. Definition. Let V be a real inner product vector space which is possibly
infinite-dimensional (hereafter we shall call V a Euclidean space). An affine, iso-
metric action of a discrete group G on V is metrically proper if limg→∞ ‖g ·v‖ = ∞,
for every v ∈ V .

Gromov [10] calls groups which admit such an action a-T-menable. The termi-
nology is justified by the well-known theorem that every affine, isometric action
of a property T group on a Euclidean space has bounded orbits [7], and by the
recent observation [3] that every countable amenable discrete group admits a met-
rically proper, affine, isometric action on a Euclidean space. Other examples of
a-T -menable groups are proper groups of isometries of real or complex hyperbolic
space, finitely generated Coxeter groups, and groups which act properly on locally
finite trees. The reader is referred to the short article [3] and the monograph [12]
for further information.

If G is any discrete group then denote by EG the universal proper G-space, as de-
scribed in [2]. It is a paracompact and Hausdorff G-space which has a paracompact
and Hausdorff quotient by G, along with the following additional properties:

(i) it is covered by open G-sets, each of which admits a continuous G-map to
some coset space G/H , where H is finite; and

(ii) if X is any other G-space satisfying (i) then there is a unique-up-to-G-
homotopy G-map from X into EG.
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Clearly EG is unique up to G-homotopy. If G is torsion-free then EG is the universal
principal space EG, whose quotient by G is the classifying space BG.

The Baum-Connes assembly maps for the C∗-algebras C∗max(G) and C∗red(G) are
homomorphisms of abelian groups

µmax : KG
∗ (EG) → K∗(C∗max(G)),

µred : KG
∗ (EG) → K∗(C∗red(G)).

On the left hand side is the equivariant K-homology of EG, defined using KK-
theory [2], [16]. If G is torsion-free then KG

∗ (EG) is isomorphic to K∗(BG), the
K-homology (with compact supports) of the classifying space for G. See [2] and
Section 3 below for a further description of both equivariant K-homology and the
assembly map.

We are going to outline a proof of the following result:

1.2. Theorem. If G is a discrete group which admits an affine, isometric and
metrically proper action on a Euclidean space (possibly infinite-dimensional) then
the Baum-Connes assembly maps µmax and µred are isomorphisms.

The assertion that for any G the assembly map µred is an isomorphism is known
as the Baum-Connes conjecture [2]. By an index theory argument, the injectivity of
either µmax or µred, for a givenG, implies the Novikov higher signature conjecture [8]
for manifolds with fundamental group G. Thus our theorem has the following
consequence:

1.3. Corollary. If G is a discrete group which admits an affine, isometric and
metrically proper action on a Euclidean space (possibly infinite-dimensional) then
the Baum-Connes and Novikov conjectures hold for G. In particular, these conjec-
tures hold for any countable amenable group.

To prove the theorem we shall use a variant of KK-theory, the E-theory of
Connes and Higson [6], which appears to be more appropriate in this case. As
in other instances where the K-theory of group C∗-algebras may be computed, or
partially computed, a key role is played by a Bott periodicity argument—in this
case periodicity for infinite-dimensional Euclidean space [14]. Given periodicity, the
proof that µmax is an isomorphism is a relatively simple consequence of the formal
machinery of E-theory. Thanks to a peculiarity of E-theory, the proof for µred is
rather more complicated, unless G has the additional functional-analytic property
that C∗red(G) is exact [22]. Conjecturally all discrete groups have this property, but
in any case we shall end this note with an ad hoc proof that µred is an isomorphism
for the groups under consideration here.

2. E-theory

We begin by reviewing some of the foundational results in E-theory proved in [6]
and [11]. Let A and B be C∗-algebras. An asymptotic morphism from A to B is a
family of functions

{φt}t∈[1,∞) : A→ B
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such that t 7→ φt(a) is bounded and norm-continuous, for every a ∈ A, and

lim
t→∞


φt(a1a2)− φt(a1)φt(a2)

φt(a1 + a2)− φt(a1)− φt(a2)

φt(αa1)− αφt(a1)

φt(a
∗
1)− φt(a1)

∗

 = 0,

for every a1, a2 ∈ A and α ∈ C. This is the definition used in [6]; it agrees
with the definition in [11] if we identify those asymptotic morphisms φ′, φ′′ which
are asymptotically equivalent, in the sense that φ′t(a) − φ′′t (a) → 0 as t → ∞
(we shall write φ′t(a) ∼ φ′′t (a)). If A and B are Z/2-graded C∗-algebras then we
shall consider only asymptotic morphisms which map homogeneous elements to
homogeneous elements and preserve the grading degree. If A and B are equipped
with actions of a countable discrete group G, then by an equivariant asymptotic
morphism from A to B we shall mean an asymptotic morphism {φt}t∈[1,∞) such
that φt(g(a)) ∼ g(φt(a)), for every a ∈ A and every g ∈ G.

Two asymptotic morphisms from A to B are homotopic if there is an asymptotic
morphism from A to B[0, 1] (the C∗-algebra of continuous functions mapping the
unit interval into B) from which the two may be recovered by evaluation at 0 and 1.
Homotopy is an equivalence relation and we denote by [A,B] the set of homotopy
classes of asymptotic morphisms from A to B. The same definition may be made
in the graded and equivariant contexts.

Let us denote an asymptotic morphism from A to B by a broken arrow:

φ : A //___ B.

It is clearly possible to compose an asymptotic morphism with a ∗-homomorphism,
on either side, so as to obtain asymptotic morphisms

A // B //___ C

and

A //___ B // C.

Now every ∗-homomorphism from A to B determines a constant asymptotic mor-
phism from A to B, and the starting point for the theory of asymptotic morphisms
is the following result [6]:

2.1. Theorem. On the class of separable, Z/2-graded G-C∗-algebras there is an
associative composition law

[A,B]× [B,C] → [A,C]

which is compatible with the above compositions of asymptotic morphisms and ∗-
homomorphisms.

(The proof in [6] is written for C∗-algebras with no grading or G-action, but
the argument extends to the present context with no essential change.) We shall
use the following features of the homotopy category of asymptotic morphisms. De-
note by A1⊗̂A2 the maximal graded tensor product of A1 and A2 [4, Section 14].
There is then a tensor product functor on the homotopy category of asymptotic
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morphisms which associates to the asymptotic morphisms φ1 : A1
//___ B1 and

φ2 : A2
//___ B2 a tensor product

φ1⊗̂φ2 : A1⊗̂A2
//___ B1⊗̂B2,

where φ1⊗̂φ2(a1⊗̂a2) ∼ φ1(a1)⊗̂φ2(a2). If C∗max(G,B) denotes the maximal, or
full crossed product C∗-algebra [19, Section 7.6] then there is a descent functor on
the homotopy category of equivariant asymptotic morphisms which associates to

an equivariant asymptotic morphism φ : A //___ B an asymptotic morphism

φ : C∗max(G,A) //___ C∗max(G,B),

where φt(
∑

ag[g]) ∼
∑

φt(ag)[g].
Let S = C0(R), graded according to even and odd functions and equipped with

the trivial action of G. There are ∗-homomorphisms

∆: S → S⊗̂S,

∆: f(X) 7→ f(X⊗̂1 + 1⊗̂X),

ε : S → C,
ε : f(X) 7→ f(0).

Using them, we construct the amplified category of Z/2-graded C∗-algebras, in which
the morphisms from A to B are graded ∗-homomorphisms (equivariant, in the pres-
ence of a group G) from SA = S⊗̂A to B. Similarly we can form the amplification
of the homotopy category of asymptotic morphisms.

2.2. Definition. Let K(HG) be the C∗-algebra of compact operators on the Z/2-
graded G-Hilbert space

HG = `2(G) ⊕ `2(G) ⊕ · · ·
(the summands are graded alternately even and odd). If A and B are separa-
ble, Z/2-graded G-C∗-algebras then denote by EG(A,B) the homotopy classes of
equivariant asymptotic morphisms from SA⊗̂K(HG) into B⊗̂K(HG):

EG(A,B) = [SA⊗̂K(HG), B⊗̂K(HG)].

When G is trivial we drop the subscript and write E(A,B).

The sets EG(A,B) are in fact abelian groups. There is an associative law of
composition

EG(A,B)⊗ EG(B,C) → EG(A,C),

derived from the composition law in the amplified homotopy category of asymp-
totic morphisms. There are tensor product and descent functors on the E-theory
category,

EG(A1, B1)⊗ EG(A2, B2) → EG(A1⊗̂A2, B1⊗̂B2)

and

EG(A,B) → E(C∗max(G,A), C∗max(G,B)).

If G is trivial then the E-theory groups specialize in one variable to K-theory of
graded C∗-algebras:

E(C, B) ∼= K0(B).

For ungraded C∗-algebras these facts are proved in [11]. The graded case will be
considered elsewhere.
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If H is a separable, Z/2-graded G-Hilbert space then any equivariant asymp-
totic morphism from A to B⊗̂K(H), or from SA to B⊗̂K(H), determines—after
tensoring with K(HG)—an element of EG(A,B). This is because H⊗̂HG

∼= HG

(cf. [18]).
Suppose that there is a continuous, one-parameter family of actions of G on a

Hilbert space H, and suppose that an asymptotic morphism

φ : A //___ B⊗̂K(H)

is equivariant with respect to this family, in the sense that φt(g(a)) ∼ gt(φt(a)).
Then {φt}t∈[1,∞) determines a class in EG(A,B). The reason is that after tensoring
with HG the one parameter family of actions on H is conjugate to a constant
action (cf. [18] again). We shall use this observation, and a small extension of it,
in Section 4.

3. The assembly map

Let Y be a proper G-space and let B be a G-C∗-algebra. We define

EG(Y,B) = lim−→
X⊂Y

EG(C0(X), B),

where the direct limit is over all G-compact, locally compact and second countable
subsets X ⊂ Y . For each such X there is a class φX ∈ E(C, C∗max(G,C0(X))),
determined by a basic projection in the crossed product algebra, and we define the
maximal Baum-Connes assembly map to be the composition

EG(C0(X), B)
descent−−−−→ EG(C∗max(G,C0(X)), C∗max(G,B))

composition with−−−−−−−−−−−−−−−−−→
φX∈EG(C,C∗

max(G,C0(X)))
EG(C, C∗max(G,B)).

See [11, Chapter 10]. If Y is a general proper G-space, not necessarily G-compact,
then the maximal Baum-Connes assembly map for Y is the homomorphism

µmax : EG(Y,B) → E(C, C∗max(G,B))

obtained as the direct limit of the assembly maps for the G-compact subsets of Y .
The reduced Baum-Connes assembly map

µred : EG(Y,B) → E(C, C∗red(G,B))

is defined by composing µmax with the E-theory map induced from the regular rep-
resentation ρ : C∗max(G,B) → C∗red(G,B). The assembly maps are usually defined
using KK-theory, as in [2], but our definitions are equivalent to these [13].

Let us say that a G-C∗-algebra D is proper if there exists a second countable, lo-
cally compact, proper G-space Z, and an equivariant ∗-homomorphism from C0(Z)
into the center of the multiplier algebra of D, such that C0(Z)D is dense in D
(cf. [16, Definition 1.5]). The main theorem in [11], and a key tool for us here, is
the following result:

3.1. Theorem ([11, Theorem 14.1]). Let G be a countable discrete group and let
D be a proper G-C∗-algebra. The assembly map

µmax : EG(EG,D) → E(C, C∗(G,D))

is an isomorphism.
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We will deduce our main result on the Baum-Connes conjecture, Theorem 1.2,
from Theorem 3.1 (in our first proof of Theorem 1.2 we used instead of Theorem
3.1 a longer argument based on Poincaré duality for manifolds modelled on Hilbert
space). As explained in [11], Theorem 3.1 may be viewed as a generalization of a
theorem of Green [9] and Julg [15] which identifies equivariant K-theory (in the
sense of Atiyah and Segal [20]) with the C∗-algebra K-theory of crossed product
algebras. An immediate consequence is the following result:

3.2. Theorem (see [11, Theorem 15.1] and also [21, Theorem 2.1]). Let G be a
discrete group and suppose that there is a proper G-C∗-algebra D, and elements
β ∈ EG(C, D) and α ∈ EG(D,C), whose composition is α ◦ β = 1 ∈ EG(C,C).
Then for any G-C∗-algebra B the assembly map

µmax : EG(EG,B) → E(C, C∗(G,B))

is an isomorphism.

Proof. The hypotheses imply that the assembly map for B = B⊗C may be viewed
as a direct summand of the assembly map for the proper C∗-algebra B ⊗ D, and
by Theorem 3.1 the latter is an isomorphism.

4. The C∗-algebra of a Euclidean space

Let G be a discrete group which admits an affine, isometric and metrically proper
action on a Euclidean space. Then G is countable and it admits such an action
on a countably infinite-dimensional Euclidean space. With this in mind, let us fix
such a Euclidean space V .

The following definitions are adapted from [14, Section 3]. Denote by Va, Vb, and
so on, the finite-dimensional, affine subspaces of V . In addition, denote by V 0

a the
finite-dimensional linear subspace of V comprised of differences of elements in Va.
Let C(Va) be the Z/2-graded C∗-algebra of continuous functions from V into the
complexified Clifford algebra of V 0

a which vanish at infinity (the grading on C(Va)
is inherited from the grading on the Clifford algebra). Let A(Va) be the graded
tensor product of S = C0(R) and C(Va).

If Va ⊂ Vb then there is a canonical decomposition Vb = V 0
ba+Va, where V 0

ba is the
orthogonal complement of V 0

a in V 0
b . We shall write elements of Vb as vb = vba + va

in accordance with this decomposition. Every function h on Va may be extended
to a function h̃ on Vb by the formula h̃(vb) = h(va).

4.1. Definition. If Va ⊂ Vb then denote by Cba the Clifford algebra-valued func-
tion on Vb which maps vb to vba ∈ V 0

ba ⊂ Cliff(V 0
b ). Define a ∗-homomorphism

βba : A(Va) → A(Vb)

by the formula

βba(f⊗̂h) = f(X⊗̂1 + 1⊗̂Cba)(1⊗̂h̃).

Remark. The element X⊗̂1 + 1⊗̂Cba is regarded as an unbounded multiplier of
A(Vb); see for example [5, Section 6.5]. The elements f(X⊗̂1 + 1⊗̂Cba) and 1⊗̂h̃
are then bounded multipliers of A(Vb), and their product lies in A(Vb).

If Va ⊂ Vb ⊂ Vc then βcb ◦ βba = βca. In view of this we can construct the
C∗-algebra

A(V ) = lim−→ A(Va),
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where the limit is over the directed set of all Va ⊂ V . If G acts on V by affine
isometries then there is an induced action of G on A(V ) by ∗-automorphisms.

4.2. Proposition. If G acts metrically properly on V then A(V ) is a proper G-
C∗-algebra.

Proof. The following elegant argument, which much improves our original proof,
is due to G. Skandalis. The center Z(Va) of the C∗-algebra A(Va) contains the
algebra of continuous functions, vanishing at infinity, on the locally compact space
[0,∞)×Va (if Va is even-dimensional and nonzero this is the full center). The linking
map βba takes Z(Va) into Z(Vb), and so we can form the direct limit Z(V ). It has
the property that Z(V ) ·A(V ) is dense in A(V ). Its Gelfand spectrum is the locally
compact space Z = [0,∞)× V , where V is the Hilbert space completion of V and
Z is given the weakest topology for which the projection to V is weakly continuous
and the function t2 + ‖v‖2 is continuous, and if G acts metrically properly on V
then the induced action on the locally compact space Z is proper, in the ordinary
sense of the term.

In view of Proposition 4.2 and Theorem 3.2, to prove Theorem 1.2 it suffices
to exhibit classes α ∈ EG(A(V ),C) and β ∈ EG(C,A(V )) such that α ◦ β = 1 ∈
EG(C,C). This is what we shall now do. We shall follow the article [14], which is
in turn an adaptation of Atiyah’s elliptic operator proof [1] of the Bott periodicity
theorem. The construction of β is quite simple:

4.3. Definition. Denote by β : S = A(0) → A(V ) the ∗-homomorphism associated
to the inclusion of the zero-dimensional linear space 0 into V . Denote by βt : S →
A(V ) the ∗-homomorphism βt(f) = β(ft), where ft(x) = f(t−1x). The family of ∗-
homomorphisms {βt}t∈[1,∞) is asymptotically equivariant and so is an equivariant
asymptotic morphism from S to A(V ). Denote by β ∈ EG(C,A(V )) its E-theory
class.

As in Atiyah’s paper [1], to construct α ∈ EG(A(V ),C) we shall need some
elliptic operator theory. In the present context the operators must be defined on the
infinite-dimensional space V . Denote by Ha the Hilbert space of square integrable
functions from Va into Cliff(V 0

a ). If Va ⊂ Vb then there is a canonical isomorphism

Hb
∼= Hba⊗̂Ha,

where Hba denotes the Hilbert space associated to V 0
ba. We define a unit vector

ξ0 ∈ Hba by

ξ0(vba) = π−nba/4 exp(− 1
2‖vba‖2),

where nba = dim(V 0
ba), and we regard Ha as included in Hb via the isometry

ξ 7→ ξ0⊗̂ξ. We define

H = lim−→Ha

and denote by s = lim−→ sa the direct limit of the Schwartz subspaces sa ⊂ Ha.

If Va ⊂ V is a finite-dimensional affine subspace then the Dirac operator Da, an
unbounded operator on H with domain s, is defined by

Daξ =
n∑
i=1

(−1)deg(ξ) ∂ξ

∂xi
vi,
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where {v1, . . . , vn} is an orthonormal basis for V 0
a , and {x1, . . . , xn} are the dual

coordinates to {v1, . . . , vn}. If Va is a linear subspace then we also define the
Clifford operator by

Caξ =
n∑
i=1

xiviξ

(cf. Definition 4.1).

4.4. Definition. Fix an algebraic, direct sum decomposition

V = V0 ⊕ V1 ⊕ V2 ⊕ · · · ,
where each Vj is a finite-dimensional linear subspace of V . For each n, define an
unbounded operator Bn,t on H, by the formula

Bn,t = t0D0 + t1D1 + · · ·+ tn−1Dn−1

+tn(Dn + Cn) + tn+1(Dn+1 + Cn+1) + · · · ,
where tj = 1 + t−1j.

The infinite sum is well defined because when Bn,t is applied to any vector in the
Schwartz space s the resulting infinite series has only finitely many nonzero terms.
This is because the function exp(− 1

2‖vj‖2) ∈ sj, used in the definition of the direct
limit s, lies in the kernel of Dj + Cj .

If h ∈ C(V0 ⊕ · · · ⊕ Vn) then the function ht(v) = h(t−1v) acts as a bounded
operator π(ht) on H by pointwise multiplication. With this notation in hand, the
main technical results concerning the operators Bn,t are as follows.

4.5. Proposition (cf. [14, Lemma 2.9 and Proposition 4.2]). The operators Bn,t

are essentially selfadjoint. The formula

αnt : f⊗̂h 7→ ft(Bt)π(ht) (f ∈ S, h ∈ C(V0 ⊕ · · · ⊕ Vn))

defines an asymptotic morphism from A(V0⊕· · ·⊕Vn) into K(H), and the diagram

A(V0 ⊕ · · · ⊕ Vn) //
αn

___

��

βn+1

K(H)

��

=

A(V0 ⊕ · · · ⊕ Vn+1) //

αn+1

___ K(H)

is asymptotically commutative.

It follows from the second part of the proposition that the asymptotic morphisms
αn combine to form a single asymptotic morphism

α : A(V ) //___ K(H).

Now let G act on the Euclidean space V according to the affine, isometric action

g · v = π(g)v + κ(g),

where π is a linear, isometric representation of G on V . For s ≥ 0 form the scaled
G-action

gs · v = π(g)v + sκ(g),

and denote the induced actions on A(V ) and K(H) in the same way.
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4.6. Proposition (cf. [14, Lemma 5.15]). Suppose that the direct sum decompos-
tion V =

⊕∞
0 Vj is chosen in such a way that for every g ∈ G there is an N ∈ N

such that if n > N then g[
⊕n

0 Vj ] ⊂
⊕n+1

0 Vj. Then for every a ∈ A(V ) and every
g ∈ G, αt(g(a)) ∼ gt(αt(a)). Consequently the asymptotic morphism {αt}t∈[1,∞)

determines a class α ∈ EG(A(V ),C).

We are ready to prove the following result:

4.7. Theorem. The composition α ◦ β ∈ EG(C,C) is the identity.

Proof. Let s ∈ [0, 1] and denote by As the C∗-algebra A = A(V ), but with the
scaled G-action (g, a) 7→ gs(a). The algebras As form a continuous field of G-C∗-
algebras over the unit interval, and we shall denote by A[0, 1] the G-C∗-algebra
of continuous sections. In a similar way, form a continuous field of G-C∗-algebras
Ks = K(H) and denote by K[0, 1] the G-C∗-algebra of continuous sections.

The asymptotic morphism α : A //___ K induces an asymptotic morphism

ᾱ : A[0, 1] //___ K[0, 1] ,

and similarly the asymptotic morphism β : S //___ A determines an asymptotic
morphism

β̄ : S //___ A[0, 1]

by forming the tensor product S[0, 1] //___ A[0, 1] and composing with the inclu-

sion S ⊂ S[0, 1] as constant functions. Consider now the diagram

S

��

=

//
β̄
___ A[0, 1]

��

εs

//
ᾱ
___ K[0, 1]

��

εs

S //

β
____ As

//
α

____ Ks

,

where εs denotes evaluation at s ∈ [0, 1]. All the asymptotic morphisms determine
classes in EG-theory, and the ∗-homomorphism εs : K[0, 1] → Kt defines an isomor-
phism, so to prove the theorem it suffices to show that when s = 0 the bottom
composition

S //
β
___ A0

//
α
___ K0

determines the identity element of EG(C,C). When s = 0 the action of G on V

is linear and the asymptotic morphism β : S //___ A0 is homotopic to the equi-
variant ∗-homomorphism β : S → A0 of Definition 4.3. The composition of the
∗-homomorphism β with the asymptotic morphism α is the asymptotic morphism

γ : S //___ K,

γt : f 7→ ft(B0,t).

ReplacingB0,t with s−1B0,t, for 0 < s ≤ 1 we obtain a homotopy to the ∗-homomor-
phism γ0 : f 7→ f(0)P , where P is the projection onto the kernel of B0,t. Since the
kernel is one-dimensional and G-invariant, γ0 determines the identity in EG(C,C).
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5. Reduced group C∗-algebras

If C∗red(G) is an exact C∗-algebra [22] then there is a reduced descent functor on
the homotopy category of asymptotic morphisms which associates to an equivariant

asymptotic morphism φ : A //___ B an asymptotic morphism

φ : C∗red(G,A) //___ C∗red(G,B).

We can therefore define a descent functor in E-theory and the arguments of the
previous sections then apply equally well to the reduced Baum-Connes assembly
map. In the absence of exactness the following ad hoc argument proves that µred

is an isomorphism for the groups we are considering.

5.1. Theorem. If G is a discrete group which admits an affine, isometric and
metrically proper action on a Euclidean space then for every G-C∗-algebra B the
regular representation

ρ : C∗max(G,B) → C∗red(G,B)

determines an invertible morphism ρ ∈ E(C∗max(G,B), C∗red(G,B)).

Proof. Let us consider the case where B = C. We shall define a class σ ∈
E(C∗red(G), C∗max(G)) which is inverse to ρ ∈ E(C∗max(G), C∗red(G)). Suppose given

an equivariant asymptotic morphism φ : S //___ A , where A is any G-C∗-algebra.

Both A and C∗red(G) embed in the multiplier algebra of C∗red(G,A), and C∗red(G)
asymptotically commutes with the image of the asymptotic morphism φ (this is
because φ is asymptotically equivariant). It follows that φ induces an asymptotic
morphism

φred : S⊗̂C∗red(G) //___ C∗red(G,A).

In particular, β induces an asymptotic morphism

βred : S⊗̂C∗red(G) //___ C∗red(G,A).

Now since A is a proper C∗-algebra the regular representation C∗max(G,A) →
C∗red(G,A) is an isomorphism. We define σ ∈ E(C∗red(G), C∗max(G)) to be the
E-theory class of the composition

S⊗̂C∗red(G) //
βred

___ C∗red(G,A)

C∗max(G,A)

OO

∼= ρ

//
α
___ C∗max(G,K) //∼= C∗max(G)⊗̂K.

It follows from Theorem 4.7 that σ ◦ ρ = 1 ∈ EG(C∗max(G), C∗max(G)). To cal-
culate the reverse composition, we note that since C∗max(G,A) ∼= C∗red(G,A) the

asymptotic morphism α : A //___ K induces an asymptotic morphism

αred : C∗red(G,A) //___ C∗red(G,K).

The composition ρ ◦ σ ∈ E(C∗red(G), C∗red(G)) is given by the composition

S⊗̂C∗red(G) //
βred

___ C∗red(G,A) //
αred

___ C∗red(G,K).
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The composition αred ◦ βred is the asymptotic morphism

γred : S⊗̂C∗red(G) //___ C∗red(G,K)

induced, according to the remark made above, by the equivariant asymptotic mor-
phism γ : S → K which is the composition of β and α and is defined by the formula:
γt(f) = ft(B0,t). (This follows from a similar fact for full crossed products.) It is
now possible to deform the action of G on V to a linear action, as in the proof of
Theorem 4.7, and verify that γred = 1 ∈ E(C∗red(G), C∗red(G)).
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Institut de Mathématiques de Luminy, CNRS-Luminy-Case 930, 163 Avenue de Luminy

13288, Marseille Cedex 9, France

E-mail address: kasparov@iml.univ-mrs.fr


