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EIGENVALUE FORMULAS FOR THE UNIFORM TIMOSHENKO

BEAM: THE FREE-FREE PROBLEM

BRUCE GEIST AND JOYCE R. MCLAUGHLIN

(Communicated by Michael Taylor)

Abstract. This announcement presents asymptotic formulas for the eigen-
values of a free-free uniform Timoshenko beam.

Suppose a structural beam is driven by a laterally oscillating sinusoidal force.
As the frequency of this applied force is varied, the response varies. Experimental
frequencies for which the response is maximized are called natural frequencies of
the beam. Our goal is to address the question: if a beam’s natural frequencies
are known, what can be inferred about its bending stiffnesses or its mass density?
To answer this question we need to know asymptotic formulas for the frequencies.
Here we establish these formulas for a uniform beam.

One widely used mathematical model for describing the transverse vibration of
beams was developed by Stephen Timoshenko in the 1920s (see [5], [6]). In this
model, two coupled partial differential equations arise,

(EIψx)x + kAG(wx − ψ)− ρIψtt = 0,

(kAG(wx − ψ))x − ρAwtt = P (x, t).

The dependent variable w = w(x, t) represents the lateral displacement at time t
of a cross-section located x units from one end of the beam. ψ = ψ(x, t) is the
cross-sectional rotation due to bending. E is Young’s modulus, i.e., the modulus
of elasticity in tension and compression, and G is the modulus of elasticity in
shear. The nonuniform distribution of shear stress over a cross-section depends on
cross-sectional shape. The coefficient k is introduced to account for this geometry
dependent distribution of shearing stress. I and A represent cross-sectional inertia
and area, ρ is the mass density of the beam per unit length, and P (x, t) is an
applied force. If we suppose the beam is anchored so that the so-called “free-free”
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boundary conditions hold (i.e., shearing forces and moments are assumed to be zero
at each end of the beam), then w and ψ must satisfy the following four boundary
conditions:

wx − ψ|x=0,L = 0, ψx|x=0,L = 0.(1)

After making a standard separation of variables argument, one finds that the
Timoshenko differential equations for w and ψ lead to a coupled system of two
second order ordinary differential equations for y(x) and Ψ(x),

(EIΨx)x + kAG(yx −Ψ) + p2IρΨ = 0,(2)

(kAG(yx −Ψ))x + p2Aρy = 0.(3)

Here, p2 is an eigenvalue parameter. The conditions on w and ψ in (1) imply y and
Ψ must satisfy the same free-free boundary conditions:

yx −Ψ|x=0,L = 0, Ψx|x=0,L = 0.(4)

This boundary value problem for y and Ψ is self-adjoint, which implies that the
values of p2 for which nontrivial solutions to this problem exist, the eigenvalues for
this model, are real. Furthermore, it is not difficult to show that the collection of
all eigenvalues for this problem forms a discrete, countable, unbounded set of real
nonnegative numbers. Moreover, it can be shown that if σ is a natural frequency for
a beam, then p2 = (2πσ)2 is one of the beam’s eigenvalues. Therefore, it is possible
to determine eigenvalues from natural frequency data obtained in an experiment
like the one indicated in the opening paragraph.

Suppose from vibration experiments we have determined a set of natural frequen-
cies for a beam with unknown elastic moduli and mass density, and have constructed
a sequence of eigenvalues from this data. What information can the eigenvalues pro-
vide about these unknown material parameters? To address this question, we must
determine how eigenvalues depend on E, I, kG, A and ρ. This determination is
not easy, since the dependence of eigenvalues on these coefficients is highly nonlin-
ear. The first step towards general eigenvalue formulas for beams with nonconstant
material and geometric parameters is to derive eigenvalue formulas for the uniform
Timoshenko beam. (A beam is uniform when E, kG, A, I, and ρ are constants.) In
a forthcoming paper (and in Geist [1]), the formulas for the uniform free-free beam
given below are crucial in establishing asymptotic formulas for the eigenvalues of
free-ended beams which have variable density and constant material parameters
otherwise.

This announcement presents asymptotic formulas for the eigenvalues of the free-
ended, uniform Timoshenko beam.

1. A frequency equation

In this section a frequency equation is derived. The notation follows that given
in Huang [3]. When E, kG, A, I, and ρ are constant, the boundary value problem
defined by (2), (3), and (4) may be written in the following simplified notation. Let
ξ = x/L, b2 = ρAL4p2/(EI), r2 = I/(AL2), and s2 = EI/(kAGL2). Interpreting
a prime (′) as differentiation with respect to ξ, equations (2) and (3) can be proved
equivalent to the differential equations

s2Ψ′′ − (1 − b2r2s2)Ψ + y′/L = 0,(5)
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and

y′′ + b2s2y − LΨ′ = 0;(6)

similarly, the four boundary conditions given in (4) may be written as

Ψ′|ξ=0,1 = 0,

[
y′

L
−Ψ

]
ξ=0,1

= 0.(7)

By eliminating y or Ψ from (5) or (6), we find that these two second order
equations imply that y and Ψ must satisfy two decoupled fourth order ordinary
differential equations

y(iv) + b2(r2 + s2)y′′ − b2(1− b2r2s2)y = 0,(8)

Ψ(iv) + b2(r2 + s2)Ψ′′ − b2(1 − b2r2s2)Ψ = 0.(9)

Coupling between y and Ψ still occurs through the boundary conditions (7). Define
a and B as

a =

r2 + s2

2
−
√(

r2 − s2

2

)2

+
1

b2

1/2

,(10)

B =

r2 + s2

2
+

√(
r2 − s2

2

)2

+
1

b2

1/2

.(11)

In [3], Huang derives general solutions to equations (8) and (9), valid when b2r2s2

is not 1 or 0. These solutions are

y = c1 cos baξ + c2 sin baξ + c3 cos bBξ + c4 sin bBξ,

Ψ = d1 sin baξ + d2 cos baξ + d3 sin bBξ + d4 cos bBξ.

The ci may be determined in terms of the di by substituting the general solutions
for y and Ψ into the second order differential equations (5) and (6); y can then be
expressed in terms of the di. For b 6= 0 or 1/rs, one can then show that solutions to

the boundary value problem given in (5), (6), and (7) exist if and only if Â~d = ~0,

where ~d = (d1, d2, d3, d4)
T and

Â =



0 s2

a2 − s2
0 s2

−s2 +B2

ba 0 bB 0

s2 sin ba
a2 − s2

s2 cos ba
a2 − s2

s2 sin bB
B2 − s2

s2 cos bB
B2 − s2

ba cos ba −ba sin ba bB cos bB −bB sin bB


.(12)

The matrix equation Â~d = ~0 has nontrivial solutions if and only if the determi-
nant of the matrix Â vanishes. Let Ã(b) = |Â|. After carrying out some lengthy
but routine calculations, it can be shown that

Ã(b) = 2(1− cos ba cos bB)

+
b

(b2r2s2 − 1)1/2
· (b2r2(r2 − s2)2 + 3r2 − s2) sin ba sin bB.

(13)
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The matrix equation Â~d = ~0 defines solutions to (5)–(7) whenever the (nonnegative)
frequency parameter b is not equal to 0 or 1/rs.1 This implies that when b > 0 and
b 6= 1/rs, the free-free Timoshenko boundary value problem will have nontrivial

solutions if and only if Ã(b) = 0. Recall that the nonnegative eigenvalue parameter

p2 appearing in equations (2) and (3) satisfies b =
√
ρA/(EI)L2p. It follows that

with the possible exception of p = (rsL2)−1
√
EI/(ρA), p > 0 is the square root

of a nonzero eigenvalue if and only if Ã(
√
ρA/(EI)L2p) = 0. The eigenvalue

formulas documented in the next section are established by estimating the roots of
the frequency function Ã.

2. Asymptotic formulas

The asymptotic formulas for the eigenvalues of the free-free uniform Timoshenko
beam are presented in the theorem below. The discussion following the theorem
is intended to provide an overview of the theorem’s proof. For a comprehensive
and thorough demonstration of the following result, the interested reader should
consult [1, pp. 54–128].

Theorem 1. Let E, kG, I, A, and ρ all be positive constants with E 6= kG, and
let

0 < p̄1 ≤ p̄2 ≤ · · · ≤ p̄i ≤ p̄i+1 ≤ · · ·
be the positive square roots of eigenvalues for the uniform Timoshenko beam with
free ends. Let

0 < p1 ≤ p2 ≤ · · · ≤ pi ≤ pi+1 ≤ · · ·
be the positive roots of the function

sin

(
Lρ1/2

√
E

p

)
sin

(
Lρ1/2

√
kG

p

)
.

Then there exist fixed integers Î1 and Ñ such that if i > Î1, then

|pi − p̄i+Ñ | < O(1/pi).(14)

Now suppose {pin}∞n=1 ⊂ {pi}∞i=1 such that for some fixed but arbitrary e ∈ (0, 1),

sin

(
Lρ1/2

√
E

pin

)
= 0(15)

and ∣∣∣∣sin(Lρ1/2

√
kG

pin

)∣∣∣∣ > e, n = 1, 2, . . . .(16)

1For a discussion of when b = 1/rs defines an eigenvalue, see [1, pp. 26–29]. For any choice of
the beam parameters E, kG, ρ, I and A, the equation b = 0 defines an eigenvalue. In this case, if k1

and k2 are arbitrary constants, then

(
Y
Ψ

)
= k1

(
Lξ
1

)
+k2

(
0
1

)
solves the boundary value

problem (5)–(7). Since the two vectors on the right of the last equation are linearly independent,
two linearly independent solutions to (5)–(7) always exist when b = 0. Hence b = 0 always defines

the “double” eigenvalue p2 = 0 for the free-free Timoshenko beam. Solutions to the boundary
value problem when b = 0 correspond to rigid body rotation and displacement of the beam.
Nonzero double eigenvalues are also possible. See Geist and McLaughlin [2] for a discussion and
examples of nonzero double eigenvalues.
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Then there is an Î2 such that in > Î2 implies

p̄2
in+Ñ

= p2
in +

(
1− 1

2

kG+ E

kG− E

)
A

I

kG

ρ
+O(1/pin).(17)

Similarly, if {pjm}∞m=1 ⊂ {pi}∞i=1 is such that

sin

(
Lρ1/2

√
kG

pjm

)
= 0(18)

and ∣∣∣∣sin(Lρ1/2

√
E

pjm

)∣∣∣∣ > e, m = 1, 2, . . . ,(19)

then there is an Î3 such that jm > Î3 implies

p̄2
jm+Ñ

= p2
jm +

(
1 +

1

2

kG+ E

kG− E

)
A

I

kG

ρ
+O(1/pjm).(20)

3. Proof sketch

Suppose f and g are defined as

f =

(
3r2 − s2

b2
+ r2(r2 − s2)2

)
sin ba sin bB,

g =
2(1− cos ba cos bB)

√
r2s2 − 1

b2

b2
;

then Ã(b) can be written as

Ã(b) =
b2√

r2s2 − 1
b2

(f + g).

For b > 0, Ã(b) = 0 if and only if f + g = 0. It is instructive to observe that for
b > 1/rs, the arguments ba and bB of the trigonometric functions appearing in the
expressions defining f and g are strictly increasing in b. More importantly, as b in-
creases, g converges to zero and f converges to the function r2(r2−s2)2sin ba sin bB.

It follows then that for large b, the roots of Ã are approximated by the roots of
sin ba sin bB. In [1] it is shown that the isolated roots of the function sin ba sin bB,
that is, those roots of sin ba sin bB that are separated from neighboring roots of
sin ba sin bB by more than some arbitrarily chosen fixed distance, occur along the
b-axis at most an O(1/b2) distance from the nearest roots of Ã. Furthermore, it
is shown in [1] that every root of sin ba sin bB, regardless of whether or not it is
well separated from the neighboring roots of sin ba sin bB, occurs no further than
an O(1/b) distance from the nearest zero of the function. These results prove that

near every root of sin ba sin bB, at least one root of Ã lies nearby.
In [1] it is also shown (using Rouché’s Theorem in the complex plane) that there

exists an unbounded, strictly increasing infinite sequence σj , j = 1, 2, . . . , which

defines a sequence of intervals [σ∗, σj ] in which the functions Ã and sin ba sin bB
have exactly the same number of zeros. Hence for b ∈ [σ∗, σj ], j = 1, 2, . . . , there is

a one-to-one correspondence between the roots of sin ba sin bB and the roots of Ã(b).
For b large enough, the roots of sin ba sin bB can be matched up one-to-one with
the nearest roots of Ã(b) in such a way that each root of sin ba sin bB lies no further
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than an O(1/b) distance away from the corresponding nearest root of Ã. For those

roots of Ã near isolated roots of sin ba sin bB, the distance between such roots of Ã
and the corresponding nearest roots of sin ba sin bB is O(1/b2). Even though a and
B defined in (10) and (11) are nonlinear functions of the frequency parameter b, it
is possible to explicitly determine all roots of the function sin ba sin bB. Eigenvalues
satisfying conditions (15) and (16) or conditions (18) and (19) correspond to roots
of the frequency function that are near isolated roots of sin ba sin bB. For all such
eigenvalues, formulas for the roots of sin ba sin bB are accurate enough approxima-
tions to the roots of Ã that they can be used to derive the estimates given in (17)
and (20).

To see why the O(1/b2) bound applies to isolated roots of sin ba sin bB, let b0 be
such an isolated root; then b0 is an isolated simple root of f . When b is near b0,
df/db must be bounded away from zero. Since for all b > 1/rs, 0 ≤ g(b) < 2rs/b2,
it follows that if b0 is large enough, then f(b0 + ∆b) = −g(b0 + ∆b) for some

∆b = O(1/b20), and hence that Ã(b0 + O(1/b20)) = 0. To gain some insight into
why only an O(1/b) bound (and not necessarily an O(1/b2) bound) applies to roots

of Ã near nonisolated roots of sin ba sin bB, suppose n and m are positive integers
such that n − m is odd, and that b1 satisfies b1a(b1) = nπ and that b2 satisfies
b2B(b2) = mπ, where b1 and b2 are very near one another. (Nonisolated roots
b1 and b2 of sin ba sin bB satisfying these requirements exist for many choices of
the beam parameters. Existence of double roots is shown in Geist [1]. See also
Geist and McLaughlin [2].) For values of b near b1 and b2, g(b) ≈ 2rs/b2, and
df/db|bi , i = 1, 2, is small (since b1 and b2 must be located near one of the local
minima of f). Hence, the dominant term in a Taylor series expansion for f about
bi, i = 1 or 2, will be quadratic in b − bi = ∆b when b is small. This implies the
equation f(bi + ∆b) = −g(bi + ∆b) ≈ −2rs/(bi + ∆b)2 will have a solution when

∆b ≈ [O(1/b2i )]
1/2 = O(1/bi), which implies that Ã(bi +O(1/bi)) = 0.
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