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THE NASH CONJECTURE FOR THREEFOLDS

JÁNOS KOLLÁR

(Communicated by Robert Lazarsfeld)

Abstract. Nash conjectured in 1952 that every compact differentiable man-
ifold can be realized as the set of real points of a real algebraic variety which
is birational to projective space. This paper announces the negative solution
of this conjecture in dimension 3. The proof shows that in fact very few 3-
manifolds can be realized this way.

1. Introduction

In real algebraic geometry, one of the main directions of investigation is the
topological study of the set of real solutions of algebraic equations. The first general
theorem was proved in [Nash52] and later improved by [Tognoli73]. Their result
says that every compact differentiable manifold is algebraic:

Theorem 1.1 ([Nash52, Tognoli73]). Let Mn be a compact differentiable mani-
fold. Then there are real polynomials fi(x1, . . . , xN ) such that their common zero
set

V (f1, . . . , fs)(R) := {x ∈ RN : fi(x) = 0 ∀i} ⊂ RN

is diffeomorphic to Mn.

Nash also considered further refinements of this result. To state these, we need to
fix basic concepts, since the terminology in real algebraic geometry is, unfortunately,
not at all uniform.

Definition 1.2. By a real algebraic variety I mean a variety given by real equa-
tions, as defined in most algebraic geometry books (see, for instance, [Shafarevich72,
Hartshorne77]). This is different from the definition frequently used in real alge-
braic geometry which essentially considers only the germ of X along its real points
(cf. [BCR87]).

If X is a real algebraic variety, then X(R) denotes the set of real points of X
as a topological space and X(C) denotes the set of complex points as a complex
space. For all practical purposes we can identify X with the pair (X(C), complex
conjugation).

The varieties X = V (f1, . . . , fs) constructed by Nash do not seem to have any
special properties. Nash considered the question if (1.1) remains true for real alge-
braic varieties which are rational:

Received by the editors July 17, 1998.
1991 Mathematics Subject Classification. Primary 14P25.

c©1998 American Mathematical Society

63
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Definition 1.3. Let X, Y be real algebraic varieties. We say that X and Y are
birational if there is a birational map φ : X 99K Y which is defined over R. If X
is birational to Pn, then X is called rational over R or just rational. (Note that in
many papers X is called rational if X(C) is birational to Pn.)

Conjecture 1.4 ([Nash52, p. 421]). Let Mn be a compact differentiable manifold.
Then there is a smooth real algebraic variety Xn such that X is birational to Pn

and X(R) is diffeomorphic to Mn.

Unbeknownst to Nash, this question has been settled for surfaces much earlier.

Theorem 1.5 ([Comessatti14]). Let S be a smooth real algebraic surface. Assume
that S is birational to P2 and S(R) is orientable.

Then S(R) is either a sphere or a torus.

In higher dimensions the conjecture of Nash remained open, and some partial
results seemed to support the hope that it may hold in dimensions 3 and up.
[Benedetti-Marin92] showed that for every 3-manifold M3 there is a singular real
algebraic variety X3 such that X is birational to P3 and X(R) is homeomorphic
to M3. [Akbulut-King91] and [Mikhalkin97] showed that a weaker variant, the
so-called “topological Nash conjecture” is true.

The aim of this paper is to announce a solution to the Nash conjecture in
dimension 3. The result says that the Nash conjecture again fails completely.
(The relevant basic concepts of 3-manifold topology are recalled in (1.11). See
[Hempel76, Rolfsen76, Scott83] for more details.)

Main Theorem 1.6. Let X be a smooth, projective, real algebraic 3-fold. Assume
that X is birational to P3 and that X(R) is orientable. Then X(R) is diffeomorphic
to a 3-manifold

M#aRP3#b(S1 × S2) for some a, b ≥ 0,

where M is one of the following:
1. connected sum of lens spaces,
2. Seifert fibered,
3. S1 × S1-bundle over S1 or a Z2-quotient of such.
4. finitely many other possibilities.

The proof establishes a tight connection between certain algebraic properties of
X(C) and geometric structures of X(R). In some cases such a relationship has
not been proved, and this accounts for the finitely many unknown cases. I believe,
however, that there are no exceptions:

Conjecture 1.7. The cases (1.6), 3–4 do not occur.

Remark 1.8. The assumption that X be birational to P3 can be weakened consid-
erably. Namely, (1.6) also holds if we assume the following equivalent conditions

1. X(C) is uniruled (that is, covered by rational curves),
2. X has Kodaira dimension −∞ (that is, H0(X,OX(mKX)) = 0 for every

m ≥ 1).
In this case X(R) may have several connected components and each satisfies the
conclusions of (1.6). I do not know what happens if some components of X(R) are
orientable and some are not.
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The orientability of X(R) is not a crucial point for (1.6). The proof proceeds
by a reduction argument. At each step we either get a nice description or we
exhibit a special surface in X(R). As far as I can tell, it is only an accident that
all these special surfaces imply nonorientability. They also imply that X(R) is not
hyperbolic, and we obtain the following. (Again I conjecture that there are no
exceptions.)

Theorem 1.9. There are only finitely many hyperbolic 3-manifolds (orientable or
not) among the X(R) where X is a smooth, projective, real algebraic 3-fold such
that X(C) is uniruled.

A similar result was obtained in all dimensions by Viterbo, using stronger con-
ditions on rational curves.

Theorem 1.10 ([Viterbo98]). Let X be a smooth, projective, real algebraic variety
of dimension n ≥ 3. Assume that H2(X(C), Z) ∼= Z and that X(C) is covered by
rational curves Cλ such that [Cλ] ∈ H2(X(C), Z) is a generator.

Then X(R) does not carry any metric with negative sectional curvature.

Definition 1.11. For relatively prime 0 < q < p consider the action of Zp on
S3 ∼ (|x2|+ |y2| = 1) ⊂ C2 given by (x, y) 7→ (e2πi/px, e2πiq/py). The quotient is a
3-manifold called the lens space Lp,q.

A 3-manifold M is called Seifert fibered if there is a morphism f : M → F to
a topological surface such that every P ∈ F has a neighborhood P ∈ U ⊂ F such
that f : f−1(U) → U is fiber preserving diffeomorphic to one of the normal forms
fc,d defined below.

Let S1 ⊂ C be the unit circle with coordinate u and D2 ⊂ C the closed unit disc
with coordinate z. For a pair of integers c, d satisfying 0 < c < d and (c, d) = 1,
define fc,d : S1 ×D2 → D2 by fc,d(u, z) = uczd. d is called the multiplicity of the
fiber over 0.
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2. Outline of the proof

We utilize the theory of minimal models to investigate real algebraic threefolds.
This approach is very similar in spirit to the one employed by [Comessatti14].

For algebraic threefolds over C, the minimal model program (MMP for short)
provides a very powerful tool. The method of the program is the following. (See
[Kollár87, CKM88] or [Kollár-Mori98] for introductions.)

Starting with a smooth projective 3-fold X , we perform a series of “elementary”
birational transformations

X = X0 99K X1 99K · · · 99K Xn =: X∗

until we reach a variety X∗ whose global structure is “simple”. (Neither the inter-
mediate steps Xi nor the final X∗ are uniquely determined by X .) In essence the
minimal model program allows us to investigate many questions in two steps: first
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study the effect of the “elementary” transformations and then consider the “simple”
global situation. In practice both of these steps are frequently rather difficult.

If X is defined over R, then there is a variant of the MMP where the intermediate
varieties Xi are also defined over R. I refer to this as the MMP over R. This suggests
the following two step approach to understand the topology of X(R):

1. Study the topological effect of the “elementary” transformations.
2. Investigate the topology of X∗(R).
A somewhat unpleasant feature of the theory is that the varieties Xi are not

smooth, but have so-called terminal singularities. This means that Xi(R) is not
necessarily a manifold. In developing the theory for real algebraic threefolds, we
again have to understand the occurring terminal singularities. This is done in
section 3.

The heart of the method is the study of the “elementary” steps of the MMP over
R. In general these steps can be very complicated but, as it turns out, one can find
reasonable conditions which ensure that the steps of the MMP can be described
topologically.

In order to get an idea why this should be true, let us look at the MMP over
C. It is known by [Mori82, Cutkosky88] that the first nonhypersurface singularity
that occurs is of the form

C3/Z2 where the action is (x, y, z) 7→ (−x,−y,−z).

If the MMP over R behaves similarly, then we obtain R3/Z2 as a subset of the real
points of some Xi. R3/Z2 is not orientable and it contains many copies of RP2

which are 2-sided. Thus we can hope to obtain a 2-sided RP2 inside X(R) as well.
This leads to the working hypothesis

(∗) If X(R) does not contain a 2-sided RP2, then all the steps of the MMP starting
with X are “simple”.

Most 3-manifolds do not contain a 2-sided RP2, so this would be a quite nice
result.

Unfortunately (∗) is not true. The reason is that a step of the MMP Xi → Xi+1

may introduce a conjugate pair of points of the form C3/Z2. In this case Xi(R) and
the singular set of Xi may be disjoint and they are unlikely to have any relationship.
We may obtain a complicated real singular point at a later step of the program.

Fortunately, there are some indications that this does not happen. [Kawamata96]
studied how singularities of the form C3/Zm can appear during an MMP. His meth-
ods are easy to generalize to the real case and we get the following.

Proposition 2.1. If a real singularity of the form C3/Zm appears at some stage of
the MMP over R then the real singularity C3/Z2 must have appeared at an earlier
stage.

Attempts to extend the results of [Kawamata96] to more general singularities
have been so far unsuccessful, but (2.1) points in the right direction. It turns
out that there is a resonable list of steps where a “bad” singularity first appears.
Moreover, each of these steps is associated with a surface of nonnegative Euler
characteristic in X(R). The details of this are explained in section 4.

The next step is to study the topology of X∗(R). So far we have not used that
X is birational to P3, but at this point this becomes crucial. The structure theory
of [KoMiMo92] implies that a 3-fold X is uniruled iff X∗ falls in one of 3 classes:
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1. (Conic fibrations) There is a morphism g : X∗ → S onto a surface defined over
R such that the general fiber is a conic. Correspondingly there is a morphism
X∗(R) → S(R) whose general fibers are S1 or empty.

2. (Del Pezzo fibrations) There is a morphism g : X∗ → C onto a curve defined
over R such that the general fiber is a Del Pezzo surface (these are special
rational surfaces). Correspondingly, there is a morphism X∗(R) → C(R)
whose general fiber is a union of spheres, a torus or empty.

3. (Fano varieties) The anticanonical bundle of X∗ is ample.
The first two of these cases are discussed in section 5. Section 6 contains some

remarks about Fano varieties.

3. Terminal singularities over R

Terminal singularities over C come in two families: hypersurface singularities and
quotients of hypersurface singularities (see [Reid85] for a good introduction). Using
the methods of [AGV85] it is easy to obtain normal forms for terminal hypersurface
singularities over R. (f≥m denotes any power series of multiplicity ≥ m and fm

denotes its degree m homogeneous part.)

Theorem 3.1 ([Kollár97, 2.8–10]). Assume that F ∈ R[[x, y, z, t]] defines a termi-
nal singularity. Then, up to a sign and a coordinate change, F can be brought to
one of the following normal forms.

cAn : x2 ± y2 + f≥n+1(z, t), (n ≥ 0).
cD4 : x2 + f≥3(y, z, t), (f3 is not divisible by a square).

cD>4 : x2 + y2z + aytr + h≥s(z, t), (a ∈ R, r ≥ 3, s ≥ 4).
cE6 : x2 + y3 + yg≥3(z, t) + h≥4(z, t), (h4 6= 0).
cE7 : x2 + y3 + yg≥3(z, t) + h≥5(z, t), (g3 6= 0).
cE8 : x2 + y3 + yg≥4(z, t) + h≥5(z, t), (h5 6= 0).

Example 3.2. If 0 ∈ X is an isolated 3-dimensional singularity, then X(R) is a
cone over a surface near 0. Consider for instance the singularities Xf := (x2 +
y2 + f(z, t) = 0). Assume that f(z, t) is negative on m connected domains near the
origin. Then Xf (R) is a point for m = 0, a cone over a torus for m = 1 and a cone
over m disjoint spheres for m > 1.

If M is a 3-complex which is locally always like a cone over disjoint spheres,
then its topological normalization M is a manifold and M is obtained from M by
pinching together finite collections of points.

Quotient singularities frequently have unexpected real forms. Consider for in-
stance the Z4-action on C2 given by (x, y) 7→ (ix,−iy). There is an isomorphism

C2/Z4
∼= (uv − w4 = 0) ⊂ C3 given by u, v, w 7→ x4, y4, xy.

The singularity (uv − w4 = 0) has 3 different real forms:

uv − w4 = 0, u2 + v2 − w4 = 0 and u2 + v2 + w4 = 0.

For 3-dimensional terminal singularities this does not happen. As Reid pointed
out, this is closely related to the fact that the canonical divisor class generates the
torsion subgroup of the local Picard group. We obtain the following classification.
(Index = n means that we take quotient by Zn and weights = (a, b, c, d) means
that the action is (x, y, z, t) 7→ (εax, εby, εcz, εdt) where ε is a primitive nth root of
unity. Note that in each case the action itself is not defined over R but the ring of
invariants has a C-basis consisting of monomials, which gives a real structure.)
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Theorem 3.3 ([Kollár97, 3.4]). Let 0 ∈ X be a 3-fold terminal nonhypersurface
singularity over R. Then 0 ∈ X is isomorphic over R to a singularity described by
the following list:

name equation index weights condition
cA/2 x2 ± y2 + f(z, t) 2 (1, 1, 1, 0)
cA/n xy + f(z, t) n ≥ 3 (r,−r, 1, 0) (n, r) = 1
cAx/2 x2 ± y2 + f≥4(z, t) 2 (0, 1, 1, 1)
cAx/4 x2 ± y2 + f≥2(z, t) 4 (1, 3, 1, 2)
cD/2 x2 + f≥3(y, z, t) 2 (1, 0, 1, 1)
cD/3 x2 + f≥3(y, z, t) 3 (0, 2, 1, 1) f3(1, 0, 0) 6= 0
cE/2 x2 + y3 + f≥4(y, z, t) 2 (1, 0, 1, 1)

4. The minimal model program over R

In order to understand how X(R) is obtained from X∗(R) it is necessary to
study the intermediate steps of the MMP. These steps are, unfortunately, not well
understood even over C. Thus we change point of view somewhat, and try to
describe how a given Y can be the target of one step Y1 → Y . Again we run into
problems, and the answer is not known even if Y is smooth.

We thus try to describe only the “simplest” steps Y1 → Y . To do this, we need to
develop a measure of how to compare the exceptional divisors of different birational
maps Yi → Y .

4.1. The hierarchy of exceptional divisors. Let S be a smooth surface and
f1 : S1 → S the blowup of a smooth point with exceptional curve E1 ⊂ S1. Next
blow up a point on E1 to obtain f2 : S2 → S1 with exceptional curve E2. The
composite f1 ◦ f2 : S2 → S has two exceptional curves which I denote by E1 and
E2 by a slight abuse of notation. One can easily compute that the Jacobian of
f1 ◦ f2 vanishes along E1 to order 1 and along E2 to order 2. If we perform further
blowups, we obtain curves with higher and higher order vanishing of the Jacobian
along them.

Thus the order of vanishing of the Jacobian establishes a hierarchy of all ex-
ceptional curves, with the smallest order of vanishing corresponding to curves that
appear after just one blowup.

A similar argument applies to blowups of smooth varieties in any dimension.
Terminal singularities are essentially defined to make a similar hierarchy possible,
but there are two problems. First, the correct analog of the order of vanishing of
the Jacobian of f : Z → Y along an exceptional divisor E ⊂ Z is only a positive
rational number. It is called the disrepancy and it is denoted by a(E, Y ) (see
[Kollár98a, 3.3] or [Kollár-Mori98, 2.25] for more details). Second, and this is more
serious, if we have f2 : Y2 → Y1 and f1 : Y1 → Y with exceptional divisors E2 and
E1, then we can only say that

a(E2, Y ) ≥ 1
m

(a(E1, Y ) + 1)

where m is the index of Y1 at f2(E2). If Y1 has index 1 at f2(E2), then we are in
good shape, but not in general.
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4.2. Gateways. Assume now that everything is over R and that Y1 has index 1
along Y1(R). If we know that E2(R) is Zariski dense in E2(C), then f2(E2) is a real
point of Y1.

This observation leads us to study those steps Xi → Xi+1 of the MMP over R
such that KXi is Cartier along Xi(R), but this fails for Xi+1. These are called
gateway contractions in [Kollár98a], since they are the gateways through which the
MMP can leave the category of “nice” varieties.

A lengthy case by case analysis produces a list of such gateways [Kollár98a, 8.2].
A study of each of these gateways is relatively straightforward, and in most cases
there is a surface of nonnegative Euler characteristic in Xi(R). The remaining cases
are rather mild and we obtain the following.

Theorem 4.1 ([Kollár98a, 1.13]). Let X be a smooth, projective, real algebraic 3-
fold such that X(R) is orientable. Let fi : Xi 99K Xi+1 be any of the intermediate
steps of the MMP over R starting with X. Then the topological normalization Xi(R)
(3.2) is a 3-manifold and the following is a complete list of possibilities for fi:

1. (R-trivial) fi is an isomorphism in a (Zariski) neighborhood of the set of real
points.

2. (R-small) fi : Xi(R) → Xi+1(R) collapses a 1-complex to points and there
are small perturbations f̃i of fi such that f̃i : Xi(R) → Xi+1(R) is a homeo-
morphism.

3. (smooth point blowup) fi is the inverse of the blowup of a smooth point P ∈
Xi+1(R).

4. (singular point blowup) fi is the inverse of a weighted blowup of a singular
point P ∈ Xi+1(R). Up to real analytic equivalence near P , there are two
cases:
(a) Xi+1

∼= (x2 + y2 + g≥2m(z, t) = 0) where g2m(z, t) 6= 0, m ≥ 1 and
Xi

∼= B(m,m,1,1)Xi+1.
(b) Xi+1

∼= (x2+y2+g≥2m+1(z, t) = 0) where m ≥ 1, z2m+1 ∈ g and zitj 6∈ g
for 2i + j < 4m + 2; Xi

∼= B(2m+1,2m+1,2,1)Xi+1.

By repeatedly applying (4.1) to each step of the MMP, we can compare X∗(R)
and X(R). This shows that it is sufficient to prove (1.6) for X∗.

Theorem 4.2 ([Kollár98a, 1.2]). Let X be a smooth, projective, real algebraic 3-
fold and X∗ the result of the MMP over R. Assume that X(R) is orientable.

Then KX∗ is Cartier along X∗(R), X∗(R) is a topological 3-manifold and X(R)
can be obtained from X∗(R) by repeated application of the following operations:

0. throwing away all isolated points of X∗(R),
1. taking connected sums of connected components,
2. taking connected sum with S1 × S2,
3. taking connected sum with RP3.

The operations (4.2), 2–3 appear even if X∗ is smooth.

Example 4.3. Let X be a smooth 3-fold over R and 0 ∈ X(R) a real point. Set
Y = B0X . Then Y (R) ∼ X(R) # RP3.

Let X be a smooth 3-fold over R and D ⊂ X a real curve which has a unique real
point {0} = D(R). Assume furthermore that near 0 the curve is given by equations
(z = x2 +y2 = 0). Let Y1 be the blowup of D in X . Y1 has a unique singular point;
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let Y denote the result of blowing it up. It is not hard to see that Y is smooth and
Y (R) ∼ X(R) # (S1 × S2).

5. Conic and Del Pezzo fibrations

If X∗ is either a conic or a Del Pezzo fibration, then we obtain a map of X∗(R)
to a 2- or 1-dimensional space. One can try to use this map to get a geometric
description of X∗(R). It turns out that this is indeed possible, but the two cases
require different methods. We start with the conic bundle case.

Let Y be a real algebraic 3-fold and f : Y → S a conic fibration. Then Y (R) →
S(R) is a map of a 3-complex to a 2-complex such that every fiber has dimension
1. Moreover, Y (R) → S(R) is a circle bundle over the complement of a 1-complex.
It seems quite promising that Y (R) → S(R) is a Seifert fibration. Nonetheless, one
has to be more careful, as the following example shows.

Example 5.1. It is known that every 3-manifold M can be written as a degree 3
branched covering of S3, branched along a knot C ⊂ S3 (cf. [Rolfsen76, 10.G]). Let
S3 → S2 be a Hopf fibration which is in general position with respect to C. The
composite can be factored as M → F → S2 where F is a 2-complex and M → F
has connected fibers. M → F has all the properties enumerated above, but it is
not a Seifert fibration in general.

From this we see that in order to understand the topology of a conic fibration,
one has to study the special fibers in detail.

Let Y be a real projective 3-fold with terminal singularities such that KY is
Cartier along Y (R) and Y (R) is an orientable 3-manifold. Let f : Y → S be
a rational curve fibration such that −KY is f -ample. An elementary topological
argument shows that one can factor Y (R) → S(R) as

Y (R)
f̃→ F → S(R)

where F is a 2-manifold with boundary, f̃ is surjective and has connected fibers. It
is not hard to see that f̃ is an S1-bundle over IntF , except at finitely many points
P1, . . . , Ps. At the boundary points of F one can choose local coordinates such that
f̃ is given as (x, y, z) 7→ (x2 + y2, z). It remains to establish a connection between
the algebraic f and the topological f̃ near the special points Pi.

Theorem 5.2 ([Kollár98b, 1.9]). Notation as above. For each Pi there is m =
m(Pi) ≥ 2 such that

1. f̃ : Y (R) → F has a Seifert fiber of multiplicty m above Pi, and
2. near Pi, f is real analytically isomorphic to(

P2
x:y:z × A2

s,t

)
/Zm ⊃ (x2 + y2 − z2 = 0)/Zm → A2

s,t/Zm,

where Zm acts by rotation with angle 2π/m on (s, t), it fixes z and acts by
rotation with angle 2aπ/m on (x, y) for some (a, m) = 1.

If F has no boundary, then f̃ : Y (R) → F is a Seifert fibration. If F does have
boundary, then it is easy to see that Y (R) is a connected sum of lens spaces. This
proves (1.6) in the conic fibration case.

Next we study Del Pezzo fibrations. Here we have a morphism f : Y → C such
that Y has only isolated singularities, −KY is f -ample, KY is Cartier at all real
points, every fiber of f is irreducible (over R) and Y (R) is a 3-manifold.
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As in the conic fibration case, the essential point is the analysis of the singular
fibers.

Let A ∼ S1 be a connected component of C(R) and p1, . . . , ps ∈ A the points
(in cyclic order) over which f is not smooth. For each i pick a point qi ∈ (pi, pi+1).
Then Yqi := f−1(qi) is a smooth Del Pezzo surface and Yqi(R) is orientable. Thus
by (1.5) Yqi(R) is either S1 × S1 or a disjoint union of copies of S2. Gluing 3-
manifolds along such surfaces is a relatively simple operation, thus one can expect
to get a good description of Y (R) by describing the pieces Zi := (f−1[qi−1, qi])(R)
for every i.

f : Zi → [qi−1, qi] is a function whose only critical value is pi. Thus Zi can be
viewed as a regular neighborhood of the critical level set (f−1(pi))(R).

The complex projective surface Si := f−1(pi) is a “singular Del Pezzo” surface
which appears as a degeneration of smooth Del Pezzo surfaces. Quite a lot is known
about such surfaces (see, for instance, [Keel-McKernan98, Manetti91, Manetti93,
Reid94]). Unfortunately, a complete classification of such singular Del Pezzo sur-
faces is not feasible because of the combinatorial complexity of the problem.

It is nonetheless possible to use the methods of these authors to develop a rough
topological description of the Si(R). As in [Kollár98c], the end result is that Y (R)
is glued together from the following pieces:

1. S1 × S2 minus open balls,
2. lens space minus open balls,
3. solid torus minus open balls,
4. interval bundle over a torus or a Klein bottle.

It is not hard to see that all such manifolds belong to one of the cases (1.6.1–3).
This proves (1.6) in the Del Pezzo fibration case.

6. Speculations

6.1. Fano threefolds. In order to complete the proof of (1.6), we still have to deal
with the case when X∗ is a Fano 3-fold. There is a complete list of smooth Fano
3-folds [Iskovskikh80]. It would be interesting to determine the possible topological
types of smooth real Fano 3-folds. Unfortunately this may not be easy. For instance
it is not known if Y (R) can be hyperbolic for a smooth degree 4 hypersuface Y ⊂ P4.
(The case of degree 4 surfaces S ⊂ P3 was treated in [Kharlamov76].)

In general it is known that there are only finitely many families of singular Fano
varieties in dimension 3 [Kawamata92], but there is no explicit list. From this we
conclude that as Y runs through all singular Fano 3-folds, we obtain only finitely
many topological spaces Y (R) up to homeomophism. The methods of [Kollár93]
can be used to derive an explicit upper bound. (I have not computed the resulting
bound; it is probably something like 101010

.)
This concludes the proof of (1.6).
Many Fano 3-folds are birational to conic or Del Pezzo fibrations, and this could

be used to understand the topology of their real part. In other cases there is
frequently a fibration whose general fibers are elliptic curves. It should be possible
to develop a topological theory of real elliptic fibrations. Unfortunately I do not
know a general result which asserts that such fibrations always exist.
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6.2. Higher-dimensional Nash conjecture. It is natural to consider the Nash
conjecture in higher dimensions as well. The minimal model program is still con-
jectural in dimensions above 3 and it is very unlikely that terminal singularities or
the steps of the program will ever be completely described. Nonetheless, (1.9) and
(1.10) suggest that the following may be true:

Conjecture 6.1. Let X be a smooth, projective, real algebraic variety of dimension
n ≥ 3. Assume that X(C) is uniruled. Then X(R) does not carry any metric with
negative sectional curvature.

One can even go further and pose the following question, which is open even in
dimension 3.

Question 6.2. Let X be a smooth, projective, real algebraic variety of dimension
n ≥ 3. Assume that X(R) does carry a metric with negative sectional curvature.
Is it true that X is of general type?

6.3. The nonprojective Nash conjecture. For the minimal model program to
work it is essential to have projective varieties. It would be interesting to know
what happens for proper but nonprojective varieties. There are reasons to believe
that the answer may be quite different from the projective case.
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